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Topology Optimization - 1 -
OPTISHAPE

1. Topology Optimization

2. Homogenization Design Method
3. Background of the New Approach
4. Mathematical Formulation

5. Optimality Criteria Method
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What I1s Topology Design ?

» Shape design keeps the initial topology,
while the shape of exterior/interior domain
IS designed.

 |f an extraholeis generated, or If two holes

are merged to a single one, we say topology
has changed.

 Finding the number, location, and shape of
the holes is atypical topology problem.
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OPTISHAPE

The key ideaisto transfer
shape/topology design
to
Optimum material distribution
with on/off switch condition
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Examples by OPTISHAPE
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Topology Optimization

® has become an important and well recognized

sub-area of structural optimization
— Design Sensitivity Analysis (1960s & 70s)
e linear and nonlinear problems
— Sizing Optimization (1960s)
— Shape Optimization (1970s & 80s)
— Topology ( Layout ) Optimization (90s)
e Discrete and Continuum Topology Optimization

e Material Based Optimization
e Extensionto MEMS area

Computational Mechanics Laboratory
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Evidence

® Last Two : 1st and 2nd World Congress on
Structural and Multi-disciplinary
Optimization ( Germany95 & Poland97)

® There are numerous sessions on topology
optimization related

® Commercial Codes

— OPTISHAPE(Japan), OPTISTRUCT(US)
— MSC-NASTRAN, ANSYS ---- Fall 97

Computational Mechanics Laboratory
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OPTISHAPE : Present

® Maximization of the global stiffness of an
elastic structure

® Maximization of the mean elgenvalue
problems for free vibration

® Combination of the above two

® Maximization of the dynamic stiffness for
frequency response problems

® Heat Conduction/Thermal Loading

Computational Mechanics Laboratory
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OPTISHAPE : Near Future

® include SHAPE OPTIMIZATION
capability based on Azekami and
Shimoda’s Method (at Mitsubishi Motor)
for detailed shape design after the
standard topology optimization

® include sensitivity analysis for sizing

o { TOPOLOGY + SHAPE + SIZING }

Computational Mechanics Laboratory
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OPTISHAPE : Future

® Compliant Mechanism, Mechanism, and
Flexible Body Design

—to control deformation and motion of structures,
flexible multi-bodies, compliant mechanisms, and
even mechanisms to have integrated synthesis study
of mechanical systems

— toward smart structure design with control

® Material Design

—Young's and Shear moduli and Poisson’s ratios
— Piezo-electric materia design for MEMS

Computational Mechanics Laboratory 10
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http://wwwO02.s0-net.or.| p/~quint

for
more information
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Typical Procedure 1

e (1) Define adesign domain which contains
the final optimum structure
— geometric restriction for the on/off condition
— on-flag : solid structure always exists
— off-flag : void (hole) must be assigned
e (2) Define the loading and displacement
constraint

— multiple loadings and multiple constraints are
possible in OPTISHAPE

Computational Mechanics Laboratory
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Multiple Loadings & Multiple Constraints

Loading #1

B

' -

E O, —

Constraint #2 ’ <

Constraint #1 Loading #2
Loading #4
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Typical Procedure 2

efine the volume ( or weight ) constraint

[ rdwew,

oplying OPTISHAPE, and obtain

—the Optimum Layout ( Topology & Shape)

ne Maximum Mises Equivalent Stress
ne Mean Compliance and Strain Energy

Density

Computational Mechanics Laboratory
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Typical Procedure #3

* (5) Repeat the above steps for two more
different weight constraints W, & W,

e (6) Obtain the maximum Mises stress and
the mean compliance
e (/) Using the quadratic interpolation of
— Maximum Mises Stresses & Weights

— compute the weight for the allowable stress
constraints

Computational Mechanics Laboratory 15
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Determination of the Weight Constraint
to enforce the stress constraint if exist

Maximum Mises Stress

A

Three-Point M ethod

w1 W2 W3 Weight Constraint

Weight for the Upper Bound
Mises Equivalent Stress

Computational Mechanics Laboratory
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Extended Domain by Gw

Internal Virtual Work

Zwebng EebugdW: ZD ebng CWEebung

New Material Constants ( Extended Elasticity Matrix )

c,El L DDg isvery discontinuous

jl> Impossible to take its derivative
that Is, no design sensitivity analysis

Computational Mechanics Laboratory 17
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Possible Approximation

A Elasticity Matrix This interval can be small
% [ as we want
‘ Possibly Rapidly Varying
A Ee

