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Major Objective

• Establishment of a Material Processing Simulation
Method Involving Microstructure and Slow Velocity
Fluid Flow with Heat Conduction/Transfer

• Manufacturing : Computer Aided Production
Engineering (CAPE)

• Microstructure ( or Mesostructure ) : Application of the
Homogenization Method

• Coupled Problem : Solid and Fluid with Heat Transfer

• Large Scale Computating
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R&D History

• 1st US-Japan Symposium
– Resin Transfer Molding (RTM) Simulation with

• the Homogenization Method with Multiple Level Microstructures

• the Adaptive Remeshing Finite Element Method

• Stokes Flow in Microstructure and Darcy’s Flow in Macroscopic Domain

• 2nd US-Japan Symposium
– Resin Transfer Molding Simulation with Curing Process

• Extension of the RTM Simulation to fully 3-Dimensional Setting

• Addition of Curing Processes : Prediction of Residual Strains and Stresses

• 3rd US-Japan Symposium
– Coupled Problems with Flow and Solid in the Microstructure

• Solids ( Pre-form, Porous Media, Bones, etc ) are now Deformable

• Small Viscosity Fluids --- Bio’s Consolidation Theory

• Large Viscosity Fluids --- Visco- elasticity Theory
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Resin Transfer Molding Simulation

Chan Whie, TE Tezduyar, and N. Kikuchi
University of Minnesota and University of Michigan
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Filling Process of Resin into Pre-form Mat
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K. Terada and T. Ito
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Biot’s Consolidation Equation & Seepage Flow
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Flow Fields in the Microstructure
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K. Terada and T. Watanabe
Tohoku University

Permeability Prediction by the Homogenization Method
Flow Simulation Through Porous Crashed Rock Fields

100x80x100 100x70x140

V K
P
xik ik

k

= −
∂
∂

Darcy’s Law

K '

. . .

. .

.

/1

12 14 13

11 13

11

8 7 10 9 7 10 58 10

14 10 11 10

14 10

=
× − × − ×

× − ×
×

L

N
MMM

O

Q
PPP

⋅

− − −

− −

−sym.

    (m N s)4



Computational Mechanics Lab, University of Michigan

Analysis Domain
of Porous Rock
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Global-Local Flow Analysis : Seepage Flow
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4th US-Japan Symposium

• Manufacturing by RTM to Material Processing

• Material Processing : Forming Operation of a Composite
Laminates made by RTM Processes

• “Large Solid Deformation” due to thermo-molding process
is simulated by “Slow Velocity Fluid Flow”

製造から加工
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Composite Thermoforming Process
S.W. Hsiao

Microstructure

Die

Blankholder

Before forming After forming

Laminate
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Motivations of this research

Deep drawing (stamping) of woven-fabric thermoplastic composites is a
mass production and precision shaping technology to produce composite
components.

Objectives of this research

• Develop a FEM model to analyze this thermoforming process.

• Develop an optimization algorithm based on this FEM model to
     optimize this forming process.
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Polymeric Resin Materials

• Thermosetting Resins, e.g. Epoxy
– Cross-linked molecular chain
– Brittle, sensitive to water
– Low viscosity

• Thermoplastic Resins, e.g. polyetheretherketone (PEEK)
– Linear molecular chain with temporary cross-link
– Toughness, water and environmental resistance
– High viscosity 100~1000 Pa.s
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Why Thermoplastic Composites?

From the manufacturing viewpoints

• Thermosetting Resins
– Hand layed up into structural fiber preform and impregnation
   after shaping
– Need chemical additives to cure after shaping and very long
   cure cycle time
– Labor intense

• Thermoplastic Resins
– Shaping only depends on heat transfer and force without chemistry
– In a preimpregnated continuous tape form
– High processing rate
– Drawback: higher processing viscosity and forming
   temperature (320~400 C), and higher equipment cost
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Advantages of the composite stamping process

u Deep drawing (stamping) of woven-fabric thermoplastic composites
is a mass production technology to produce composite components.

u This stamping process is also a precision shaping process.

u Woven-fabric composites possess a balanced drawability, and can
avoid the excessive thinning caused by the transverse intraply
shearing.
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Governing equations for thermoforming process

1. Momentum and continuity equations
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• Instantaneously rigid solid fibers suspended in an incompressible
     viscous matrix fluid at the high forming temperature.

