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1 ENDOSCOPIC CHARACTER IDENTITIES FOR DEPTH-ZERO SUPERCUSPIDAL
L-PACKETS

In the Remark on page 177 there is a typo in the formula

F̄ (σ, τ) = f̄(σ, τ)− kσ(ḡ(τ)).

The correct formula is

F̄ (σ, τ) = f̄(σ, τ)− kσ(σ(ḡ(τ))).
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2 EPIPELAGIC L-PACKETS AND RECTIFYING CHARACTERS

We give the numbering in both the arXiv version and the published version, in
that order.

Just before statement of Fact 2.3.6/3.8

There is a gap in the argument. In order to prove that the representation

c-IndG(F )
S(F )G(F )

y, 1
e

χ̂

is epipelagic, one would have to show that 1/e is the smallest positive value
taken by an affine root at the point y. At this place it is not essential to prove
this – if one omits the word ”epipelagic” everything else is still fine. It does
however become essential later in the paper, when the character identities are
proved. Thankfully, the gap can be filled, see below.

Statement of Proposition 3.2.1(1)/4.3(1)

κα should be replaced by κcoh
α .

Statement of Lemma 3.4.1/4.8

trFα/F±α
should be replaced by trF±α/F .

Proof of Lemma 3.4.1/4.8

In the final sentence, f(G,S)(α) should be replaced by f(G,S)(Xα).

Statement of Corollary 3.5.2/4.11

trFα/F±α
should be replaced by trF±α/F .

Equation (5.1.1)/(6.1)

Here we encounter the above mentioned gap in the argument again. The
Adler-Spice character formula implies this equation only under the assump-
tion that the representation πS,χ is epipelagic and its depth is witnessed by the
point of the building associated to the maximal torus S. This is what implies
that none of the roots of unity present in the general character formula appear:
We already know that 1/m is the smallest positive break of the Moy-Prasad
filtration for S(F ), because the splitting field of S has ramification degree m.
This implies that the good product expansion of γ = γ<1/m · γ≥1/m coinsides
the the topological Jordan decomposition. If in addition we knew that 1/m is
the smallest positive value of any absolute affine root, then all the sets of roots
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occurring in the formulas for the roots of unity in the Adler-Spice character
formula become empty.

Let us now give the argument that 1/m is indeed the smallest positive value
of an absolute affine root at the point y associated to S. Since S is inertially
elliptic, we may base change to the maximal unramified extension Fu, over
which S is still elliptic and y is its associated point. This has the effect of mak-
ing G quasi-split and further of allowing us to replace S by any torus stably
conjugate to S over F , because such torus becomes rationally conjugate to S
over Fu. We choose the stably conjugate torus in a manner similar to the proof
of Proposition 3.3.1/4.4: By choosing a-data for R(S,G). But we choose the
a-data slightly differently then in that proof – we use the fact that inertia acts
by a regular element, so that the extensions Fu

α/F
u are all equal to the unique

extension E/F of degree 1/m, and choose aα ∈ E× to be of valuation 1/m
for every α ∈ R(S,G), symmetric or not. Just as in the beginning of the proof
of Proposition 3.3.1/4.4 we choose a pinning (T0, B0, {Xα}) of G, an element
h ∈ G(Fu) s.t. hT0h

−1 = S and transport the a-data to T0 by Ad(h). We
form xS(σ) =

∏
β>0,(wS(σ)σ)−1β) β

∨(aβ) and nS(σ) = xS(σ)n(wS(σ)), so that
nS ∈ Z1(Γ, N(T0, G)). Choose g ∈ G(F̄ ) so that g−1σ(g) = nS(σ) and now
replace S by gT0g

−1.