>
Design Domain in the x Direction

| ntroduce Two Scales
at an arbitrary point >

No Way to Approximate

by a Standard Way with
adistribution function

Computational Mechanics Laboratory 18
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Relaxation

 Very Rapidly Varying Function ¢ ,E cannot
be approximated by a differentiable
function of position x inthe standard way

X
 Introduce the two scales FX’ y :ek and the

micro-scale perforation, andthen c,E IS
approximated by the homogenized average
elasticity matrix gH

Computational Mechanics Laboratory
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Origin of the Idea

e G. Cheng and N. Olhoff
— In plate thickness optimization
— smoothly varying thickness is not optimum
— optimum involves rapidly changing ribs

__ _

%///

Homogenization is required

Computational Mechanics Laboratory 20
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M athematicians

e Lurier, Cherkaev,and Fedrov (1981)

— Notion of G-convergence that isin the specially
designed average sense convergence

« Kohn and Strang (1984)

— Microscale performation and specialized
variational principles

 Murat and Tartar (1983)

— Homogenization Theory from Hadamard Shape
Design Problem

Computational Mechanics Laboratory
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Hadamard v.s. Homogeni zation

Hadamard
Rapidly Varying

M$W§c

Boundary movement

Murat
&

Tartar _ _
Formation of Microstructure

Computational Mechanics Laboratory 22
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Bendsoe & Kikuchi 1986

1 U void/hole
=0 U solid structure

Rotation

Micro-Scale Perforation by
infinitely many rectangular holes

Design Variables are Oa,b,qg at every where

Computational Mechanics Laboratory
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The Homogenization Design

solid microstructure

X
macrostructure

|

porous microstructure
void microstructure

Computational Mechanics Laboratory 24



Small Scale Rapidly
Varying Heterogeneity

The University of Michigan

Why Homogenization ?

Thisidealization is regarded
as the homogenization in
theoretical mechanics

If the exact heterogeneity is used

INn mechanics, we must introduce

so fine finite elements to represent
al the detall. Thisisadifficult task.

Computational Mechanics Laboratory

Equivalent Homogeneous
Material
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Microstructures

Computational Mechanics Laboratory
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Many Choices

* Thekey feature Is an approximation of the
extended elasticity matrix CwE 1 L*[D

 There areinfinitely many waysto
approximate this by using

— Generalized Porous Media Constitutive
Equations (bio-mechanics, Geo-mechanics)

— Power Low of Density/Elasticity Constants
— Rank 1 & Rank 2 Orthotropic Materials
— Others

Computational Mechanics Laboratory
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Power Low

Most popular approach at present (Meljek, Yang, ...)
Altair/OPTISTRUCT is now assuming this approach

c,E»r°E

For p=2 or 4, the design variable becomes the
density I suchthat

. 1 if solid structure
Yo if void/hole

Computational Mechanics Laboratory
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A Homogenized

Average Young's Modulus
ES
H —
E" =[1- rgEv+rEs Upper Bound
Mixture Theory (1D)
1
H i —
S T
+
EV ES
Lower Bound Mixture Theory (1D)
E, >

r=1 Material Density
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Short Coming of Power Low

Un isotropic principahstress distribution

T

Density approch can make
only isotropic performation

=

Thisrequires alot of meshing
to have reasonable layout

However, easy programing and handy design variable

Computational Mechanics Laboratory
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Rank 1 & Rank 2 Materials

Rank 1 Lamination

ZeroEin2
Zero Shear

Rank 2 Lamination

Zero Shear

Rectangular holeis
very close to Rank 2
Material

Computational Mechanics Laboratory 31
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Elasticity Matrix

Rank 1 Material

l1- alE, 0 O
E"=ll 0 0 0
0 0
Rank 2 Material
(1- n2fl1- ablf1- al+n?f1- b) nla- b o
EM= 5 nf.- b - b o
(1- n nrl abq 0 0 o
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Advantage of Rank 2

Rank 2 elasticity matrix can be computed in the closed form
while rectangular hole requires FE calculation

tory
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Rank 2 and Rectangular Hole

 Rank 2 material Isregarded as the optimum
orthotropic material ( since its shear
modul us becomes zero )

e Then thisyield the stable optimum solution
mathematically verified in the sense that FE
mesh dependency cannot be observed

 However, thisresults considerably lots of
gray perforated medium in the optimum

Computational Mechanics Laboratory
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Penalization

* \Wewould like to have clear segregation of
solid and void portions to define precise
shape and topology, that Is

