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Distributional Analysis and De Jong, Liang, and Lauber's (1994)
Dual-Process Model of the Simon Effect

Jun Zhang and Sylvan Komblum
University of Michigan

R. De Jong, C.-C. Liang, and E. Lauber (1994) proposed a dual-process model to account for
the Simon effect and its reversal. Their proposal included a distributional analysis whose
results, they claimed, support the time-course assumptions they make for the 2 processes of the
model. It is shown that the 2 functional components of the dual-process model, the
unconditional and conditional automaticity, are equivalent to earlier accounts of the Simon
effect and its reversal, namely automatic response activation of the dimensional overlap model
(S. Kornblum, T. Hasbroucq, & A. Osman, 1990) and logical receding (A. Hedge & N. W. A.
Marsh, 1975), respectively. It is also shown that the distributional analysis is a simple
computational procedure that reflects fundamental statistical properties of the underlying
reaction time distributions and their interrelationships and that De Jong et al.'s time-course
assumptions precluded at least half of these interrelationships. Indeed, experimental results
from tasks in which the Simon effect is obtained often violate these assumptions, as is
demonstrated in this article. Finally, it is also shown that De Jong et al.'s data are consistent
with the hypothesis that the Simon effect and its reversal, irrespective of the task type in which
it is obtained, can be accounted for by a common mechanism with 2 independent functional
components.

During the past 5 years there has been a significant

increase in the number of articles published on stimulus-

response compatibility (SRC). This is due in part to the fact

that SRC is beginning to be seen as encompassing a broad

spectrum of performance complexity, ranging from the

relatively simple perceptual-motor tasks first studied by

Fitts (Fitts & Deininger, 1954; Fitts & Seeger, 1953) to the

cognitively more complex Stroop tasks that have defied

explanation from the day the original one was first described

(Stroop, 1935). Among the SRC phenomena that have

recently attracted a great deal of attention is the Simon effect

(e.g., De Jong, Liang, & Lauber, 1994; Hommel, 1993; Lu &

Proctor, 1995; Umilta, 1994).

The Simon effect, narrowly defined, refers to the finding

that in two-choice reaction time (RT) tasks in which the

spatial position of the stimuli is irrelevant and the responses

are made at the same relative spatial positions as the stimuli,

the RT on trials on which the stimulus and response

locations correspond is usually faster than on trials in which

they do not correspond (see Simon, 1990, for a summary).

Under some conditions, however, this effect is reversed.

Funding for this research was provided in part by U.S. Air Force
Office of Scientific Research Grant F49620-94-1-0020. We thank
Tony Whipple and Ling-Po Shiu for valuable comments on earlier
versions of this article.

Correspondence concerning this article should be addressed to
Jun Zhang, Department of Psychology, University of Michigan,
525 East University Boulevard, Ann Arbor, Michigan 48109, or to
Sylvan Kornblum, Mental Health Research Institute, University of
Michigan, 205 Zina Pitcher Place, Ann Arbor, Michigan, 48109-
0720. Electronic mail may be sent via Internet to Jun Zhang at
junz@umich.edu, or to Sylvan Kornblum at kornblum@umich.edu.

That is, the RT on trials in which the stimulus and response

locations correspond, instead of being faster, is slower than

on trials in which they do not correspond. This has been a

puzzle and has challenged a number of models in the

literature that have attempted to account for the Simon effect

(see Lu & Proctor, 1995, for a summary). Hedge and Marsh

(1975), who first reported this reversal, accounted for it in

terms of the logical receding hypothesis. In their task, the

stimuli consisted of the colors red and green, presented to

the left and right of a central fixation point; the responses

consisted of left and right keypresses, and the keys them-

selves were colored red and green. The stimuli and the

responses thus had two attributes each: color and position.