The values of absolute affine roots of S at the point y are the same as the values
of absolute affine roots of T0 at the unique point of A(T0, E) fixed by nS(σ) for
all σ ∈ Gal(E/Fu). Let o ∈ A(T0, F

u) be the hyperspecial vertex corresponding
to the fixed pinning, and let v ∈ X∗(Sad) ⊗ R be such that o + v is the unique
fixed point. Then we have

o+ v = nS(σ)σ(o+ v) = xS(σ)n(wS(σ))σ(o+ v) = o+ wS(σ)σ(v) + txS(σ),

where txS(σ) ∈ X∗(S)ad ⊗ R is the translation by which xS(σ) acts on A(T0, E)
and we have used that n(wS(σ))σ(o) = o. From the above we get for every
α ∈ R(T0, G)

⟨α, v − wS(σ)σ(v)⟩ = −ord⟨α, xS(σ)⟩,
where the right hand side is the definition of ⟨α, txS(σ)⟩. Recalling that ord(aβ) =
1/m for every β ∈ R(T0, G) we compute the right hand side as −

∑
β>0,σ−1β<0⟨α, β∨⟩.

We know a-priori that there is a unique v that verifies this identity. Let’s check
that v = ρ∨/m does verify it, where ρ∨ is half the sum of the B0-positive co-
roots. Indeed, one then sees that v−σ(v) = 1

m

∑
β>0,σ−1β<0 β

∨. This is enough
– all absolute affine roots of T0 take integer values at o, so the smallest positive
value of any absolute affine root at o + v equals the smallest positive value of
any absolute root at v, which is 1/m.

Statement of Lemma 5.3.2/6.4

In the final sentence, π0(H
y)(F ) should be replaced by π0(J

y)(F ).

Proof of Theorem 5.4.1/6.6

• In the fourth displayed formula, the index of the second sum should be
ξ, and not f , and the text following that formula should read “where ξ
now runs over the set Ξ(Hy, G

b
γb
0
)”, instad of “where f now runs over the

set Ξ(HγH
0
, Gb

γb
0
)”.
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• In the chain of equations appearing below the sentence “As a first step,
we undo the descent of the transfer factor”, the subscripts for ∆ should
be W, b, ξ, and not W, 1, ξ, in the first 3 lines.

Proof of Proposition 6.2.5/7.7

The word before 2|n should be “when”, and not “of”.
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3 RIGID INNER FORMS OF REAL AND p-ADIC GROUPS

Proposition 3.6

The proof of the surjectivity of the map a assumes that the algebraic group G
is either abelian or connected, but the statement of the proposition allows ar-
bitrary affine algebraic groups. Here is a direct argument in the generality of
the statement: In the second paragraph of the proof a continuous set-theoretic
section s : Γ → W is chosen and is used to define the 2-cocycle ξ̇. This section
induces the isomorphism u ⊠ξ Γ → W , x ⊠ σ 7→ x · s(σ). Let z ∈ Z1(Γ, Ḡ).
Choose a lift ż ∈ C1(Γ, G). Then α(σ, τ) = ż(σ)σ ż(τ)ż(στ)−1 defines an ele-
ment α ∈ Z2(Γ, Z). The surjectivity of Hom(u, Z)Γ → H2(Γ, Z) implies that
there exists φ ∈ Hom(u, Z)Γ so that, after possibly modifying the lift ż, the
equality α = φ◦ξ holds. Then x⊠σ 7→ φ(x)·ż(σ) belongs to Z1(u → W,Z → G)
and lifts z.

Section 4.4

In the text before the statement of Lemma 4.4 are chosen for each k a section
sk : ΓEk/F → WEk/F of the projection pk : WEk/F → ΓEk/F and ζk : ΓEk/F →
ΓEk+1/F of the natural projection πΓ

k : ΓEk+1/F → ΓEk/F . These sections are to
satisfy the two properties

sk+1(yζk(x)) = sk+1(y)sk+1(ζk(x)) and sk(x) = πW
k (sk+1(ζk(x))).

While the text suggests that one is to choose inductively, for each k, first ζk
and then sk+1 arbitrarily, Olivier Taı̈bi has brought to our attention that there
exist choices of sk and ζk for which no suitable sk+1 exists. In other words, we
cannot choose ζk arbitrarily and expect to be able to choose sk+1.