* No gray scale solution is desirable

r’'e ... Density Power Low
c, E»PE" ... Rank2 & Rectangular hole

EH
—JE" ... Penalization

Computational Mechanics Laboratory
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Multi-Loading 1

Inequality Relation

max m|n 1abu,,ug b g mex mln - 1abu,,u,g

£@% Ea b s mg m b g fmbumg

Minimum Principle to the I-th Load ( Equilibrium )
%aibui,uig' fibug:rreiin%aibvi,vig- fing

Computational Mechanics Laboratory 36
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Multiple Loading 2

Formtion of a Single Objective Function

ambum,umg:ZDi:rlr.@( ebuichWEi:rlr_\_a ebuing

Imax

fmbumg:ZDi_max ebuichWEs OdD+Z max u,' c,fbdD+.....

=1, Di=1,...inx

Approximated Design Problem

mq mvin%ambv,vg- fmbvg

ubject to
2 rdDEW,
D

Computational Mechanics Laboratory 37
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Alternate

Weighted Sum Approach

mag@ a:lw mln;abv vg fibvg

ubject to
Z}r dD£W,

Diaz and Bendsoe

OPTISHAPE can do both ways by user’ s choice

Computational Mechanics Laboratory 38



The University of Michigan

L agrangian

Optimization Problem
1

min—abv,v - fbv
ZUEE@ ' g g First Variation

r dDEW,
D

Taylor & Prager in 1967

dL =all, av( - fbdvg- d eZ rdb - Woj

Lagrangian ﬁengT Tc,,E bvg |%AdadD
L:%abv,vg- - 18] rap-wj ﬁebv ev]- | —bkdbdD
ﬁebv vkdqu

Computational Mechanics Laboratory 39



Optimality Condition

Equilibrium
aUv,dvg = fdeg " dv

Weight Constraint : Kuhn-Tucker Condition
18] rdD-W,|=0 , 1 £0 , [ rdD-W,£0

Optimality Condition

ZDba- agpebng ews ebvg- | ﬂ—rdes 0, O£"a£l

ZDCB- bhﬁebng ﬂ;VgE ebvg- | E[)kdm 0, O£"b£1

Computational Mechanics Laboratory

The University of Michigan

40



The University of Michigan

Optimality Criteria Method 1

[ la- gﬁbg " TCE ghy.- |ﬂ—rde30 . 0£"afl

fa

U bvg bgl—-0|f al0 and a1l
bvg = eV
U ﬂr =1 i1f al0 and atll
' fa
bkg'T ﬂCwE bkg
b abk+1g:abkg eev J ea Jeev J O<afl
ﬂr ea bng
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Optimality Criteria Method 2

With design constraint O£a£1

a

eekang ﬂ(;T\;\l,E eabkg ,bbkg ,qbkgjeevbkgj

kg IIF a0kl k0 Kl
| gﬁea g,b g,q gJ

bkg

bk+1g

a = maxy0, mindl a

Algorithm of the optimality criteria method
Isvery similar with the fully stressed design

Choice of Parameter
a»0.75

Computational Mechanics Laboratory 42
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Lagrange Multiplier

| ™ is computed by the bisection method

[ rga™ p"|dD =w,

based the implicit function theorem

Volume constraint is always saturated.
Thisis correct, but for eigenvalue related
problems. thisis not true.

Computational Mechanics Laboratory 43
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Optimum Angle : Pedersen

Noting that

ebng bCWEgebvg =s bng (c E 1hs bvg
ZIS1 s, (ﬂbegTCCwElthfg;Fl!

0
we have

ebng ﬂ(:'”"OVIE ebvg:O j> ﬂ_.lLIbe gTCcWE'thbfg:O U

Optimum angle is the one for the principal stress!

Computational Mechanics Laboratory
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Engineering |dea

Optimality Condition can be explained as

Rectangular hole should be aligned

S» In the principal stress direction

Large hole can be assumed in the
small principal stress direction

Small hole must be placed in the
large principal stress direction

Computational Mechanics Laboratory 45
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Elaboration

Using the relation
Habor
r=1-ab b a=i" Jog
b Bendsoe

we can change the design variable

a,b, b b, Solve b and angle
D qg Dr qg analytically, then

and then we can show apply optimality
.1 b ¢ b criteria method only
M5 MY vl tIM to the density
~ . 1
U max min Ibwggﬁ(Eabv,vg - f bvg