• Fiber intersection angle changed by the macroscopic flow motion.

• Fiber in-extensibility for continuous fiber composites forming.

Assumptions for thermoforming process
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Flow rheology of continuous fiber composites

σ ij
H = − Pδ ij + Fij + µ

0
Dijkl

H ⋅ekl
x

Constitutive equation for continuous fiber composites

Fijwhere is the large fiber tension in the fiber direction.

µa
c = D1212

H µ0

µ t
c = D2323

H µ0

Axial shearing viscosity

Transverse shearing viscosity

Dijkl
H

is the homogenized flow coefficient from local solutions.
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Homogenized governing equations 
for thermofoming process
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Digitized woven-fabric unit cell

Woven fabric laminateUnit cell
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Thermal conductivity prediction for unidirectional 
composites vs volume fraction
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Implementation of Global FEA

• 3-D sheet forming FE analysis coupled with heat transferFE analysis
  using ‘Viscous shell with thermal analysis’.
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Viscous shell with thermal analysis

• Plane stress assumption-- the incompressibility constraint can be
achieved by adjusting the thickness of each shell element.

• Large deformation process divided into a series of small time step.

• Complicated geometry, friction and contact considerations.

v (i ) → Ý ε 
(i ) ⇔ µ

(i ) ⇔ T
(i )

At i-th  time step

Coupled thermal analysis

Viscous shell

• Transient heat transfer FEM to solve temperature at each node.

are solved.

• At each step, solve nodal temperature and velocity iteratively 
     until convergence.
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Fiber Orientation Model

Purposes:

• Update the fiber intersection angle of each global finite element
   by the global strain increment at every time step.

• Change material properties according to updated fiber orientation.

Assumptions:

• The fiber orientation of all the microstructures  in one global finite
   element  is identical.

• The warp yarn and weft yarn of woven-fabric composites can be
   represented by two unit fiber vectors.
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Schematic of lamina coordinate
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Updating Scheme
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Global-local solution scheme

Global finite
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Fiber orientation
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Comparison with experiments
(cylindrical cup)
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P

Laminate Unit Cell

Effective stress of laminate and unit cell at P.

Effective stress prediction
(square box)
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Temperature distribution
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Stamped body panel
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Residual Stress Analysis

• Three levels of residual stresses are generated during cooling
– Microscopic stress: Due to CTE mismatch between matrix and fiber

– Macroscopic stress: Due to stacking sequence of laminates

– Global stress: Due to thermal history along laminate thickness

• Warpage due to the release of residual stresses after demoulding.

• In this study, homogenization method based on incremental elastic
analysis with thermal history is adopted.

• Thermoelastic properties are dependent on temperature and crystallinity
from the thermal history.
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Thermal history along thickness
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Curvature prediction compared with experimental data

[0/90] asymmetric laminate Compared with experimental data
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Stress prediction compared with experimental data
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Warped shapes of square box and cylindrical cup

Deformed
Undeformed

Square box Cylindrical cup
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Warped body panel with its microscopic residual stress

Unit cell

Fiber part

Laminate

Deformed
Undeformed
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Thickness distribution of original and optimal designs
(square box)

Original design Optimal design
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Summary

• The global-local FEM analysis of thermoplastic laminate
stamping process is developed to predict macroscopic
and microscopic deformation mechanism by using the
homogenization method.

• The non-Newtonian composite viscosity with strain-rate
and temperature dependency can capture a realistic flow
rheology of the carbon fiber/thermoplastic composites at
the forming temperature.
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Possible Future work

• Simultaneous global-local FEM computation is
necessary for large deformation if computer capability is
allowed : Application of Parallel Algorithms for Speed
of Computation.

• Inter-ply slip modeling should be included during
forming.

• Viscoelastic effect is considered in residual stress
analysis.

• Analytical or semi-analytical differentiation for design
sensitivities is essential.


