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1. Topology Optimization

2. Homogenization Design Method

3. Background of the New Approach

4. Mathematical Formulation

5. Optimality Criteria Method
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What is Topology Design ?

• Shape design keeps the initial topology,
while the shape of exterior/interior domain
is designed.

• If an extra hole is generated, or if two holes
are merged to a single one, we say topology
has changed.

• Finding the number, location, and shape of
the holes is a typical topology problem.
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OPTISHAPE

The key idea is to transfer

shape/topology design

to

Optimum material distribution

with on/off switch condition
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Idea in OPTISHAPE

χΩ x( ) =
1    if  x ∈Ω
0   if  x ∉Ω

 
 
 

The elasticity tensor χΩE

Ω Ω

D

E

∈L∞ Ω( )χΩ E

Extension Ω to the fixed domain D
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Examples by OPTISHAPE
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Topology Optimization

l has become an important and well recognized
sub-area of structural optimization

– Design Sensitivity Analysis (1960s & 70s)
l linear and nonlinear problems

– Sizing Optimization (1960s)

– Shape Optimization (1970s & 80s)

– Topology ( Layout ) Optimization (90s)
l Discrete and Continuum Topology Optimization

l Material Based Optimization

l Extension to MEMS area
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Evidence

l Last Two : 1st and 2nd World Congress on
Structural and Multi-disciplinary
Optimization ( Germany95 & Poland97)

l There are numerous sessions on topology
optimization related

l Commercial Codes
– OPTISHAPE(Japan), OPTISTRUCT(US)

– MSC-NASTRAN, ANSYS ---- Fall 97
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OPTISHAPE : Present

l Maximization of the global stiffness of an
elastic structure

l Maximization of the mean eigenvalue
problems for free vibration

l Combination of the above two

l Maximization of the dynamic stiffness for
frequency response problems

l Heat Conduction/Thermal Loading
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OPTISHAPE : Near Future

l include SHAPE OPTIMIZATION
capability based on Azekami and
Shimoda’s Method (at Mitsubishi Motor)
for detailed shape design after the
standard topology optimization

l include sensitivity analysis for sizing

l           TOPOLOGY + SHAPE + SIZING
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OPTISHAPE : Future

l Compliant Mechanism, Mechanism, and
Flexible Body Design

– to control deformation and motion of structures,
flexible multi-bodies, compliant mechanisms, and
even mechanisms to have integrated synthesis study
of mechanical systems

– toward smart structure design with control

l Material Design
– Young’s and Shear moduli and Poisson’s ratios

– Piezo-electric material design for MEMS
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http://www02.so-net.or.jp/~quint

for

more information
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Typical Procedure 1

• (1) Define a design domain which contains
the final optimum structure
– geometric restriction for the on/off condition

– on-flag : solid structure always exists

– off-flag : void (hole) must be assigned

• (2) Define the loading and displacement
constraint
– multiple loadings and multiple constraints are

possible in OPTISHAPE
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Loading #1

Constraint #1

Constraint #2

Loading #2

Loading #3

Loading #4

Multiple Loadings & Multiple Constraints
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Typical Procedure 2

• (3) Define the volume ( or weight ) constraint

• (4) Applying OPTISHAPE, and obtain
– the Optimum Layout ( Topology & Shape )

– the Maximum Mises Equivalent Stress

– the Mean Compliance and Strain Energy
Density

ρd WΩ
Ωz ≤ 1
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Typical Procedure #3

• (5) Repeat the above steps for two more
different weight constraints

• (6) Obtain the maximum Mises stress and
the mean compliance

• (7) Using the quadratic interpolation of
– Maximum Mises Stresses & Weights

– compute the weight for the allowable stress
constraints

W W2 3&
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Maximum Mises Stress

Weight ConstraintW1 W2 W3

σmax

Weight for the Upper Bound
Mises Equivalent Stress

Determination of the Weight Constraint
to enforce the stress constraint if exist

Three-Point Method
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Extended Domain by  .χΩ

ε ε ε εv E u v E ub g b g b g b gT T

D
d dD

Ω ΩΩz z= χ

Internal Virtual Work

New Material Constants ( Extended Elasticity Matrix )