Computational Mechanics Laboratory 46
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Monotonic Convergence

o Optimality criteria method is monotonically
converging to alocal optima

* Thelocal optima obtained may be strongly
dependent of the initial condition

— Uniformly Biased Initial Condition in
OPTISHAPE

* Thelocal optima may depend on the FE
mesh

Computational Mechanics Laboratory 47
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Many Problems

OUL
1t 1S so powerful |

Computational Mechanics Laboratory
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Excersise #11

Supporting Rollers for SM -

\00 \\
\//

/ Strong Wind Force
/ Big Sliding Doors  (distributed)

Computational Mechanics Laboratory 49



Thin Plate

Reinforcement Beams

Computational Mechanics Laboratory
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Find a pattern of reinforcement
of athin plate subjected to a
strong wind force by using
OPTISHAPE

50
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Topology Optimization -2-
OPTISHAPE

1. Extension of HMD
2. Free Vibration Problem
3. Freguency Response Problem
4. Buckling Problem
5. Flexible Bodies

Computational Mechanics Laboratory
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Extension of OPTISHAPE

* Free Vibration Problem
— Maximization of lowest frequency
— Maximization of the distance of two frequencies
— Inverse freguency identification problem

* Frequency Response Problem

e Buckling Problem for Stability
* Flexible Multi-Body Design
 Material Microstructure Design

Computational Mechanics Laboratory
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Eigenvalue Problem

 Maximizing the lowest eigenvalue

Hﬁm - Ku=1 Mu

« Several eigenvalues are crashing while
optimization Is performed

One eigenvalue with n number of eigenvectors
————— Ultimate Optima

Computational Mechanics Laboratory 53
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Free Vibration
Discrete Free Vibration Problem
d X
M——+Kx=0
dt
Separation of variable

x(t] = expliwt(u

-w’M expDivvtgu + K expDivvtgu =0
(- w2Mu + KuhepriVVthO “WMu+ Ku=0

Ku=w*Mu=1 Mu

Computational Mechanics Laboratory
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Modification by Ma, Cheng, Kikuchi

Eigenvalues
A g

i83X
\ Mo lrin P max ia:1wi| .

M athematics can be constructed
by using sub-differentiability

Number of Iteration ---- Bendsoe and Rodri ges
>

I... = number of crashing eigenvalues

m

w, =weights , 1=1,....,i

max

Computational Mechanics Laboratory 55
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Further M odification

| e Jnax
gna)ﬁ I min p gna)ﬁ g VVil minj +§ ZjI I
a,b,q a,b,q i=1

=1

|
|, =2nd, 3rd......, higher eigenvalues

= minimum crashing eigenvalue

minj

We shall maximize not only the lowest frequency
but also several eigenvalues at once
... yields sub-optima, but make sense in engineering

Computational Mechanics Laboratory
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Maximization of Distance

Jgax

i
8ax
nay a wl-awl,
P = i=1

i

5 w;l ; = higher eigenvalue
j=1

B .

a Wl . =lower eigenvalue

=1

Computational Mechanics Laboratory
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Inverse Frequency Problem

{néa)@ ) CI It""rge‘tihIO

|dendify the structural configuration so that it has specified
eigenvalues for the first small set of elgenvalues

Computational Mechanics Laboratory
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Freguency Response Problem
m minlvT Kv - EWzvT Mv-v'D
abgy v 2 7

K = stiffness matrix

M = mass matrix

w = specified frequency

b = excited force with w frequency

Computational Mechanics Laboratory
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Discrete Equilibrium

(K - w?M[lu=b

O
=
—
>
[

eprivvtgb = exciting force
g = eprivvtgu = dynamical response

@

Computational Mechanics Laboratory 60
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Buckling Problem

a’% - Ku=1IK.u

K = stiffness matrix
K = geometric stiffness matrix

Rodrigues and Gedes

possibility of local
buckling modes

Computational Mechanics Laboratory
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Linear Combinations
of the above cases

OPTISHAPE

Computational Mechanics Laboratory
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OPTISHAPE In Practice

 OPTISHAPE Is currently integrated into
SDRC/I-DEAS. In future an icon of
OPTISHAPE will be added into I-DEAS
option menu

 OPTISHAPE design models can be
developed by MSC/PATRAN and the input
and output data are fully compatible with
MSC/NASTRAN

Computational Mechanics Laboratory
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A

File Group Viewport Wiewing Display Preferences

Tools insight Tontral

oo 0 B[] o

-~ Geometry - Fil

ite Elements .- Loads/BCs .- Materials .~ Properties - Load Cases -~ Fields .- Analysis > Results - Insight - X¥ Plot

&)

display_deformations( FALSE )
gu_fit_view( )

L
.

