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ABSTRACT 
 
Previous research presents both sensitivity-based and 

principal component-based techniques for improving the 
tractability of system identification.  Both have proven viable, 
but the former may be computationally inefficient for large 
problems, and the latter require a change of realization that may 
compromise the physical meaning of the parameters to be 
identified.  This paper proposes for the first time the use of 
activity analysis, an efficient and realization-preserving model 
reduction technique, for identification space reduction. 
Theoretical and numerical studies highlighting the viability of 
activity analysis versus the previous two methods are presented.  

 
INTRODUCTION 

 
Simulation models are commonly used for the design, 

validation, and control of dynamic engineering systems. Such 
models range from empirical to physics-based, the latter being 
particularly useful for gaining insight into system dynamics and 
developing new system designs and controls. One major 
challenge in using such physics-based first principles models is 
identifying their parameters, especially if the models are large 
and nonlinear. As the size and number of parameters of a 
dynamic model grows, the computational expense of 
identifying these parameters also grows, often exponentially 
[1]. One way to alleviate this computational burden is to 
determine which parameters in the model are most important to 
the system’s dynamics and outputs, and then only identify those 
parameters. This has been shown in [2-9] to help improve the 
accuracy and efficiency of the identification problem for both 
linear and nonlinear models. The following section briefly 
reviews the techniques proposed in the literature for the 
selection of model parameters to identify, focusing on their 
strengths and weaknesses.  

 
BACKGROUND 

Two main classes of techniques have been used to select 
the most important parameters to identify in a model: 
sensitivity analysis, and principal component analysis (also 
know as proper orthogonal decomposition). This section 
discusses the strengths and weaknesses of each of these classes 
in the context of the problem at hand. Sensitivity methods focus 
on evaluating how errors in a model’s parameters affect its 
outputs. An engineer can then focus on identifying those 
parameters to which the model output is most sensitive. There 
are several well-known methods for calculating the sensitivity 
of a model output with respect to model parameters for both 
linear and nonlinear systems. Alam and Sage [2] use a 
sensitivity-based technique to quantify a priori the loss in 
accuracy expected from eliminating parameters from an ARMA 
model. This method, however, is limited to linear ARMA 
models, and therefore too restrictive for the problem at hand. 
Benchulch and Chow [3] use DOE techniques to calculate a 
sensitivity matrix for each step in the optimal identification 
process for a nonlinear model. This method takes advantage of 
the change in parameters sensitivity as different system 
configurations are considered, but requires calculating a 
sensitivity matrix at each optimization step. This can be 
prohibitively computationally expensive for large models, as 
the costs of calculate this matrix rise rapidly with the size of the 
model. Velez-Reyes and Verghese [4] use another DOE-based 
technique for selecting an important subset of model 
parameters to identify. The results for this work show an 
improved efficiency with acceptable accuracy. However, this 
parameter selection process again can be computationally 
expensive. Additionally, the parameter subset selection is only 
done once, at the beginning of the identification problem. One 
should keep in mind, however, that as parameters change 
during an identification process, the set of important parameters 
may change as well. To summarize, the literature shows that 
sensitivity analysis is, in general, quite useful for selecting 
important parameters within the context of system 
identification. However, for the large models targeted by this 
work it is generally too computationally expensive. 
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Principal component analysis can be a viable alternative to 
sensitivity analysis as a tool for selecting the most important 
parameters to identify for a given model. Lee et al. [5] utilize 
this technique by taking snapshots of a system’s state trajectory 
and computing the covariance matrix of these snapshots. The 
singular value decomposition of this matrix furnishes a 
transformation matrix that is then used to change the system 
model’s realization. Using the singular value associated with 
each transformed state as a measure of its relative importance, 
Lee et al. truncate the least important states from the model.  
This reduces both the size of the model and the number of 
parameters to be identified. Moore [10] presents a similar 
technique, known as balanced truncation, to order states of a 
system from most important to least important, and then trim 
the unimportant states. This technique performs a basis change 
on the model such that each of the resulting state variables is 
equally observable and controllable. The states that are least 
controllable/observable can then be truncated from the model, 
not used for parameter identification, or residualized. This 
technique is commonly used because, if the model is linear, an 
upper bound on the error introduced through truncation can be 
calculated based on the Hankel singular values associated with 
each state [11]. Both of these techniques have been successfully 
used in the literature to reduce the number of parameters to be 
identified for a given model [5-9]. However, they are not 
realization-preserving, in the sense that they perform basis 
changes that often furnish new states and parameters for the 
model at hand. This may not be ideal, especially if the model is 
derived from first principles and its parameters are chosen to 
have appealing intuitive meanings.   