Hedge and Marsh argued that

the logical character of the receding which would relate either
of these (stimulus) attributes to the attributes of the response
might be either "identity" (same colour or same position) or
"reversal" (alternate colour or alternate position).... For a
given logical receding (identity or reversal) of the relevant
attribute (color) responding was faster for trials in which the
receding of the irrelevant attribute (position) was of the same
logical type as that of the relevant attribute, than for trials in
which the logical receding of the irrelevant attribute was
opposite in type. (Hedge & Marsh, 1975, p. 435)

In one of the recent articles to address this issue, De Jong

et al. (1994) proposed a dual-process model in which they

postulated two functional components together with specific

assumptions concerning the relative time course of these

components. They also presented results of a distributional

analysis of their data in support of these assumptions. The

model is presented as an all inclusive account of the Simon

effect and its reversal. The purpose of the present article is to

examine De Jong et al.'s model and distributional analysis
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technique in detail. We shall argue the following points, (a)
The dual-process model does not explain or clarify the
reversal of the Simon effect beyond the logical receding
hypothesis account originally proposed by Hedge and Marsh
(1975); the core of De Jong et al.'s new proposal lies in the
time-course assumptions of these two functional processes,
(b) Whereas the distributional analysis proposed by De Jong
et al. uncovers interesting patterns in their data, we show that
these patterns are mathematically derivable from the statisti-
cal properties of the RT distributions and are not necessarily
related to the time-course assumptions of the dual-process
model, (c) We present the results of experiments in which
robust Simon effects were obtained and for which the results
of the distributional analysis violate De Jong et al.'s
time-course assumptions, (d) We show that De Jong et al.'s
data strongly suggest that a common mechanism is generat-
ing the Simon effect across different types of tasks. This
mechanism is most likely made up of two independent
components; however, the details of how it produces the
observed properties of the RT distribution remain to be
identified. We take up these points in the order in which they
are listed.

The Dual-Process Model

According to De Jong et al. (1994), the mechanism
underlying the effects of an irrelevant stimulus position on
performance has two components: (a) the unconditional
priming component, "abrupt stimulus onset results in the
strictly automatic priming of the spatially corresponding
response" (p. 732); and (b) the conditional component,
"when the task-defined S-R transformation (identity or
reversal) is applied to the relevant stimulus attribute, it will
tend to generalize to the spatial stimulus code resulting in the
priming of the spatially corresponding or noncorresponding
response, respectively" (p. 732). These two components are
assumed to have different time courses. The first, the
unconditional component, is assumed to become effective
soon after stimulus onset, and to dissipate rapidly. The
second, the conditional component, is assumed "not to be
time-locked to stimulus onset, but to arise at the point in time
when the transformation rule (identity or reversal) is applied
to the relevant stimulus attribute and also, unintentionally, to
the spatial stimulus code" (De Jong et al., 1994, pp. 732-733).

Functionally, the unconditional component is indistinguish-
able from the automatic response activation process of the
dimensional overlap (DO) model (Kornblum et al., 1990;
Kornblum & Lee, 1995)—including its underlying priming
mechanism. As for the conditional component, De Jong et al.
(1994) took as a given that the task-defined transformations
consist of applications of the identity—reversal rule—which
Hedge and Marsh (1975) had postulated (logical receding
hypothesis) in their original proposal. De Jong et al.'s idea of
conditional automaticity suggesting the automatic applica-
tion of the identity (or reversal) rule from the relevant to the
irrelevant dimension is embodied in Hedge and Marsh's

hypothesis that the logical receding of the same type is faster
than if the receding is of the opposite type.1

De Jong et al.'s (1994) dual-process model thus appears to
be a hybrid consisting in one part of the DO model's
automatic response activation process, and in the other part
Hedge and Marsh's (1975) logical receding hypothesis. The
core of De Jong et al.'s new proposal lies in their time-course
assumptions and their novel distributional analyses. We turn
to these next.

The Distributional Analysis

Background

The distributional analysis of RT data is a computational
procedure that De Jong et al. (1994) proposed for getting at
the temporal dynamics of their two hypothesized processing
components. First they calculated the RT distributions for
spatially consistent (corresponding, in their term) and spa-
tially inconsistent (noncorresponding) trials for each sub-
ject. The cumulative probability distributions are denoted as
Pc(t) and P,{t), respectively. Then, they divided each of these
distributions into N quantises or proportional bins, such that
each bin contained the same proportion (UN) of trials
(depending on the experiments, N was either 5 or 10).2 An
individual bin is identified by j, its quantile ID. The mean RT
of those trials contributing to a particular bin (J) in the
consistent distribution [jPc(0] is denoted as <*>, and in the
inconsistent distribution [/>,{*)], (f. The difference between
these corresponding mean RTs, *f - f®, is a bin-by-bin
measure of the Simon effect, and when plotted as a function
of the averages of these means, (fp + r® )/2, it provides a
measure of the changes over time in the magnitude of the
Simon effect—we call this the distributional plot (see
Figure 1). De Jong et al. (1994) found that for their data this
function was roughly linear, with a negative slope that had
roughly the same value across different S-R mapping
conditions and experiments. That is, the magnitude of the
Simon effect appeared to be greatest at fast responses and to
decrease as responses slowed. S-R mapping instructions, on
the other hand, appeared to change the intercept of this
function (i.e., its vertical position in the distributional plot)
without affecting the slope. De Jong et al. interpreted the
slope of the distributional function as a measure of the time
course for the unconditional component and the intercept as
a measure of the conditional component and concluded that
these effects were additive. The conclusion about the data
showing additivity of factor effects is probably correct and,
if so, important. However, whether these results necessarily