Element Scalar Labeling

Format Type

“* Fixed Point
~ Exponential
- Integer

4

| J
Number of Significant Digits

AShow Result Values
AShow Min/Max Values

Deformation

Scale Factor
1.0

Deform Scale Interpretation
“* Direct Multiplication
- Fraction of Model Size

AShow Deformation

AShow Undeformed Entities

Color: ‘

I~ Show Result Title
7 Show Vector Results
Yectors...

"HITACH

Computational Mechanics Laboratory



The University of Michigan

OPTISHAPE to CAD/CAM

 OPTISHAPE can trandate the image data of
the optimum topology/configuration into a
STL file (aswell as SLC filein near future) so
that smoothed 3D surfaces can be plotted to
show the concept of the design (NC Link)

 OPTISHARPE can produce a set of wire frame
models of sliced models perpendicular to a
specified direction (CAD Link)

Computational Mechanics Laboratory
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OPTISHAPE

More in Practice

Computational Mechanics Laboratory
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Current Development
Research

OPTISHAPE
IS
constantly enhanced

Computational Mechanics Laboratory
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Flexible Body Design

compliant mechanism design

by
Mary Frecker & Shinji Nishiwaki
Shinji Ejima

Computational Mechanics Laboratory 68
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Mechanical Design

Structure Design Mechanism Design

New Design Based on Flexiblility

Computational Mechanics Laboratory
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Structure Design

Flexible Structure 4mp Stiff Structure

Computational Mechanics Laboratory
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Flexible Body Design

e Design astructure that movesto the
specified direction as much as possible
when input forces are given

Input Force

Motion/Kinematics
Control

Desired Motion

—

Computational Mechanics Laboratory 71
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Compliant Mechanism

® MEMS(Micro Electro Mechanical System)
® Basic Ideas & Clues for
Rigid Link Mechanism Design

Microcompliant crimping
mechanism

tory
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Kinematic Synthesis

Based on traditional rigid body kinematics

£ =%

Lumped compliance (Pivot)

|. Her and A. Midha (1986),
L. L.Howell and A. Midha (1994), (1996)

Computational Mechanics Laboratory
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Continuum Synthesis

Distributed compliance

O. Sigmund (1995), (1996)
U. D. Larsen, O. Sigmund and S. Bouswstra (1996)

Computational Mechanics Laboratory 74
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¥ Design of Flexible Structures

*Truss Approach

Configuration by Trusses

sContinuous Approach

Distribution of Materials

Computational Mechanics Laboratory 75
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The Un

Truss Approach

ign

=> Compliant Mechanism Design

Based on Ground Structure Des

AN
i e

b

™
_‘.4~
4
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Problem Statement 1

Kinematic Function fa= applied force

= dummy load

max (mutual energy) U max (vg' Ku,)

subjectto: Ku, = f,
Kvg = fg

Computational Mechanics Laboratory
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Problem Statement 2

Structural Function

fixed point

~/ fB= resistance of workpiece

min( strain energy )U min(u ;' Ku )

subjectto : Ku g = -f;

Computational Mechanics Laboratory 78
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Multicriteria Optimization

emutual energy
e strain energy

subjectto : Ku, =

Kv g =
Ku g =
total resource constraint
lower and upper bounds

Computational Mechanics Laboratory 79
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A Simple Design Problem

7 I
I

Figure 5a. Design Problem. Figure 5b. Initia Guess.

/ /

Figure 5¢c. Compliant Figure 5d. Stiffest

. —...Mechanism Solution. Structure Solution.
Computational Mechanics Laboratory
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Verification of Function

Deformed Shape

o
-
-
-
-
-
-
=,
-~
-
-~

This can satisfy the original objective

Computational Mechanics Laboratory
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Compliant Gripper

Design Problem

Solution and Finite Element Modél Compliant Grippers

Computational Mechanics Laboratory 82
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3D Compliant Gripper

Design Problem

0
¥ 05 05

Solution Qqﬂcelcfi nite Element Model

Computation anics Laboratory

Three Dimensional
Compliant Mechanism
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Continuous Approach

Based on
Homogenized Design Method

Fixed Grid / Voxel Mesh Method
Homogenization Method

Computational Mechanics Laboratory
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Formulation of Flexibility

t u u

Maximize L*(u*) = ¢}, - u'dG (Mutual Mean Compliance)
= Flexibility at &’
e 1 1 N 1 1 .
Minimize L (u )= g.u dG (Mean Compliance)
= Stiffness at &’