χΩE ∈ ∞L Db g is very discontinuous

Impossible to take its derivative

that is,  no design sensitivity analysis
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Possible Approximation

Design Domain in the x Direction

Elasticity Matrix This interval can be small
as we want

x

Ee

Possibly Rapidly Varying

No Way to Approximate
by a Standard Way with
a distribution function

Introduce Two Scales
at an arbitrary point
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Relaxation

• Very Rapidly Varying Function         cannot
be approximated by a differentiable
function of position      in the standard way

• Introduce the two scales                    and the
micro-scale perforation, and then              is
approximated by the homogenized average
elasticity matrix

χΩE

x

x y
x

, =F
HG

I
KJε

χΩE

E H
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Origin of the Idea

• G. Cheng and N. Olhoff
– in plate thickness optimization

– smoothly varying thickness is not optimum

– optimum involves rapidly changing ribs

Homogenization is required
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Mathematicians

• Lurier, Cherkaev,and Fedrov (1981)
– Notion of G-convergence that is in the specially

designed average sense convergence

• Kohn and Strang (1984)
– Microscale performation and specialized

variational principles

• Murat and Tartar (1983)
– Homogenization Theory from Hadamard Shape

Design Problem
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Hadamard v.s. Homogenization

Hadamard
Rapidly Varying

Formation of Microstructure

Murat
&
Tartar

Boundary movement
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Bendsoe & Kikuchi 1986

Design Variables are a b, ,θb g  at every where

     Micro-Scale Perforation by
infinitely many rectangular holes

Rotation

a

b

a b

a b

= = ⇔
= = ⇔

1

0

void / hole

solid structure
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The Homogenization Design

macrostructure
x

Ω

¶Ωt

f

t

porous microstructure

solid microstructure

y

void microstructure

¶Ωd

y

y
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Why Homogenization ?

 Small Scale Rapidly
Varying Heterogeneity

Equivalent Homogeneous
              Material

If the exact heterogeneity is used
in mechanics, we must introduce
so fine finite elements to represent
all the detail. This is a difficult task.

This idealization is regarded
as the homogenization in
theoretical mechanics
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Microstructures

1

1

θα

β

2D

1

1

α
β

γ

3D

θ

ϕφ
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Many Choices

• The key feature is an approximation of the
extended elasticity matrix

• There are infinitely many ways to
approximate this by using
– Generalized Porous Media Constitutive

Equations (bio-mechanics, Geo-mechanics)

– Power Low of Density/Elasticity Constants

– Rank 1 & Rank 2 Orthotropic Materials

– Others

χΩE ∈ ∞L Db g
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Power Low

Most popular approach at present (Meljek, Yang, ...)
Altair/OPTISTRUCT is now assuming this approach

χ ρΩE E≈ p

For p=2 or 4, the design variable becomes the
density          such thatρ

ρ =
RST
1

0

if solid structure

if void / hole



29

The University of Michigan

Computational Mechanics Laboratory

Homogenized
Average Young's Modulus

Material Density

Upper Bound
Mixture Theory (1D)

Lower Bound Mixture Theory (1D)

ρ = 1

E

E E

H

v s

=
−

+

1
1 ρ ρ

E E EH
v s= − +1 ρ ρb g

Es

Ev
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Short Coming of Power Low

Un isotropic principal stress distribution

Density approch can make
only isotropic performation

This requires a lot of meshing
to have reasonable layout

However, easy programing and handy design variable
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Rank 1 & Rank 2 Materials

Rank 1 Lamination

Rank 2 Lamination

1

2

1

2

Zero E in 2
Zero Shear

Zero Shear

Rectangular hole is
very close to Rank 2
Material
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Elasticity Matrix

E H
sa E

=
−L

N
MMM

O

Q
PPP

1 0 0

0 0 0

0 0 0

b g
Rank 1 Material

Rank 2 Material

E H sE

ab

ab a b b

b b=
− −

− − − + − −
− −

L

N

MMM

O

Q

PPP1 1

1 1 1 1 1 0

1 1 0

0 0 0
2

2 2

ν

ν ν ν
νc hl q

c hb gb g b g b g
b g b g
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Advantage of Rank 2

Rank 2 elasticity matrix can be computed in the closed form
while rectangular hole requires FE calculation
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Rank 2 and Rectangular Hole

• Rank 2 material is regarded as the optimum
orthotropic material ( since its shear
modulus becomes zero )

• Then this yield the stable optimum solution
mathematically verified in the sense that FE
mesh dependency cannot be observed

• However, this results considerably lots of
gray perforated medium in the optimum
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Penalization
• We would like to have clear segregation of

solid and void portions to define precise
shape and topology, that is

• No gray scale solution is desirable

χ

ρ

ΩE

E

E

E

E
E

≈

F
HG

I
KJ

R

S
|||

T
|||

p

H

H
H

.....