1 Until now, the DO model has not specified any mechanism for
generalizing such rules to the outcome of the automatic process
(but see Zhang, 1994). However, it does not seem that De Jong et
al.'s (1994) dual-process model has articulated such a mechanism
either. The sketch of a connectionisl model in De Jong et al.'s
Figure 11 does little to make this process explicit

2 In fact, the cumulative probability distributions had been
horizontally averaged (Vincentized curve; see Ratcliff, 1979)
across subjects before the quantization procedure to represent
group data.
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figure 1. Distributional analysis of reaction time (RT) data, (a) A
cumulative RT distribution P(t), over many trials of a certain

condition, is divided into N quantiles, that is, bins of equal

proportion (here N = 5, indicating that each bin contains 20% of
the total number of trials). The mean RT for they-th quantile (bin) is

calculated and denoted as /®. (b) The above procedure is applied

separately to the RT distribution for spatially consistent (i.e.,
corresponding) trials, Pc(r), and to the RT distribution for spatially

inconsistent (i.e., noncorresponding) trials, P,(0. so as to calculate

the bin-averaged mean RTs, fc
a and rp, respectively. The differ-

ence, rjfl - f/>, and the average, (rj-° +t-c
i>)l2, of the two means are

plotted against each other to form the distributional plot (which
appears linear from the data of De Jong et al., 1994).

reflect the effects of a differential time course for the two

functional components is questionable, for there is an

alternative interpretation. We shall prove that the distribu-

tional analysis procedure per se reflects statistical properties

of the underlying RT distributions, rather than being based

on De Jong et al.'s time-course assumptions.

Mathematical Foundation

We note that when N —> <», bins becomes increasingly

smaller, so that the mean RT of a bin is closer to the

boundary RT values defining the bin. The above procedure

for determining the mean RT (averaged within each bin)

then becomes rinding corresponding tc and tt in the pair of

RT distributions such that the cumulative probabilities (P)

up to that bin, as indexed by tf and (,, respectively (we drop

the bin ED; for simplicity), are equal (see Figure 1):

(1)

Now, given that the difference (t, - tc) and the average

(t, + tc)/2 of all corresponding bins obey a linear relation-

ship with slope K and ordinate intercept 8,

+ 8,

and a linear relationship between t,, and f, is inferred:

f, - T

with

X =
1 + K/2

1 - K/2 ' l - K / 2

(2)

(3)

(4)

Substituting Equation 3 into Equation 1, we have (because

these equations hold for all corresponding pairs of tc and r,,

we simply use t to denote this running variable)

Pc(t) = T), (5)

This is to say, the two distributions are related to each other

through an affine transformation on the time variable, that is,

a shift T plus a scaling X. The forms of the two RT

distributions are identical apart from an affine mapping A:

t — ' \t + T. The grand means (mean RT) of the original

distributions and their variances are, respectively,

and

We can easily derive, on the basis of Equation 4,

u, = Xuc + T, o-j = Xo> (6)

Thus, the grand means and variances of the pair of RT

distributions are related to each other through X and T or,
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because of Equation 3, through K and 8, the slope and
intercept in the distributional plot. To work out the exact
relationship, denote

AM = M; - Me. Ao- = CT, - ac

as the difference and

M,

a)

as the average, respectively, of the grand mean and the
variance for the pair of RT distributions P^t) and Pft).
Equation 6 can be recast as

AJJ = K£ + 8, ACT = KCT. (7)

Because 8' = K(! + 8 is simply the vertical intercept
calculated at the RT mean (this is actually how De Jong et
al., 1994, defined intercept; see their footnote 2), we have the
following conclusions: (a) The difference in mean for the
pair of RT distributions, Au, is only related to the vertical
intercept at the mean 5' (and not to the slope K), and (b) the
difference in variance for the pair of RT distributions, ACT, is
related only to the slope K (and not the vertical intercept 8');
its magnitude is proportional to K as well as to the average
variance (of the two distributions) CT.