Computational Mechanics Laboratory
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| Design of Flexible Structures

" Kinematic function

= Flexibility TN

8 Structural function

Defamation
) Stiffness + Constralnt

Constralne

Reaction force  Applied force d
Computational Mechanics Laboratory Motion 86
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Multicriteria Optimization

Flexibility = Max Mutual Mean Compliance

1 Trade Off

Stiffness ® Mina Mean Compliance

m» Compromise Solutions

Computational Mechanics Laboratory 87
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Multi-ODbjective Functions

(1) Mutual Mean Compliance
Max

a Mean Compliance

(2)

Max w Log(Mutual Mean Compliance)
-(1-w)Log(a Mean Compliance)

where w Is a weighting Coefficient

Computational Mechanics Laboratory
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* Weighting Method vs. Ratio Formulation

* Max w: Mutual Mean Compliance
-(1- Wl)a Mean Compliance

wherew: Isaweghting Coefficient

Mutual Mean Compliance
" Max

a Mean Compliance

80

+ AGy)

I
Example I

40

P

Computational Mechanics Laboratory

* B(Grp)
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w1 =0.1 Ratio Formulation

Computational Mechanics Laboratory 90
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Optimization Procedure

Start

4

Calculate homogenized
elasticity coefficients

4

Calculate sensitivities
using FEM

4

Solve SLP problem
with respect a and b

Computational Mechanics Laboratory

NO

P

Convergence

£

Update angle g

=

£

Filtering

Yes

=

End
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SLPvs. OC

«Sequential Linear Programming (SLP)

Linear Approximation + Simplex Method

*Slow Convergence

*Easy Implementation for Any Objective
Functions

*Optimality Criteria Method (OC)
KK T-Conditions + Heuristics

*Quick Convergence
Difficult to Construct Heuristics for
General Objective Functions

Computational Mechanics Laboratory 92



The University of Michigan

Checkerboard Pattern

r —r —1/2
r —r —1/2

Artificially stiffer

r—r —1

r—r —O

Filtering scheme

_ 1 _ 1
I’lzz(3l’1+l’2+l’3- r4) r2221("1"'3"2' I’3+I’4)

1|3
T :—1(r 1, +3r,+r,) T :E(-r +r,+r,+3r,) 2|4
3 4 1 2 3 4 4 4 1 2 3 4
One group

where r, =1- apb, (i=1,...,4)
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Elimination of Checkerboard

Eigen-frequency problem

No Filtering Filtering

Computational Mechanics Laboratory
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Compliant Clamp

A(th)# >
A A
20
30| = 48 a5 p
I W J1o B(GY)
A AR TR YT

Design domain

Computational Mechanics Laboratory
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Large displacement analysis
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Compliant Gripper

60

26

A A B(Go)

10y [Acw le
AV YAYANDIIFAVAVAVAY
1077777/ 77707 S

Deformed Shape/'

Design domain &5

-------------
...........

2 iriion s NN
e atani s ayual e

%@T%%%
T ,
i

Original Shape

Ly

Large displacement analysis
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Compliant Pliers

AGHY =
A

30| |- 48 >
Y Vé +1o
A AYA A TR

Design domain

Optimal configurations
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Final Configuration
Optimal configuration D\él@
1 ]

The University of Michigan

Y

Workpiece

Final configuration

Computational Mechanics Laboratory
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Compliant glternal Gripper

Workpiece

Computational Mechanics Laboratory
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Constrained Motion

Compliant Gripper

Adding Mutual Stiffness

A 4

Transitional Motion

Computational Mechanics Laboratory 100
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Suspension Design

B
5 A
79
ﬂ;l; Wy 30
D)
>

< 60 A

24

Ex Wy ' f.

;IJ; ,
A }‘
Design domains Optimal configurations
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Interpretation

Optimal Configuration + Deformed Shape

e
£ e |
_:. s T
B R o ol
I i, 75 1
o k L
E o b

= Type

kl »Double wish-

bone Type

Rigid Link Mechanisms
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The University of Michigan

Two Displacement Outputs

40

- +81(Gt2) >
0> A
2]> AGy)
i W, & |
2
A Y

*BZ(G&)
Design domain Optimal configuration
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The University of Michigan

Extension to Multi-Flexibility

Necessary for Many Performance Criteria
=> Automotive Body Design

n Flexibilities Required

=

n Mutual Mean Compliances
Should be Positive
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The University of Michigan