.....

.....

Density Power Low

Rank2 & Rectangular hole

Penalization
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Multi-Loading 1

max min , max min ,

max , max ,

, , , ,..., , , , ,...,

, , , ,

max maxa b i i
i i i i i

a b i i
i i i

a b
m m m

a b
m m m m m

a f a

a a f

θ θ

θ θ

b g b g

b g b g

b g b g b g

b g b g b g
= =

− = −

≤ − = −

1 2 1 2

1

2

1

2
1

2

1

2

u u u u u

u u u u u

1

2

1

2
a f a fi i i i i i i i

i

u u u v v v
v

, min ,b g b g b g b g− = −

Minimum Principle to the I-th Load ( Equilibrium )

Inequality Relation
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Multiple Loading 2

a dD

f dD dD

m m m
i i

i

T

i i
iD

m m
i i

i

T

D i i
i
T

D

u u u E u

u u E u b

, max max

max max .....

,..., ,...,

,..., ,...,

max max

max max

b g b g b g
b g b g

=

= + +

= =

= =

z
z z

1 1

1
0

1

ε ε

ε σ

χ

χ χ ρ

Ω

Ω Ω

Formtion of a Single Objective Function

Approximated Design Problem

max min ,
, ,a b

subject to
dD W

m m

D

a f
θ

ρ

b g b g b g
z

−

≤ 0

1

2v
v v v
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Alternate

max min ,
, ,

max

a b
subject to

dD W

i
i

i

i i

D

w a f
θ

ρ

b g b g b g
z

−

≤

=
∑

0

1

1

2v
v v v

Weighted Sum Approach

Diaz and Bendsoe

OPTISHAPE can do both ways by user’s choice
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Lagrangian

max min ,
, ,a b

subject to
dD W

D

a f
θ

ρ

b g b g b g
z

−

≤ 0

1

2v
v v v

L a f dD W
D

= − − −z1

2 0v v v,b g b g e jλ ρ

δ δ δ δλ ρ

λ δ

λ δ

δθ

L a f dD W

a a
adD

b b
bdD

dD

D

T

D

T

D

T

D

= − − −

+
∂χ

∂
−

∂ρ
∂

F
HG

I
KJ

+
∂χ

∂
−

∂ρ
∂

F
HG

I
KJ

+
∂χ

∂θ
F
HG

I
KJ

z
z
z
z

v v v

v
E

v

v
E

v

v
E

v

,b g b g e j
b g b g

b g b g

b g b g

0

ε ε

ε ε

ε ε

Ω

Ω

Ω

Optimization Problem

Lagrangian

First Variation

Taylor & Prager in 1967
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Optimality Condition

a fv v v v,δ δb g b g= ∀δ

λ ρ λ ρdD W dD W
D Dz z− = ≤ − ≤0 00 0 0e j , ,

a a
a a

dD a

b b
b b

dD b

T

D

T

D

T

−
∂χ

∂
−

∂ρ
∂

F
HG

I
KJ ≥ ≤ ∀ ≤

−
∂χ

∂
−

∂ρ
∂

F
HG

I
KJ ≥ ≤ ∀ ≤

∂χ
∂θ

=

z
z
b g b g b g

c h b g b g

b g b g

ε ε

ε ε

ε ε

v
E

v

v
E

v

v
E

v

Ω

Ω

Ω

λ

λ

0 0 1

0 0 1

0

,

,

Equilibrium

Weight Constraint : Kuhn-Tucker Condition

Optimality Condition
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Optimality Criteria Method 1

a a
a a

dD a

a a
a a

a

a

a a

a a a
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−
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I
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Ω