The Slope (K) and De Jong et al. 's (1994)

Time-Course Assumptions

Clearly, if the slope of the distributional plot is negative,
that is, if K < 0, then the variance of the inconsistent
distribution must be smaller than that of the consistent
distribution (CT; < CTC), which is exactly what De Jong et al.
(1994, Figure 4) found in their data. However, if the slope of
the distributional plot is positive, then the variance ordering
is reversed, that is, the variance of the inconsistent distribu-
tion is larger than that of the consistent distribution (CT,- > CTC).
This is summarized in Figure 2. If such a function were to be
obtained for a set of data that also displayed the Simon
effect, it would constitute a direct violation of De Jong et
al.'s time-course assumption. We illustrate such a case in
Figure 3, which is a distributional plot calculated for
previously published data (Kornblum, 1994).

In Kornblum's experiment, the relevant stimuli consisted
of the colors green and blue, presented in the left, right
upper, or lower half of a rectangle (3.2 X 1.2 cm) and
viewed on a CRT screen from a distance of 75 cm. The
spatial position of the color patches was irrelevant, as was a
letter string presented in the center of the rectangle. The
responses consisted of left-right keypresses. Each trial
began with a warning signal consisting of the four corners of
the stimulus rectangle. The stimulus was presented follow-
ing a randomly selected interval of between 400 and 600 ms
and was terminated by the subject's response. At a randomly
selected interval of between 600 and 1,200 ms after the end
of the posttrial feedback, the warning signal for the next trial
was presented. In one third of the trials of a "pure" block,

Jf
I

*r

(tj + t c ) /2

b)

ft.

(t| + t c ) / 2

Figure 2. Possible relationships between the respective means |̂ ,

Hi and variances crc, u/ of the two reaction time distributions for

spatially consistent (corresponding) and spatially inconsistent

(noncorresponding) trials, (a) When the slope is negative (K < 0),

CT; < uc is inferred. The line at the top (with a positive vertical

intercept 8') implies p, > ,̂ whereas the line at the bottom (with a

negative 8') implies uf < ̂ . (b) When the slope is positive (K > 0),

o~, > CTC is inferred. The line at the top (with a positive 8') implies

(if > (Jc, whereas the line at the bottom (with a negative 8') implies

the colors appeared in either the upper or lower half of the
rectangle (neutral condition), in another third of the trials
they appeared in either the left or right half of the rectangle
that corresponded to the spatial position of the response
(S-R-consistent condition), and in another third they ap-
peared in either the left or right half of the rectangle that
corresponded to the opposite spatial position of the response
(S—R-inconsistent condition). In the "mixed" blocks, half of
the trials were identical to those we have just described, and
in the same proportion, and the other half were slightly
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different (see Kornblum, 1994, for details—there was no

significant interaction between conditions in the mixed

blocks).

The results, which have been reported previously (Korn-

blum, 1994), are quite straightforward: There was a statisti-

cally significant Simon effect in both pure (44 ms) and

mixed (36 ms) blocks. Of particular interest, however, are

the variances: For pure blocks, S-R-consistent trials had a

standard deviation of 57 ms, as against 78 ms for the

S-R-inconsistent trials; for mixed blocks, S-R-consistent

trials had a standard deviation of 58 ms, as against 77 ms for

the S-R inconsistent trials. According to our analysis, this

particular ordering of the variances should produce distribu-

tional plots with a positive slope which, according to De

Jong et al.'s (1994) time-course assumption, would preclude

the occurrence of a Simon effect. The distributional plots for

these data are shown in Figure 3. As can be seen, the slopes

are positive. The fact that they were obtained from a set of

data that also display the Simon effect constitutes a clear

violation of De Jong et al.'s time-course assumption.