In summary, the literature presents two classes of 
techniques for determining the most important parameters to 
identify for a given system model: sensitivity-based techniques 
and principal component-based techniques. Both have proven 
viable, but the former may not be computationally efficient for 
large system models, and the latter may compromise the 
physical meaning of parameters in a first principles model. This 
paper proposes a third technique that uses activity – an energy-
based model reduction metric [12] – for selecting the most 
important parameters to identify. This metric calculates the 
relative importance of each state based on the total power 
flowing through that state during a time period of interest. By 
selecting only the parameters associated with the most active 
states for system identification, one may be able to significantly 
accelerate this system ID in an efficient, realization-preserving 
manner. This is validated here by comparing this proposed 
technique to both principal component analysis and sensitivity 
analysis through theoretical and numerical means. 

 
 

PROBLEM STATEMENT 

The goal of this work is to improve the efficiency of 
parameterizing large, nonlinear, first-principle models of 

dynamic systems. Current techniques within the literature can 
either be too computationally expensive, or defeat the purpose 
of using first-principles models. It is proposed that activity 
analysis can be used to estimate the sensitivity of a model’s 
output to changes in the model’s parameters more efficiently 
while preserving physical intuition gained from having a first-
principles model. Theoretical and numerical examinations are 
done to examine the viability of this approach. 

 
THEROETICAL ANALYSIS OF ACTIVITY 

Activity was first introduced as a concept by Louca et al. 
[12]. It was developed as a tool for model reduction. Activity is 
defined as the total power flow through a dynamic element 
during a time period of interest and is calculated using the 
following equation: 
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The power flow in an energetic element throughout the 
simulation is represented by P(t). As an example, for a spring 
this power flow is defined as the instantaneous velocity across 
the spring multiplied by the force through the spring. 
Integrating the absolute value of this power flow over time 
furnishes activity: a measure of the total power flow through 
the spring. This should not be confused with net energy change, 
which, for a unity-stiffness spring, is given by:  
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 It has been posited that those elements with the highest 
percentage of power flow (i.e., activity) have the most effect on 
system dynamics. Parameters of those elements may also be 
critically important. Since the activity associated with an 
element is not dependent on the number of inputs or outputs a 
model has, it can be easily applied to both SISO and MIMO 
systems. There is previous research [13,14] examining the link 
between activity and sensitivity of model parameters, but this 
previous work explores using a combination of the two 
approaches as a design methodology. It does not explore the 
possibility of using activity alone to estimate the sensitivity of 
model outputs to various parameters.   

What follows is an outline of a mathematical connection 
between balanced truncation and activity analysis in specific 
cases. It is shown that, under certain conditions, balanced 
truncation and activity analysis are equivalent. 

To show this mathematical connection, first, Hankel 
singular values are compared to the net change in energy of the 
states of a special case system. Then the net change in energy is 
compared to the activity of the energetic elements. By showing 
that, in a special case, the activity of the energetic elements is 



  Copyright © 2006 by ASME 

proportional to the Hankel singular value associated with that 
state, a link can be made between balanced truncation and 
activity analysis. 

Consider a minimal, LTI, state-space representation of a 
discrete-time system of the form: 
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The observability and controllability grammians of this system 
are calculated by: 
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Moore [10] first showed that if one has a minimal LTI 

state-space representation of a discrete-time system one can 
find a similarity transformation to express the system as a 
balanced realization where each state is equally controllable 
and observable. This system will be in the form: 
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The states of this minimal balanced realization can be ordered 
in such a way that the first states in the state vector have the 
most effect on system outputs, while the states at the end of the 
state vector have the least effect on system outputs. This is 
quantified by the Hankel singular values (σi), which rank the 
states in a quantitative way. Every state has an associated 
Hankel singular value, and those states with larger values have 
more effect on system dynamics and outputs than those with 
smaller values. Glover [11] extended this theory to prove that if 
a system is expressed as a balanced realization then that system 
is minimally sensitive to parameter errors and noise, and that 
errors in parameters associated with the larger Hankel singular 
values have more effect on the system output. 