Multi-criteria Optimization
Max i-th Mutual Mean Compliance (iMMC)

(for 1=1,...,n)
Min i-th@ Mean Compliance {MC)
(for i1=1,...,n)

= Multi-Objective Function

-1/Ct Log(Q Exp(-CfiMMC))
1/Cs Log(é Exp(Csi MC))

Computational Mechanics Laboratory

Max
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A1 BzT
Design Domain Wy 20
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First flexible mode

Computational Mechanics Laboratory

The University of Michigan

Multi-flexiblity Design

VAVAVAVAVS
" — 4
B2

Design Domain Wy
B1

Second flexible mode
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The University of Michigan

Optimal Configurations

Ci=Cs=3 Ci=Cs=10
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The University of Michigan

Verification of Performance

Deformed Shape
e » 4

-
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The University of Michigan

Extension

e 3D Compliant Mechanism Design
m New 3D element is used
e Complaint Mechanism Design with

a Displacement Constraint
m New formulation is introduced
+ Image based design

Computational Mechanics Laboratory 109



The University of Michigan

Design of Simple Model

Applied Force

S~ 12
Dummy Force ., ~ <

2 ‘ L
‘/Constraint ~ o

2" P

Design Domain
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The University of Michigan

Optimal Configurations (1)

Unconstrained Case

1L, A

Total Volume =20%

Computational Mechanics Laboratory 111



The University of Michigan

One Constraint Case

ol 5 &

(Total Volume =30%)
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The University of Michigan

Two Direction Constraint

L L L)
F1_ T 11}
¢ e

,,,
=

¥

(Total Volume =30%)
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The University of Michigan

Design of Gripper

5

Symmerty Condtion

8
: v | i~ Y
z |~
4 ‘/\ s Constraint
/ Applied Forge” < A

4 4 A4

Ve

Design Domain

Yndtion

Symmgrty

Dummy Force
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The University of Michigan

Optimal Configurations (1)

Unconstrained Case

L «Lz

Total Volume =20%
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The University of Michigan

Optimal Configurations (2)

Constrained Case

Total Volume =20%
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The University of Michigan

Design of Clamp

Applied Force

Symmerty Condtion

Dummy Force

Design Domain
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The University of Michigan

Optimal Configurations
Unconstrained Case

Lo g

Total Volume =20%
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The University of Michigan

Design of Pliers

Applied Force

Symmerty Condtion

Dummy Force

Design Domain
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The University of Michigan

Optimal Configurations
Unconstrained Case

Total Volume =20%
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The University of Michigan

Design of Torsion Bar

4m Applied Force

&a Flexibility

18

¥

4

A

¢

9

Vi

Design Domain
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The University of Michigan

Optimal Configuration

'

s

Total Volume =10%
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4m Applied Force

&a Flexibility

25

The University of Michigan

Design of Torsion Plate (1)

10

A

Design Domain

Computational Mechanics Laboratory
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The University of Michigan

Optimal Configuration (1)

"

=

Total Volume =10%
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Applied Force

Flexibility

25

The University of Michigan

Design of Torsion Plate (2)

10

A

Design Domain

Computational Mechanics Laboratory
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The University of Michigan

Optimal Configurations (2)

NE >

Total Volume =10%
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The University of Michigan

& Design of Sus-Like Structure

4m Applied Force

&a Flexibility L ~ 20

Design Domain

Computational Mechanics Laboratory 127



The University of Michigan

Optimal Configuration

L

Total Volume =10%
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The University of Michigan

Design of Another Gripper

4m Applied Force

&a Flexibility

10
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Design Domain
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The University of Michigan

Optimal Configuration

.

L

Total Volume =10%
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The University of Michigan

Design of Tensile Model

4m Applied Force ) 1 ‘
1 .
Flexibilit h
€ ey
d
¢
4
1
I
ANNNNANNN

Design Domain

Computational Mechanics Laboratory 131



The University of Michigan

Optimal Configurations

= 3

Total Volume =10%
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The University of Michigan

Complaint Mechanism Design with
a Displacement Constraint
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The University of Michigan

Multi-Objective Function (a)

Phase 1 Phase 2

Max[Flexibility] — m Max(Stiffness]
St. Flexibility 3 Prescribed Flexibility

1
-~
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The University of Michigan

Optimal Configurations (a)

_5.05

\ A
- 19.93
A
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The University of Michigan

Multi-Objective Function (b)

Exterior penalty function method

Iongtiffnessg
Min 2
+m|ong|exibi|ityg- jogllPr escribed Flexibility([
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The University of Michigan