Additional evidence is presented in Table 1 (which should

not be considered exhaustive3), where we show that for a

number of studies in the literature that reported robust

Simon effects, the order of the variances (or standard errors)

for the S-R-consistent and S-R-inconsistent conditions in

some cases conforms, and in other cases is opposite, to the

order called for by De Jong et al. (1994). A smaller standard

deviation or standard error for the S-R-consistent than for

the S-R-inconsistent condition would imply a positive

slope, K, which of course would be a violation of De Jong et

al.'s time-course assumptions. From Table 1, it is clear that

there is not a consistent trend of the ordering of standard

errors and, hence, the sign of the slope, as required by De

Jong et al.'s time-course assumption.

pure-.

mixed

300 350 400 450

(tj +tc) /2 inms

I

500

Table 1

Simon Effect: Stimulus-Response Consistent and

Inconsistent Mean RTs and Variances

Consistent Inconsistent

Article

Simon, Hinrich, &
Craft (1970)

Craft & Simon (1970)

Simon & Craft (1970)

Simon, Sly, & Vilapak-
kam'(1981)

Kornblum & Lee"
(1995)

Condition

Left
Right
Left
Right
Left
Right
Compatible
Incompatible
Experiment 2
Experiments

M

385
386
438
439
530
485
633
868
596
553

SB

13.6
12.0
10.0
9.6

12.7
11.3

103
204

72.8
148.2

M

445
457
479
493
511
577
746
804
646
608

SE

13.2
13.7
9.9

10.4
10.3
11.2

113
174
66.4

153.4

'In this experiment stimulus location, instead of being irrelevant
(i.e., random with respect to the response), is redundant with the
relevant stimulus, which is color. Standard deviations are reported
here instead of standard errors. bBoth experiments used Type 3
ensembles (see taxonomy in the section The Simon Effect).
However, the irrelevant stimulus dimensions and the responses
were spatial as well as nonspatial. Standard deviations are reported
here instead of standard errors.

De Jong et al. 's (1994) Numerical Simulation

The appendix of De Jong et al.'s (1994) article contains a

numerical simulation that is intended to rule out an alterna-

tive interpretation of linear distribution plots, one that

attributes the observed negative slope to random trial-to-trial

variability in the size of the Simon effect, that is, the

statistical properties of RT distribution, as we propose here.

By performing the simulation (which is described below),

De Jong et al. claimed to have established conditions under

which a negative (or a positive) slope will occur—the

conditions have to do with the ratio of standard deviation

and mean of the Simon effect. This conclusion is false. In

this section, we show that all simulation results in Table Al

(p. 749) of De Jong et al. can be parsimoniously explained

by the difference in variance between the relevant RT

distributions, and may have nothing to do with the condi-

tions under which a distributional plot reveals actual tempo-

ral dynamics, as claimed by De Jong et al.

The simulation used two RT distributions (both skewed

Gaussians), one as a standard, reference distribution, called

X, with M = 400 ms and SD - 100 ms; the other, a

distribution representing the Simon effect, called Y (M = 20

ms, SD = 10, 20, and 50 ms for the low, medium, and high

variance conditions, respectively). Random samples of x e

X and y G Y were generated and were combined to generate

RT of a simulated trial. Three different hypotheses or rules

for generating RT distributions of corresponding-noncorre-

sponding locations (denoted here as RTC and /?r,) are

simulated: for the "advantage only" rule, RTC is generated

by x — y, and RTi by x; for the "disadvantage only" rule, RTC

is generated by x, and RT, by x + y; for the "both" rule, RTC

Figure 3. Distributional plots for some of the data of Kornblum
(1994), in which the slopes are positive.

3 Unfortunately, very few studies on the Simon effect have
reported standard deviations or standard errors.
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is generated by x - ytt, and RTf by x + y/2. (The plus or

minus signs imply addition or subtraction of RTs drawn from
the respective distributions, as in additive stage models.)
Distributional analysis performed on the pair of distributions
RTt and RTC reveal the following pattern of simulation
results presented in their Table Al: (a) For the "advantage
only" rule, the slope is negative; (b) for the "disadvantage
only" rule, the slope is positive; (c) for both of the above

rules, the absolute magnitude of the slope (regardless of
sign) increases as the variance of Y increases; and (d) for the
"both" condition, the slope is essentially zero (flat).

This pattern of data is easily understood in terms of the
simple relationship derived in Equation 7: The slope K is

directly proportional to the difference of variance between
RT, and RTC. A basic background observation is that the

distribution of the addition (x + y) or subtraction (x - y) of
two independent, random variables x e X and y e Y is
simply the convolution of X with Y or with -Y. Because
their variances are additive and because varf- Y) = var(Y),
the variance (of both the additive and subtractive combina-

tion) equals the variance of X plus the variance of Y.
Therefore, for the "advantage-only" condition, a negative
slope is predicted:

,) - var(«rc) = var(X)

- [var(X) + var(Y)] = -var(Y).