Ω

Ω
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α

α, 0 1



42

The University of Michigan

Computational Mechanics Laboratory

Optimality Criteria Method 2

Algorithm of the optimality criteria method
is very similar with the fully stressed design

a a a
a b

a
a b

k k

k T k k k k

k k k k

+ =

∂χ
∂
∂ρ
∂

L

N

MMM

O

Q

PPP

R
S
||

T
||

U
V
||

W
||

F

H

GGGG

I

K

JJJJ
1 0 1b g b g

b g b g b g b g b g

b g b g b g b g

e j e j e j
e j

max ,min ,
, ,

, ,

ε εv
E

vΩ θ

λ θ

α

With design constraint 0 1≤ ≤a

α ≈ 0 75.
Choice of Parameter
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Lagrange Multiplier

λ kb g is computed by the bisection method

ρ a b dD Wk k

D

b g b ge j,z = 0

based the implicit function theorem

Volume constraint is always saturated.
This is correct, but for eigenvalue related
problems. this is not true.
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Optimum Angle : Pedersen

ε εv
E

vb g b gT ∂χ
∂θ

=Ω 0

ε ε σ σv E v v E v

T E T

b g b g b g b g c h b g

l q b g c h b g

T T

T

χ χ

σ σ φ χ φ
σ
σ

Ω Ω

Ω

=

=
R
S|
T|

U
V|
W|

−

−

1

1 2
1

1

20

0

∂
∂θ

= ⇔ =−T E Tφ χ φ φb g c h b gT

Ω
1 0 0

Noting that

we have

Optimum angle is the one for the principal stress !
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Engineering Idea

σ 2 σ 1

Rectangular hole should be aligned
in the principal stress direction

Large hole can be assumed in the
small principal stress direction

Small hole must be placed in the
large principal stress direction

Optimality Condition can be explained as
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Elaboration
Using the relation

ρ
ρ

= − ⇒ =
−

1
1

ab a
b

we can change the design variable

a b b, , , ,θ ρ θb g b g⇒

max min ,

max min max ,

, ,

,

ρ θ

ρ θ

b

b

a f

a f

b g

b g

b g b g

b g b g
v

v

v v v

v v v

1

2
1

2

−

⇔ −

and then we can show

Habor
Jog
Bendsoe

Solve b and angle
analytically, then
apply optimality
criteria method only
to the density
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Monotonic Convergence

• Optimality criteria method is monotonically
converging to a local optima

• The local optima obtained may be strongly
dependent of the initial condition
– Uniformly Biased Initial Condition in

OPTISHAPE

• The local optima may depend on the FE
mesh
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Many Problems

but

It is so powerful !
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Excersise #11

Strong Wind Force
      (distributed)Big Sliding Doors

Supporting Rollers for Sliding



50

The University of Michigan

Computational Mechanics Laboratory

Thin Plate

Reinforcement Beams

Find a pattern of reinforcement
of a thin plate subjected to a 
strong wind force by using 
OPTISHAPE
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Topology Optimization  -2-
OPTISHAPE

1. Extension of HMD

2. Free Vibration Problem

3. Frequency Response Problem

4. Buckling Problem

5. Flexible Bodies
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Extension of OPTISHAPE

• Free Vibration Problem
– Maximization of lowest frequency

– Maximization of the distance of two frequencies

– Inverse frequency identification problem

• Frequency Response Problem

• Buckling Problem for Stability

• Flexible Multi-Body Design

• Material Microstructure Design
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Eigenvalue Problem

• Maximizing the lowest eigenvalue

• Several eigenvalues are crashing while
optimization is performed

max
, ,

mina b θ
λ

b g Ku Mu= λ

One eigenvalue with n number of eigenvectors
                                        ----- Ultimate Optima
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Free Vibration

M
x

Kx 0
d
dt

2

2
+ =

x ut i tb g b g= exp ω

− + =

− + =

ω ω ω

ω ω

2

2 0

M u K u 0

Mu Ku

exp exp

exp

i t i t

i t

b g b g
c h b g − + =

= =

ω

ω λ

2

2

Mu Ku 0

Ku Mu Mu

Discrete Free Vibration Problem

Separation of variable
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Number of Iteration