Optimal Configurations (b)

18.45

\A
 8.82
A
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The University of Michigan

Image Based Design

Optimal Topology B Practical Structure

Image processing

,‘
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The University of Michigan

Verification of Displacement

Digital Mesh (Voxelcon)

Threshold=100 Threshold=80

Gray scale (0~256)

aboratory 139



The University of Michigan

Material Micro-structure Design

Jun Fonseca : Brazil
and
O. Sigmund : Denmark
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The University of Michigan

Material Design

® Design negative Poisson’s ratio by the
homogenization design method

Computational Mechanics Laboratory 141



The University of Michigan

Solution Method 1

1. Specify the Material Constants Desired

€1l vy, y

T 0 ¢ o

énl Ell u la,{
D'=2 = oU a=ia,y

eEZ E2 U 22

8 10 tob

e 0 0 =

e 12 U

2. Define the Unit Cell
for Microstructural Design

Design Variable = Holes
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The University of Michigan

Solution Method 2

3. Apply the Homogenization Method to find the
material constants for a design

4. Solve the Inverse Problem Based on the Least
Squares Method

min —HDd DH2

design

with symmetry and periodic conditions

Computational Mechanics Laboratory
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The University of Michigan

Bendsoe’s Material

¢1 048 O
D:go.48 025 O
8 0 0 0.0

Computational Mechanics Laboratory
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The University of Michigan

Negative Poisson’s Ratio

m Plane stress

m Cubic Material (3
iIndependent elastic
constants)

é1 -66 OU
E=0343E£,566 1 0y

€0 0 0

Computational Mechanics Laboratory
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The University of Michigan

Application of a Filtering

ISotropic negative Poisson’s ratio microstructures

Easier Interpretation of the topology without
changing of the properties

Computational Mechanics Laboratory 146



The University of Michigan

Isotropic Material Design

PalV2 v iV v dVA v,
XoeXseXseXSe XS
Vo AV o CAY  CAY . CAY . ¢
oleoleleo|e
XIENCEN NSNS
SOTHOTHOT OO
oslelelele
DAALAADAADADA
SATATTATATIAS
R RSB AL RALL
SATATATATA
AARASASALALA
«0.01&."1&.?&» =X -

YAV VAV 0 VAV L CAY

mPoisson’s ratio -0.5
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The University of Michigan

Jun Fonseca & Anne Marsan

File Display Image Processing Grouping Output Generation

Cool Slice _EDisplayi.ng layer 1

I Cancel

Quit

“<sNEW MODEL®**
91

Fonnd neighbors
Arranged neighbors
Layers: 30

SNEW MODEL***
Nodes: 7442
Voxels: 3600
Lavers: 1
Initial volume: 37 1.7039
Thresh volnme: 1120
Noise volnme: 1132
Noise volnme: 1128
Dimensions of the objeck
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The University of Michigan

Three Dimensional Design

m Tensor Product
m Orthotropic

m Two negative and
one positive
Poisson’s ratios

¢1 -06130276 0 O O
5130656 -0341 0 0 O
80276 -(341 Q713 O O 0 G
= 0 0 @540 Oy
0 0 0 @84 00
0 0 0 0 s
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The University of Michigan

3D Microstructure

m Cubic symmetry (3

iIndependent elastic

coefficients)
m Negative Poisson’s

.ﬁ-nﬂ.ua
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o ooodo
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Ll
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The University of Michigan

Another 3D Microstructure

m Full 3D design

m smaller mesh:
20x20x20

W isotropic with

negative Poisson’s
n=1/4

ics Laboratory 151



The University of Michigan

Future Material Design

Jose M. Gedes : Portugal
and
J.E. Taylor : USA
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The University of Michigan

* Direct Use of Elasticity Matrix

1 b b
max min—a v,vg- f vg
E v 2
ubject to

Z}rdD£WO

More design variables, more optimum
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The University of Michigan

Still More Research
on
Homogenization Design

Continuous Devel opment
and Enhancement of
OPTISHAPE

Computational Mechanics Laboratory
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The University of Michigan

Practice Demands

many new feature
of
OPTISHAPE
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The University of Michigan

Request from Practice

e Automatic surface recognition

— Applying the image based modeling method
developed by Minako Sekiguchi,we can define
a smoothed three dimensional body

— Then convert to STL format

e Automatic Mesh Generation for Detailed
FE analysis

— Applying VOXELCON to extract Wire Frame
Moddl, then go to a CAD system & FE soft
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