For the "disadvantage only" condition, a positive slope is
predicted:

- vai(RTc) = [var(X) + var(Y)/4]

- var(X) = var(Y).

For the "both" condition, an overall zero slope is predicted:

var^Tj) - var^T,.) = [var(X) + var(Y)4]

- [var(X) + var(Y)/4] = 0.

This is exactly the pattern of results in their Table Al!
Another way of looking at this is that for the "advantage
only" rule, RTC is generated from a compound distribution
(X convolving with — Y) and RTt from a simple distribution
(X), whereas for the "disadvantage only" rule, RTC is
generated from a simple distribution (X) and RT, from a
compound one (X convolving with Y). Because the variance
of the compound distribution exceeds that of either simple
distribution, the ordering of variances between RTt and RTC

is just reversed for these two rules. This causes an apparent
difference in the sign of the slope. The variance-based
analysis above also explains why the magnitude of the slope
(for both the "advantage only" condition and the "disadvan-
tage only" condition) increases with an increase of the
variance of Y, as is observed when one moves from low to
medium to high in that table. To conclude, the simulation
results in the appendix of De Jong et al.'s (1994) article in
fact support the variance interpretation (our position) of the

slope of the distributional plot rather than the time-course
interpretation (De Jong et al.'s position).

Discussion

The distributional analysis proposed by De Jong et al.
(1994), when separated from their constraining and unwar-
ranted time-course assumptions, has advantages as well as
limitations. We have shown that the slope and intercept of a
distributional plot are generated by the differences between
the means and variances of the two underlying RT distribu-
tions and that these slopes can be positive or negative in
principle as well as in fact When the differences between the
means and the variances are small and theoretically interest-
ing, distributional analyses are especially valuable because
they magnify such differences. However, we have also
shown that if the distributional plots depart from linearity, as
is evident from some of De Jong et al.'s data, it implies that

the two underlying RT distributions differ in functional
form. Such differences may be small, as, for example, when
the two distributions differ in skewness, or large. In case of
the latter, such differences may give rise to nonmonotonicity
in the distributional plots, so that piecewise linear approxi-
mations might be adopted. Strictly speaking, when die two
underlying distributions are not affine-related. Equation 7 is
meaningless. Nevertheless, in practice, when N is small (as
in the case of De Jong et al.), linear regression may be used
to derive an equivalent slope and intercept so that Equation 7
holds approximately. In fact, it can be further shown that the
distributional plot is intimately related to the so-called Q-Q
plot that has been used extensively to study a family of
probability distribution functions (see Appendix).

The Simon Effect

Thus far, we have shown that De Jong et al.'s (1994)

time-course assumptions are theoretically unwarranted as
well as unsupported by data in the literature. This brings into
question De Jong et al.'s version of the dual-process account
of the Simon effect. However, we have also shown that the

distributional analysis per se is a potentially useful analytical
tool. In this section, we show that De Jong et al.'s orderly
data may also be a source of useful empirical information
concerning the Simon effect. In particular, the strong
similarities that emerge between characteristics of the Simon
effect when obtained under different experimental para-
digms strongly suggests that a common mechanism may be
operating across all these paradigms that, as classified by the
DO (dimensional overlap) taxonomy, all contain overlaps
between an irrelevant stimulus and the response dimensions.

The Simon effect, as the term is used in the literature,
requires that a consistency-inconsistency relationship exist
between the irrelevant, spatial aspect of a stimulus and the
spatial aspect of a response. This relationship may occur in a
number of different experimental paradigms in which the
responses are spatially defined or have a spatial attribute.
These have been classified in the DO taxonomy (e.g.,
Kornblum, 1992) on the basis of whether there is DO
between three different aspects of the task: the response, the
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relevant stimulus, and the irrelevant stimulus. The resulting

eight-class taxonomy is as follows. (1) Cases in which the

relevant stimuli are neutral (i.e., have no DO) with respect to

both the irrelevant stimuli and the responses. For example,

tasks in which the relevant stimuli are, say, colors presented

to the left or right of a central fixation point (with spatial

position irrelevant, of course), and the responses consist of

left-right keypresses. These are called Type 3 ensembles in

the taxonomy. (2) Cases in which the stimuli and the

responses are both two-dimensional (i.e., with two at-

tributes), but the two dimensions are dissimilar. For ex-

ample, tasks in which the relevant stimuli are colors,

presented to the left or right of a central fixation point (with

spatial position irrelevant, of course, as before), and the

responses are left-right keypresses. Thus far, these condi-

tions are identical to those in Type 3 above. However, in

these new tasks the keys themselves are also colored. Thus,

the two dimensions of the stimuli (color and position)