As he points out, given x ∈ ΓEk/F , the second of the two equations above
requires that sk+1(ζk(x)) be a lift to WEk+1/F of sk(x) ∈ WEk/F . But it may
well happen that no lift of sk(x) maps under pk+1 to ζk(x).

Taı̈bi has suggested two possible ways to overcome this. One way is again
by induction on k. Assuming sk, but not yet ζk, is given, one chooses a lift
yx ∈ WEk+1/F of sk(x) for each x ∈ ΓEk/F , and defines ζk(x) = pk+1(yx) and
sk+1(ζk(x)) = yx. Then one further picks sk+1(y) ∈ WEk+1/F arbitrarily for
y ∈ ΓEk+1/Ek

and sets sk+1(yζk(x)) = sk+1(y)sk+1(ζk(x)). This defines both ζk
and sk+1.

Another way is to fix sections ηk : ΓEk/Ek−1
→ WEk−1

for all k = 0, 1, . . . , with
E−1 = F . Then any x ∈ ΓEk/F can be written uniquely as the projection to
ΓEk/F of y = ηk(xk)ηk−1(xk−1) . . . η0(x0) ∈ WF . The projection of y to WEk/F

can then be taken as sk(x) and the projection of y to ΓEk+1/F can be taken as
ζk(x).

Formula (4.8)

In order to make sense of this formula, the homomorphism p : uk+1 → uk

has to be extended to a homomorphism p : SEk+1/F → SEk/F , and the ele-
ment δe ∈ Z−1

Tate(ΓEk/F ,Hom(uk, Z)) has to be reinterpreted as an element of
Z−1

Tate(ΓEk/F ,Hom(SEk/F , S)). Both are given by the same formulas as before.
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Proof of Lemma 4.7

There is a typo in the second to last displayed formula. It reads

ϕλ̄,k(p(x)αk(x)) · (lkck ⊔Ek/F δe)(σ)

but it should rather be

ϕλ̄,k(p(x)αk(x)) · (lkck ⊔Ek/F nkλ̄)(σ).

Moreover, in the last displayed formula, which consists of two equalities sep-
arated by a comma, in order to make sense of the right equality, the element
ϕλ̄,k ∈ Hom(uk, Z)Γ has to be reinterpreted as an element of Hom(SEk

, S)Γ. It
is given by the same definition as before. An explicit formula for it is

ϕλ̄,k(γ) =
∏

a∈ΓEk/F

(nkaλ̄)(γ(a)),

where γ ∈ Maps(ΓEk/F , F̄
×) = REk/F (F̄ ) represents an element of SEk/F (F̄ ).

Corollary 5.4

The term H1(u → W,Z → G) should read H1
ab(u → W,Z → G), in order for

the claim to be true that the left kernel of the pairing is trivial. This makes no
difference in the p-adic case, but it does make a difference when F = R.

Section 5.6

The definition of inv(π̇w, π̇) = inv(ηw, ηπ̇), which is given a few lines above
equation (5.13), has to be corrected as follows. Instead of the class of w 7→
g−1z(w)w(g), it has to be the class of w 7→ η−1

w (g−1z(w)w(g)). I thank Hirotaka
Kakuhama for pointing this out.
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4 RIGID INNER FORMS VS ISOCRYSTALS

Section 6.2

In diagram (6.6), the groups B̂0(Γ, Ẑ) appear. While their appearance is not a
mistake, it is useful to observe that they are in fact trivial, because Ẑ is finite.

Section 6.3

Just after equation (6.7) the following two sentences appear:

For this let n be large enough so that x1,rig, x2,rig ∈ Z1(u → W,Zn → G). Then
there exists y ∈ Z1(W,Zn) with x2,rig = y · x1,rig.