Eigenvalues

Modification by Ma, Cheng, Kikuchi

i

w i ii

max

max, ,.... ,

=
= =

number of crashing eigenvalues

weights 1

Mathematics can be constructed
by using sub-differentiability

       ----  Bendsoe and Rodriges

max max
, ,

min
, ,

min

max

a b a b
i i

i

i

w
θ θ

λ λ
b g b g

⇒
=
∑

1
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Further Modification

max max
, ,

min
, ,

min

max max

a b a b
i i

i

i

j l
j

j

w z
θ θ

λ λ λ
b g b g

⇒ +
= =
∑ ∑

1 1

λ

λ
min

, ...... ,
i

l nd rd

=

=

minimum crashing eigenvalue

higher eigenvalues2 3

We shall maximize not only the lowest frequency
but also several eigenvalues at once
              .... yields sub-optima, but make sense in engineering
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Maximization of Distance

max
, ,

max max

a b
j j

j

j

i i
i

i

w w
θ

λ λ
b g = =

∑ ∑−
1 1

w

w

j j
j

j

i i
i

i

λ

λ

=

=

∑

∑

=

=

1

1

max

max

higher eigenvalue

lower eigenvalue
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Inverse Frequency Problem

max
, ,

max

a b
i i i

p

i

i

w
θ

λ λ
b g c h1

21

−
=
∑ target

Idendify the structural configuration so that it has specified
eigenvalues for the first small set of eigenvalues
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Frequency Response Problem

max min
, ,a b

T T T

θ
ω

b g v
v Kv v Mv v b

1

2

1

2
2− −

K

M

b

=
=

=
=

stiffness matrix

mass matrix

specified frequency

excited force with frequency

ω
ω
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Discrete Equilibrium

K M u b− =ω 2c h
b b

u u

t i t

t i t

b g b g
b g b g

= =

= =

exp

exp

ω

ω

exciting force

dynamical response

b bt i tb g b g=exp ω



61

The University of Michigan

Computational Mechanics Laboratory

Buckling Problem

max
, ,

min
a b θ

λ
b g Ku K u= λ G

K

K

=
=
stiffness matrix

geometric stiffness matrixG

possibility of local
buckling modes

Rodrigues and Gedes
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Linear Combinations
of the above cases

OPTISHAPE
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OPTISHAPE in Practice

• OPTISHAPE is currently integrated into
SDRC/I-DEAS. In future an icon of
OPTISHAPE will be added into I-DEAS
option menu

• OPTISHAPE design models can be
developed by MSC/PATRAN and the input
and output data are fully compatible with
MSC/NASTRAN
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OPTISHAPE to CAD/CAM

• OPTISHAPE can translate the image data of
the optimum topology/configuration into a
STL file (as well as SLC file in near future) so
that smoothed 3D surfaces can be plotted to
show the concept of the design (NC Link)

• OPTISHAPE can produce a set of wire frame
models of sliced models perpendicular to a
specified direction (CAD Link)
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OPTISHAPE

More in Practice
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Current Development
Research

OPTISHAPE

is

constantly enhanced
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Flexible Body Design

compliant mechanism design

by

Mary Frecker & Shinji Nishiwaki

Shinji Ejima
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Mechanical Design

Structure Design Mechanism Design

New Design Based on Flexibility
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Structure Design

Flexible Structure Stiff Structure
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Flexible Body Design

• Design a structure that moves to the
specified direction as much as possible
when input forces are given

Input Force

Desired Motion

Motion/Kinematics
          Control
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Compliant Mechanism

l MEMS(Micro Electro Mechanical System)
l Basic Ideas & Clues for

 Rigid Link Mechanism Design

~250 µm

Microcompliant crimping
 mechanism
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Kinematic Synthesis

Based on traditional rigid body kinematics

Lumped compliance (Pivot)

I. Her and A. Midha (1986), 
L. L.Howell and A. Midha (1994), (1996) 
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Continuum Synthesis

Distributed compliance

O. Sigmund (1995), (1996)
U. D. Larsen, O. Sigmund and S. Bouswstra (1996)
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Design of Flexible Structures

•Truss Approach

•Continuous Approach

Configuration by Trusses

Distribution of Materials
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Truss Approach