overlap with the two dimensions of the responses (color and

position) but not with each other. Either of the stimulus

dimensions may be mapped onto either of the response

dimensions, making the dimensions not included in the

mapping irrelevant. These are called Type 5 ensembles in the

taxonomy. (3) Cases in which the stimulus is three-

dimensional and there is overlap between the relevant and

one of the irrelevant stimulus dimensions, as well as

between the other irrelevant stimulus dimension and the

response. These are called Type 7 ensembles in the tax-

onomy (examples may be found in Kornblum, 1994).

(4) Cases with two-dimensional stimuli and one-dimen-

sional responses, in which the relevant stimulus dimensions

overlap with the response and with each other. These, of

course, are Stroop or Stroop-like tasks where, for example,

the relevant stimuli are the words left or right, presented left

or right of a central fixation point (with spatial position

irrelevant), and the responses consist of left-right key-

presses. These are called Type 8 ensembles in the taxonomy.

Hedge and Marsh (1975) used Type 5 ensembles in their

study. De Jong et al. (1994) used Type 5 ensembles in

Experiments 1 and 4 of their study; Type 3 ensembles in

Experiment 2, as well as in the control condition of

Experiment 3; and a Type 7 ensemble in Experiment 3 (even

though De Jong et al. called it a Stroop task—presumably

because they thought it was a Type 8 ensemble).4

Regardless of the details, all theories of the Simon effect

assume, implicitly or explicitly, that when two stimulus

attributes, or a stimulus and a response attribute, have DO,

some sort of automatic associative, attentional, or activation

process occurs that may interfere with, or facilitate, perfor-

mance. In Type 3 ensembles (which produce the pure Simon

effect), the only viable candidate relationship is that between

the irrelevant spatial aspect of the stimulus and the re-

sponse.5 The occurrence and origin of the Simon effect (as

previously defined) hi those ensembles is, therefore, clear

and unambiguous. In Type 5 ensembles with incongruent
S-R mapping instructions, there are, in principle, at least

two potential sources of conflict—one for each of the S-R

overlapping dimensions. The origin of the Simon effect in

these ensembles is, therefore, less clear. Because these

dimensions are themselves dissimilar, Type 5 may in fact be

a dual task in which the same effector is used to execute the

two responses—thus complicating matters considerably (e.g.,

see Structural Interference in Kahneman, 1973, p. 196).

Type 7 ensembles, which combine Type 3 with Type 4

ensembles (Type 4 ensembles are those in which the relevant

and irrelevant stimulus dimensions overlap with each other,

but neither overlaps with the response—these are sometimes

called Stroop-like stimuli) have been studied by Kornblum

(1994), who has shown that the effects of these two

ensemble types seem to be additive. The occurrence of the

Simon effect in these ensembles is, therefore, clearly identi-

fiable and similar to those in Type 3. In Type 8 ensembles,

because of the overlap (i.e., similarity) between the stimulus

and the response dimensions, and between the stimulus

dimensions themselves, the situation is much less clear than
in Type 3. Here, there are three potential sources of conflict:

two between the response and each of the two stimulus

attributes (relevant and irrelevant), and one between the two

stimulus attributes themselves. These attributes could all be

having an effect, either simultaneously, selectively, addi-

tively, or interactively. The origin and identification of a

Simon effect in Type 8 ensembles are, therefore, much more

ambiguous than in Type 3. These taxonomic distinctions and

their potential functional consequences raise the question of

whether the Simon effect, when obtained in all these

different experimental paradigms, can be accounted for by a

common mechanism.