This is incorrect – the fact that n is sufficiently large so that x1,rig, x2,rig ∈
Z1(u → W,Zn → G) does not by itself imply the existence of y ∈ Z1(W,Zn)
with x2,rig = y · x1,rig. We are only assuming that the images in H1(Γ, Gad) of
x1,rig and x2,rig are equal, but the existence of y is equivalent to the stronger
assumption that their images in H1(Γ, G/Zn) are equal. Thankfully, n can be
enlarged further to ensure that the stronger assumption is true. Indeed, as dis-
cussed in §3.3 we have the identification G/Zn = Gad × Z(G1) for all n, where
the transition map G/Zn → G/Zm for n|m is given by the m/n-power map of
the torus Z(G1) = Z(G)/Z(Gder) = G/Gder. The images of x1,rig and x2,rig in
H1(Γ, G/Zn) = H1(Γ, Gad)×H1(Γ, Z(G1)) have the same first coordinate. If we
take m so that m/n is a multiple of the order of the finite group H1(Γ, Z(G1)),
then the images of x1,rig and x2,rig in H1(Γ, G/Zm) will be equal.
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5 GLOBAL RIGID INNER FORMS AND MULTIPLICITIES OF DISCRETE
AUTOMORPHIC REPRESENTATIONS

Appendix A

Mikhail Borovoi has informed me that Lemma A.1 appears, in a stronger form,
as Theorem 5.10 of his paper “Abelian Galois Cohomology of Reductive Groups”,
Memoirs of the AMS 1998.

6 REGULAR SUPERCUSPIDAL REPRESENTATIONS

Assumption on p in Sections 3.6, 3.7, 4.10, 5.3

Charlotte Chan and Masao Oi have brought to my attention that I have not
been sufficiently careful with the assumptions on the residual characteristic p
of the ground field F that need to be imposed in order for the results of Section
3 to be valid. In summary, one needs to make in Sections 3.6, 3.7, 4.10, 5.3 the
following assumptions on p:

1. p is not a bad prime for (any irreducible factor of) the (absolute) root
system of G,

2. p does not divide the order of π1(Gder),

3. p does not divide the order of π0(Z(G)).

The argument of Section 3.7.4, where the second assumption above is claimed
to be removed, is invalid.

We note that the second and third assumptions are implied by the first assump-
tion unless the root system of G has a component of type An. Indeed, |π1(Gder)|
is a divisor of the connection index of the root system of G, and the primes di-
viding the connection index are always bad for G except when a component of
type An is present. Moreover, π0(Z(G)) is dual to π1(Ĝder), and the set of bad
primes is invariant under duality of root systems.

We now discuss the situation more precisely. In Section 3.6 the stated assump-
tions on p are that p is not a bad prime for the root system of G and does not di-
vide |π1(Gder)|. The assumption that p does not divide |π0(Z(G))| is not stated,
but turns out to be necessary as well. The culprit is Lemma 3.6.8, which in-
vokes Lemma 8.1 of Jiu-Kang Yu’s paper “Construction of tame supercuspidal
representations”. The latter needs the assumption that p is not a torsion prime
for the dual root datum of G. This assumption is stronger than the assumption
that p is not a torsion prime for the dual root system of G. In fact, one sees easily
that p is not a torsion prime for the dual root datum of G if and only if p is not
a torsion prime for the dual root system of G and p does not divide |π0(Z(G))|.
The assumption that p is not a torsion prime for the dual root system of G is
implied by, and almost equivalent to, the assumption that p is not a bad prime
for the root system of G. However, one must add to it the assumption that p
does not divide |π0(Z(G))| in order to justify appealing to Lemma 8.1 of Yu’s
paper. Since Section 3.7.3 uses Section 3.6, the same assumption must be added
there too.
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In Section 3.7.4 an argument is given that is supposed to remove the condition
that p does not divide |π1(Gder)|, by replacing G by a z-extension G̃. But even
if p does not divide |π0(Z(G))|, it is not clear that p will not divide |π0(Z(G̃))|.
Therefore, this reduction argument becomes invalid.

The upshot is that all parts of the paper that use Section 3.6 – Sections 3.6, 3.7,
4.10, 5.3 – must assume the above three conditions on p. The assumption that p
does not divide |π0(Z(G))| is actually stated in Section 5, because it is needed
for other arguments, but the assumption that p does not divide |π1(Gder)| is not
stated (due to the material of Section 3.7.4, which is now invalid), and must
now be added.