Based on Ground Structure Design

By Mary I. Frecker

Compliant Mechanism Design
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max (mutual energy) ⇔ max (vB
T  K u A )

subject to :  K uA =  fA

                    K vB  =  fB

fA= applied force

∆

fB= dummy load

A

B

Kinematic Function

Problem Statement 1
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Problem Statement  2

min( strain  energy ) ⇔ min (u B
T  K u B )

subject to :  K u B =  - fB

fixed point

fB= resistance of workpiece

A

B

Structural Function
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Multicriteria Optimization

max 
mutual  energy

strain  energy

 

 
 

 

 
  ⇔ max 

v B
T  K u A

uB
T  K u B

 

 
 

 

 
  

subject to :  K u A =  fA

                    K v B  =  fB

                    K u B  =  - fB

                    total resource constraint

                    lower and upper bounds
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A Simple Design Problem

Figure 5a.  Design Problem.    Figure 5b.  Initial Guess.

Figure 5c.  Compliant          Figure 5d.  Stiffest 
 Mechanism Solution.           Structure Solution.

F ∆

F F∆



81

The University of Michigan

Computational Mechanics Laboratory

Verification of Function

F ∆

This can satisfy the original objective

Deformed Shape
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Compliant Gripper

Design Problem
Initial Guess

Solution and Finite Element Model Compliant Grippers

∆
F

F
∆
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3D Compliant Gripper

Three Dimensional
Compliant Mechanism

F

∆

Design Problem
Initial Guess

Solution and Finite Element Model
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Continuous Approach

Based on 
Homogenized Design Method

•Fixed Grid / Voxel Mesh Method
•Homogenization Method
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Formulation of Flexibility
t1 u1 u1

t 2

Γt 2

Γt1

Flexibility at 

Maximize L2 u1( )= t2 • u1dΓ
Γt 2∫

Stiffness at

Minimize L1 u1( )= t1 • u1dΓ
Γt1∫

Γt1

Γt 2

(Mutual Mean Compliance)

(Mean Compliance)
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Design of Flexible Structures
Kinematic function

Structural function

Flexibility

Stiffness

Reaction force

+ +

Applied force

Defamation
Constraint

Constraine
d
Motion
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Multicriteria Optimization

Flexibility

Stiffness

Trade Off

Max Mutual Mean Compliance

∑Min    Mean Compliance

Compromise Solutions
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Multi-Objective Functions

Max
Mutual Mean Compliance

Mean Compliance

(1)

∑

(2)
Max w Log(Mutual Mean Compliance)

-(1-w)Log(    Mean Compliance)∑

where w is a weighting Coefficient
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Weighting Method vs. Ratio Formulation

Max w1 Mutual Mean Compliance
 -(1-w1)    Mean Compliance∑

80

40

A(Γt1)

B(Γt2)

Example

Max
Mutual Mean Compliance

Mean Compliance∑

where w1  is a weighting Coefficient
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Weighting Method vs. Ratio Formulation

w1  =0.001 w1  =0.01

w1  =0.1 Ratio Formulation
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Optimization Procedure

Calculate homogenized
elasticity coefficients

Calculate sensitivities
using FEM

Solve SLP problem
with respect α and β Filtering

Update angle θ

Convergence
No Yes

Start

End
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SLP vs. OC

•Optimality Criteria Method (OC)
•KKT-Conditions + Heuristics
•Quick Convergence
•Difficult to Construct Heuristics for
 General Objective Functions

•Sequential Linear Programming (SLP)
•Linear Approximation + Simplex Method
•Slow Convergence
•Easy Implementation for Any Objective
 Functions
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Checkerboard Pattern

ρ
1

ρ
2

ρ
3

ρ
4

>

Artificially stiffer

Filtering scheme 

ρ
1
=ρ

4
=1

ρ
2
=ρ

3
=0

ρ
1
=ρ

2
=1/2

ρ
3
=ρ

4
=1/2

ρ 1 =
1

4
3ρ1 + ρ2 + ρ3 − ρ4( ) ρ 2 =

1

4
ρ1 + 3ρ2 − ρ3 + ρ4( )