De Jong et al.'s (1994) data may help shed some light on

this question. For, regardless of the ensemble type (3, S, or

7), De Jong et al. obtained a Simon effect and their data had

two consistent trends: (a) negative slopes with constant

magnitude (K between -0.09 and -0.12) and (b) vertical

intercepts that vary systematically depending on the S-R

mapping conditions (when applicable). The intercepts val-

ues were positive for identity, or congruent, mapping and
negative for reverse, or incongruent, mapping. This pattern

strongly suggests the influence of two independent factors

on RT: (a) an automatic response activation process that is

associated with the presence of DO between the irrelevant

stimulus dimension and the response and affects the vari-

ances of the S-R-consistent and S-R-inconsistent RT distri-

butions (this is equivalent to De Jong et al.'s unconditional

automaticity) and (b) a controlled process associated with

the S-R mapping of the relevant stimulus that affects the

means of the RT distributions; note that this factor is

different from De Jong et al.'s conditional automaticity. The

4 The tasks themselves all had a slight twist in trial blocking that
made them different from the standard tasks ordinarily run with

these ensembles. In particular, either the irrelevant dimension was

made relevant on a certain proportion of the trials, that is, the
required response was made contingent on it, or the required
response changed on a certain proportion of trials (e.g., keypress to
verbal); or variables that are usually blocked, like response labels,
or S-R mapping, were randomized within blocks.

5 Note that in the taxonomy of the DO model, this irrelevant
dimension could be anything—color, number, letter, and so on. It is

only when the Simon effect is narrowly defined that this dimension
is spatial.



1550 OBSERVATIONS

fact that this pattern of results was observed for a series of

experiments that obtained the Simon effect with Ensemble 3,

5, and 7, all of which include an irrelevant stimulus dimension

that overlaps with the response, strongly suggests that the

mechanism underlying the Simon effect in these different

tasks is probably the same. Of course, the precise opera-

tional details of this mechanism remain to be identified.

Conclusion

We have shown that De Jong et al.'s (1994) conditional

and unconditional automatic processes are intimately related

to the logical receding hypothesis of Hedge and Marsh

(1975) and to the automatic response activation process of
Kornblum's (Komblum et al., 1990) dimensional overlap

model, respectively. We have also shown that De Jong et

al.'s data and distributional analyses do not necessarily

support their time-course assumptions and that these assump-

tions need not be satisfied in order to obtain the Simon effect.

However, De Jong et al.'s data do seem to reflect indepen-

dent influences of an automatic and a controlled process on

the statistical characteristics of the underlying RT distribu-

tions. De Jong et al.'s empirical findings are intriguing, and

our reanalysis of them redefines some of the questions in the

area and, we hope, provides a new framework that may

make them more tractable.
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Appendix

Distributional Plot and Q-Q ttot

1551

The distributional plot proposed by De Jong et al. (1994) is

intimately associated with the so-called Q-Q plot that has been

used extensively to study a family of probability distribution

functions (see, e.g., Thomas & Ross, 1980; Wilk & Gnanadesikan,

1968). The Q-Q plot, or quantile-quantile plot, is a means by
which the running parameters generating corresponding quantiles

of the two distributions are plotted against each other. In terms of

our earlier notations, it is a plot of if against ({", a&j varies for the

two cumulative distributions Pc(t) and />,{/). Thomas and Ross

(1980) have shown that the necessary and sufficient condition for

the two probability distributions to be related by an affine transform

A—this is when the commonly adopted Vincentizing procedure for

across-subject averaging is valid—is that the Q-Q plot of these

distributions is linear. The distributional analysis proposed by De Jong et

al., on the other hand, plots (t, - rc) against (t, + tcyi. Obviously, the

distributional plot is a 45°-rotated version of the Q-Q plot Therefore, it

is not surprising that a linear relationship in the distributional plot merely
demonstrates mat the two distributions, PJ,t) and Pff), are related

through Equation 4 and have the same form (i.e., belong to the same

"family"). Linearity in a distributional plot reflects the statistical
properties of the pair of RT distributions and not necessarily functional

hypotheses concerning processing mechanisms (see Figure Al).

Figure Al. Relationship between distributional plot and Q-Q plot, (a) The Q-Q plot (quantile-

quantile plot) is generated by directly plotting the bin-averaged mean reaction times for consistent

and inconsistent trials, that is, i<p and if, against each other (c.f. Figure 1). A linear function in the

Q-Q plot implies that the two reaction time distributions are affine related, that is, they differ only by

a scale and a shift factor (see Equation 4). (b) The distributional plot is merely a 45°-rotated Q-Q
plot, so the linearity relationship is preserved. The slope and intercept in the Q-Q plot are \ and T, as

in Equation 3. In the distributional plot, they are K and 8, as in Equation 2. The two sets of parameters are

linked through Equation 4.
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