Remarks on Section 3.6

We make a few remarks about the Howe factorization algorithm that we hope
will help clarify some points. These remarks pertain to the proof of Proposition
3.6.7, as well as to Lemma 3.6.9 and Corollary 3.6.10, which are used in the
proof of Proposition 3.6.7. At the moment I am not aware of any mistakes in
section 3.6 beyond the condition on p already discussed, so these remarks are
just for clarification.

First, we note that while by definition we have R(S,Gi) = Rri−1+, the latter is
also equal to Rri , due to the fact that the real numbers ri are the jumps of the
filtration r 7→ Rr. This justifies the application of Corollary 3.6.10 in the proof
of Proposition 3.6.7.

Next, we will give a slight simplification of the exposition of Lemma 3.6.9 and
Corollary 3.6.10. The proof of Corollary 3.6.10 is by inductive application of
Lemma 3.6.9. This induction is however not necessary, and one can modify the
proof of Lemma 3.6.9 so that it gives the statement of Corollary 3.6.10. More
precisely, we have the following:

Lemma. Let G be a connected reductive F -group, S ⊂ G a tame maximal torus, and
θ : S(F ) → C× a character. Let r′ be a non-negative real number such that

θ(NE/F (α
∨(E×

r′+))) = 1

for all α ∈ R(S,G), where E/F is the tamely ramified splitting field of S. Then
there exists a character ϕ : G(F ) → C×, trivial on Gder(F ), such that ϕ|S(F )r′+

=

θ|S(F )r′+
. Moreover, θ′ = θ ·ϕ−1 has depth at most r′, and in fact precisely r′ if r′ > 0

and minimal with the above property.

Proof. The argument in the first half of the proof of Lemma 3.6.9 shows that θ
restricts trivially to Sder(F )r′+, where Sder = S ∩ Gder. Following the second
half of that proof, we let D = Gab and see that θ descends to a character of
D(F )r′+, which is of finite order, since it is trivial on some open, hence finite-
index, subgroup of D(F )r′+. By Pontryagin duality this character extends to a
character of D(F ).

We let ϕ denote the pullback of this character to G(F ). Then ϕ|S(F )r′+
=

θ|S(F )r′+
, so θ′ = θ · ϕ−1 is trivial on S(F )r′+, so its depth is at most r′. If

r′ > 0 and minimal, then θ′ is non-trivial on NE/F (α
∨(E×

r′ )) ⊂ S(F )r′ , so that
θ′ has depth r′.
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We now comment on the proof of Proposition 3.6.7 and give a slight modifica-
tion, which uses the above lemma in place of Corollary 3.6.10.

First, we note that the two special cases handled in the beginning of that proof
must indeed be handled separately, because they fail the recursion hypothesis,
the first because r0 = 0, and the second because i = d − 1 = 0, but R(S,Gi) =
R(S,G0) = ∅.

Next we note that in all other cases the recursion hypothesis is satisfied. If
d > 1 then we have rd ≥ rd−1 > r0 > 0, and R(S,G0) ⊊ R(S,Gd−1), hence
R(S,Gd−1) ̸= ∅, so R(S,Gi) ̸= ∅ for i = d and i = d − 1. If d = 1, the fact that
we are not in the second special case means that either r1 > r0, so i = 1 and we
see R(S,G) ⊋ R(S,G0), or r1 = r0 but R(S,G0) ̸= ∅.