Further work in this area has drawn a connection between 
the Hankel singular values of a balanced realization and the 
activities of a model developed from said balanced realization. 
This work shows a fundamental concordance between balanced 

realization and activity [15] in the continuous-time domain. In 
[15], Fathy et al. prove that, for a special case of an LTI 
balanced realization of a system, it is possible to construct a 
bond graph model of the system such that the activities of the 
energetic elements of the bond graph are equal to one-half the 
Hankel singular values of the balanced realization.  

By combining Fathy’s work with Moore’s, and Glover’s, it 
is possible to prove that the output of a bond graph model 
derived based on the procedure posed by Fathy will be 
minimally sensitive to errors in its parameters. Furthermore, 
errors in those parameters associated with the highest activities, 
and therefore Hankel singular values, will have the most effect 
on the system output. This shows a theoretical link between 
activity and principal component analysis under certain 
conditions. Unlike balanced truncation, activity analysis is 
realization-preserving, making it a good choice as an estimator 
of parameter sensitivity for the problems under consideration. 

To show this, let us consider the L2 norm of the output of 
the system in (6): 
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If we assume the input is zero at all k, then this expression is 
equivalent to: 
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However, since there is no input, the states at time k≥0 can be 
expressed as the initial condition x(0) multiplied by Ak. This 
leads to the following substitutions into eq. (8): 
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However, we can substitute from (5) the observability 
grammians to get: 
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Let us construct a set of initial conditions with xi(0)=1, and 
xj(0)=0 for all j≠i If we choose one such initial condition and 
calculate the L2 norm associated with that condition we get: 
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Without loss of generality, let us assume that we can 
construct a bond-graph with unity inductances and capacitances 
to represent the system in (6). Fathy [15] has shown that this is 
possible for any minimal balanced realization of a system. The 
instantaneous energy in each state is then: 
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The activity associated with each energetic element over a time 
period of interest becomes: 
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Now, assuming that none of the state trajectories change sign, 
then the absolute value and summation operators can be 
switched to give us: 
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Which simplifies to: 
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The activity in each element is then also equal to the net energy 
change in a state defined in equation (2). Let us now construct 
an initial condition using our results from (11) as follows: 
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This gives an initial condition which is a vector of the roots of 
the Hankel singular values. Let us simulate the model from zero 
until infinity, and calculate the activity associated with each 
element. 
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This shows that for a specific case of a discrete, LTI system the 
activity associated with each state will be equal to half the 
associated Hankel singular value. This result is analogous to the 
continuous time result shown by Fathy [15]. However, Glover 
[11] has shown that the system output is most sensitive to 
parameters associated with larger singular values. Since, for 
this case, the activity is linearly proportional to the singular 
values, the output is also most sensitive to changes in 
parameters associated with the larger activities. This suggests a 

mathematical link between activity analysis and balanced 
truncation in special cases. Next, a numerical example showing 
the relationship between activity analysis and sensitivity 
analysis is presented. 

A case study involving a simple dynamic model of a 
vehicle will be shown to evaluate the viability of activity as an 
estimator of parameter sensitivity. A technique called AVASIM 
will be used to help evaluate the accuracy of a tuned model. 
AVASIM [16-18] is the “Accuracy and Validity Algorithm for 
SIMulation,” and generates a Performance Index based on 
tolerances chose by the user. As used here this method is 
similar to scaled residual sums, with the caveat that a 
Performance Index of 1 corresponds to 100% accuracy; a 
Performance Index of 0 corresponds to the limit of our 
tolerance (in this case 99% accuracy); and a Performance Index 
of less than 0 indicates the model is invalid with respect to the 
tolerances chosen.  

 
CASE STUDY 

Model Description 
 
This case study demonstrates that activity analysis and 

sensitivity analysis provide similar information for a specific 
system. The system used for this case study is the common 
quarter-car model (Figure 1). This model has six parameters; 
the sprung and unsprung masses (Ms and Mus), the tire stiffness 
and damping coefficients (Kt and Bt), and the suspension 
stiffness and damping (Ks and Bs). This simple model of a 
vehicle can be used to estimate the first two natural frequencies 
of a vehicle in the vertical direction. 