ρ 3 =
1

4
ρ1 − ρ2 + 3ρ3 + ρ4( ) ρ 4 =

1

4
−ρ1 + ρ2 + ρ3 + 3ρ4( )

where ρi = 1 − α iβ i   (i = 1,...,4)
One group



94

The University of Michigan

Computational Mechanics Laboratory

Elimination of Checkerboard

FilteringNo Filtering

Eigen-frequency problem
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Compliant Clamp

Ωd

64
A(Γt

1)

B(Γt
2)

4830 16

10

20

Design domain

Large displacement analysis
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Compliant Gripper

60

20

1010

1010

10

2020

A(Γt1)

Ωd

B(Γt2)

Design domain

Original  Shape

Deformed Shape

Large displacement analysis
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Compliant Pliers

Ωd

64
A(Γt

1)

B(Γt
2)

4830 16

10

20

Design domain

Optimal configurations

Hinge
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Final Configuration

Workpiece
Optimal configuration

Final configuration
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Compliant Internal Gripper

Ω
d

A

B

2010 10

20

10

Design domain

Optimal configuration

Workpiece
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Constrained Motion

Compliant Gripper

Adding Mutual Stiffness

Transitional Motion
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Suspension Design
B

A60

30Ωd

B

A

Ωd

Design domains Optimal configurations
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Interpretation
Optimal Configuration + Deformed Shape

Rigid Link Mechanisms

Strut
Type

Double wish-
bone Type
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Two Displacement Outputs

Ωd

40

30

A(Γt1)

B2(Γt2)

B1(Γt2)

Optimal configurationDesign domain
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Extension to Multi-Flexibility

2Γt1

1Γt1

1Γt2

2Γt2

1t 1

2 t 1

2t2

1t2

........ to n

Necessary for Many Performance Criteria

n Flexibilities Required

Automotive Body Design

n Mutual Mean Compliances
Should be Positive
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Multi-criteria Optimization
Max i-th Mutual Mean Compliance  ( MMC)

 (for i=1,...,n)

Min  i-th     Mean Compliance  ( MC)
(for i=1,...,n)

Max
-1/Cf  Log(     Exp(-Cf  MMC))

∑

 Multi-Objective Function

i

i

∑ i

1/Cs  Log(     Exp(Cs  MC))i∑
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 Multi-flexiblity Design

Design Domain Ωd

10 20 10

10

20

10

A1

A2

B2

B1

Design Domain Ωd

A1

A2

B2

B1

First flexible mode Second flexible mode
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Optimal Configurations

Cf =Cs = 3 Cf=Cs = 10
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Verification of Performance
Deformed Shape

A1

A2
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Extension

• 3D Compliant Mechanism Design

       New 3D element is used

• Complaint Mechanism Design with

  a Displacement Constraint
        New formulation is introduced

         + Image based design
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Design of Simple Model

Design Domain

24

12

8

2

2

12

Applied Force

Dummy Force

Constraint
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Optimal Configurations (1)

Total Volume =20%

Unconstrained Case
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One Constraint Case

(Total Volume =30%)
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Two Direction Constraint

(Total Volume =30%)
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Design of Gripper
5

24

8

4
4

4

4 4

8

8

Symmerty Condtion

Symmerty Condtion Dummy Force

Applied Force
Constraint

Design Domain
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Optimal Configurations (1)
Unconstrained Case

Total Volume =20%
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Optimal Configurations (2)
Constrained Case

Total Volume =20%
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Design of Clamp

Symmerty Condtion

5
24

8

4
8

Applied Force

Dummy Force

Design Domain
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Optimal Configurations
Unconstrained Case

Total Volume =20%
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Design of Pliers

Design Domain

Symmerty Condtion

5
24

8

4
8

Applied Force

Dummy Force
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Optimal Configurations
Unconstrained Case

Total Volume =20%
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Design of Torsion Bar

18

9

9

Design Domain

Applied Force

Flexibility
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Optimal Configuration

Total Volume =10%
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25

10

7

Design of Torsion Plate (1)

Design Domain

Applied Force

Flexibility
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Optimal Configuration (1)

Total Volume =10%
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25

10

7

Design of Torsion Plate (2)

Design Domain

Applied Force

Flexibility
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Optimal Configurations (2)