In the recursion step we apply the above Lemma in place of Corollary 3.6.10,
to the pair Gi and θi, and with r′ being the smallest non-negative real number
such that θi(NE/F (α

∨(E×
r′+))) = 1 for all α ∈ R(S,Gi). Since this equation

holds for r′ = ri by definition of ri, as mentioned above, we know that r′ ≤
ri. If i > 0 then r′ = ri−1 again by definition of ri−1 and the part of the
identity θi(NE/F (α

∨(E×
r′ ))) = θ(NE/F (α

∨(E×
r′ ))) for all α ∈ R(S,Gi), which

is part of the recursion hypothesis (in fact, this identity can be strengthened
to θi ◦ NE/F ◦ α∨ = θ ◦ NE/F ◦ α∨). Since ri−1 > 0 we see that the depth
of θi−1 = θi · ϕ−1

i equals ri−1. If i = 0 then r′ = 0, because r0 is the smallest
positive break of the filtration Rr. Then θ−1 has depth at most 0. The remainder
of the proof of Proposition 3.6.7 proceeds the same way.

Section 4.11

In this section we consider discrete series representations of a real reductive
group. It is implicit in the discussion that the discrete series representation
is sufficiently regular in the following sense. The infinitesimal character µ ∈
X∗(S)⊗C of any discrete series representation, when projected to X∗(Ssc)⊗C,
lies in X∗(Ssc)⊗Q and is a regular element there. If ρ is one half the sum of the
the corresponding positive roots, then µ − ρ is still dominant, but may not be
regular. The representation is sufficiently regular if µ − ρ is still regular. One
can think of sufficiently regular discrete series representations as the R-analog
of regular supercuspidal representations.

In terms of the character θ, one has dθ = µ − ρ. The regularity of dθ is stated
implicitly in the assertion ⟨α∨, dθ⟩ < 0 for all negative roots.

For G = SL2/R, the discrete series representations are π+
k and π−

k for positive
integers k. They are related to modular forms of weight k + 1. The sufficiently
regular discrete series representations are those for k > 1, i.e. related to modu-
lar forms of weight > 2.

Lemma 6.2.1

There is a typo in the character formula: the superscript jgX∗ of the orbital
integral should read gjX∗.

11



7 SUPERCUSPIDAL L-PACKETS

Section 2.3

This is a clarification about the claim, stated before Proposition 2.3.2, that the
embedding S → G induces an isomorphism of groups cok(S(k) → Sad(k)) →
cok(G(k) → Gad(k)). To see this, one uses the commutative diagram with exact
rows

1 // Z(k) // S(k)

��

// Sad(k)

��

// H1(k, Z) // H1(k, S) //

��

1

1 // Z(k) // G(k) // Gad(k) // H1(k, Z) // H1(k,G) // 1

and the vanishing of H1(k, S) due to Lang’s theorem; here Z is the center of
G. Note that Z need not be a smooth k-group. Therefore, we need to use flat
cohomology in this sequence. Since S and G are smooth, flat cohomology and
Galois cohomology agrees for them.

8 ON THE KOTTWITZ CONJECTURE FOR LOCAL SHTUKA SPACES

Section 5.1

In the first paragraph, LG(R) = BdR(R) should be replaced by LG(R) =
G(BdR(R)) and L+G(R) = B+

dR(R) should be replaced by L+G(R) = G(B+
dR(R)).

9 A TWISTED YU CONSTRUCTION, HARISH-CHANDRA CHARACTERS, AND
ENDOSCOPY

Section 4.2

The paragraphs defining χ′
α and χ′′

α0
, that surround formulas (4.2.4) and (4.2.5),

are not stated correctly. The character χ′
α of F×

α is defined as the “unique”
extension to F×

α of the character of O×
Fα

that inflates the sign character of k×α
and which is specified on 2aα by (4.2.4). But these conditions don’t uniquely
specify a character of F×

α .

The correct definition of χ′
α, which is given in Section 4.7 of “Regular super-

cuspidal representations”, is that χ′
α is the unique extension to F×

α that satisfies
(4.2.4) of the inflation to F×

±α of the isomorphism F×
±α/NFα/F±α

(F×
α ) → {±1}.

In the same way, the definition of χ′′
α0

should be corrected to mean that unique
extension to F×

α0
that satisfies (4.2.5) of the inflation to F×

±α0
of the isomorphism

F×
±α0

/NFα0
/F±α0

(F×
α0
) → {±1}.
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