Total Volume =10%
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20

10

8

42

Design of Sus-Like Structure

Design Domain

Applied Force

Flexibility
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Optimal Configuration

Total Volume =10%
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Design of Another Gripper

40

5

10

Design Domain

Applied Force

Flexibility
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Optimal Configuration

Total Volume =10%



131

The University of Michigan

Computational Mechanics Laboratory

14

14

7

1

4

Design of Tensile Model

Design Domain

Applied Force

Flexibility
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Total Volume =10%

Optimal Configurations
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Complaint Mechanism Design with
  a Displacement Constraint
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Multi-Objective Function (a)

Max Flexibility
Max Stiffness

St Flexibility escribed Flexibility. Pr≥

?

Phase 1 Phase 2
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Optimal Configurations (a)

1.99 5.05

9.98 19.93
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Multi-Objective Function (b)

Min
Stiffness

Flexibility escribed Flexibility

log

log log Pr

b g
b g b gm r+ −

L
N
MM

O
Q
PP2

Exterior penalty function method
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Optimal Configurations (b)

1.93 4.43

8.82 18.45
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Image Based Design

Optimal Topology Practical Structure

Image processing
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Verification of Displacement

48.2 24.3

Threshold=100 Threshold=80

Gray scale (0~256)

Digital Mesh (Voxelcon)
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Material Micro-structure Design

Jun Fonseca : Brazil

and

O. Sigmund : Denmark
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Material Design

l Design negative Poisson’s ratio by the
homogenization design method
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Solution Method 1

D−1 =

1

E1

v12

E1
0

ν21

E2

1

E2
0

0 0
1

G12

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

α =
α1

α 2

0

 
 
 

  

 
 
 

  

1.   Specify the Material Constants Desired

2.   Define the Unit Cell
       for Microstructural Design

Design Variable = Holes
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Solution Method 2

3.   Apply the Homogenization Method to find the
       material constants for a design

4.   Solve the Inverse Problem Based on the Least 
       Squares Method

min
design

1

2
Dd − D 2

with symmetry and periodic conditions
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Bendsoe’s Material

D =

1 0.48 0

0.48 0.25 0

0 0 0.02
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Negative Poisson’s Ratio

n Plane stress

n Cubic Material (3
independent elastic
constants)

E E=
−

−

















03434

1 66 0

66 1 0

0 0 02
0.

.

.
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Application of a Filtering
isotropic negative Poisson’s ratio microstructures

Easier Interpretation of the topology without
changing of the properties

non filtered 60x60 filtered 60x60
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Isotropic Material Design

nPoisson’s ratio -0.5
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Jun Fonseca & Anne Marsan
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Three Dimensional Design
n Tensor Product

n Orthotropic

n Two negative and
one positive
Poisson’s ratios

E=

−
− −

−

























1 0513 0276 0 0 0

0513 0656 0341 0 0 0

0276 0341 0713 0 0 0

0 0 0 0254 0 0

0 0 0 0 0284 0
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. .
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. . .

.

.
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3D Microstructure
n Cubic symmetry (3

independent elastic
coefficients)

n Negative Poisson’s
ratio

E E=

− −
− −
− −

























−10

10 28 28 0 0 0

28 10 28 0 0 0

28 28 10 0 0 0
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0 0 0 0 03 0

0 0 0 0 0 03

4
0
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. . .

. . .

.

.
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Another 3D Microstructure

n Full 3D design

n smaller mesh:
20x20x20

n isotropic with
negative Poisson’s
ν=1/4
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Future Material Design

Jose M. Gedes : Portugal

and

J.E. Taylor : USA
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Direct Use of Elasticity Matrix

max min ,
E v

v v v
subject to

dD W
D

a f

ρz
−

≤ 0

1

2
b g b g

More design variables, more optimum
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Still More Research
on

Homogenization Design

Continuous Development

and Enhancement of

OPTISHAPE
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Practice Demands

many new feature

of

OPTISHAPE
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Request from Practice

• Automatic surface recognition
– Applying the image based modeling method

developed by Minako Sekiguchi,we can define
a smoothed three dimensional body

–  Then convert to STL format

• Automatic Mesh Generation for Detailed
FE analysis
– Applying VOXELCON to extract Wire Frame

Model, then go to a CAD system & FE soft