  

 

Ms 

Mus 

Bs Ks 

Bt Kt 

X1 

X2 

Xg  
 

FIGURE 1: QUARTER CAR MODEL 
 

Parameters for this model are used to represent a generic 
passenger vehicle. Two different sets of input/output pairs are 
used to examine the proposed procedure. The first input to the 
model is a step input displacement at the ground. The first 
output is the net force on the unsprung mass. It is very common 
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for the tire damping coefficient to be dropped from this model, 
but it is included here to analyze the identifiability of that 
parameter. The model is first simulated at the nominal 
parameter values to provide the benchmark data to which other 
data sets will be compared.  

First Experiment: Displacement Input 
 
To provide a best-guess initial condition, the parameters 

are perturbed from their nominal values by random amounts up 
to 30%. Figure 2 shows the outputs of the system with both the 
nominal and initial condition set of parameters. 

A Simulink [19] model was developed of this system. The 
“fmincon” function in Matlab [20] was used to attempt to tune 
the model parameters back to their original values. This was 
done by using AVASIM to compare the output from the 
perturbed model to the output from the nominal model. The 
goal was to maximize the objective function with respect to the 
model parameters. The optimization procedure converged to 
the nominal point. This took 376 function evaluations. 

 

 
 

FIGURE 2: NOMINAL VS. INITIAL OUTPUT, 
DISPLACEMENT INPUT 

Activity and Sensitivity Analysis 
 
Both activity and sensitivity analyses of the results were 

done in order to select the important parameters of this model. 
First the activity of the model elements at the nominal was 
calculated (Figure 3). From this analysis it appears that the 
suspension stiffness and tire damping are associated with 
inactive elements.  
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FIGURE 3: ACTIVITY OF PARAMETERS 
 

To confirm this fact a full factorial ANOVA experiment 
was performed around the nominal point to calculate the 
sensitivity of the model output to changes in the parameters 
(Table 1). The results of this analysis agree very strongly with 
the results from the activity analysis, i.e. the output is 
insensitive to changes in the suspension stiffness and tire 
damping. 

 
TABLE 1: QC MODEL PARAMETER SENSITIVITIES, 1st 

EXPERIMENT 
 

 
 

As an example of the usefulness of only tuning sensitive 
parameters, the optimization was carried out again with the two 
unimportant parameters, Ks and Bt, held constant. The results 
were a small loss in accuracy (PI of 0.919), with a twofold 
increase in efficiency (197 function evaluations), with the other 
4 parameters achieving their nominal values. 
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Second Experiment: Harmonic Force Input 
 
A second experiment was done to explore how the activity 

and sensitivity measures change for different inputs and 
outputs. For the second set of input/outputs, the input is a 
harmonic force in the vertical direction applied to the sprung 
mass. The output is chosen to be the displacement of the 
unsprung mass. The same model developed for the last 
experiment was modified for the new input and output, and the 
same procedure was followed. Once again the optimization 
routine tuned the model parameters to the nominal values. This 
time 229 function evaluations were required. 

 

 
  

FIGURE 4: NOMINAL VS. INITIAL OUTPUT, FORCE INPUT 
  

Once again the activity and sensitivity data at the nominal 
was calculated. In the activity information (Figure 5) for this 
experiment, the same parameters as before are deemed inactive, 
but the unsprung mass is also deemed inactive. This implies 
that for this choice of input/output the unsprung mass has 
become unimportant to the model output. Analysis of the 
sensitivity information in Table 2 agrees with this analysis. 
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FIGURE 5: ACTIVITY OF PARAMETERS 
 
 
 
 
 
 
 
 

TABLE 2: QC MODEL PARAMETER SENSITIVITIES, 2ND 
EXPERIMENT 

 

 
  
Again the optimization was carried out a second time with 

the three unimportant parameters, Mus, Ks, and Bt, held 
constant. The results were no loss in accuracy (PI of 1.000), 
with a threefold increase in efficiency (69 function 
evaluations), with the other 3 parameters achieving their 
nominal values. These two numerical experiments highlight 
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that activity analysis and sensitivity analysis provide much the 
same information for this simple system. 

 
DISCUSSION 

Based on the results, several points can be made. First, the 
similarity of the results from the activity and sensitivity 
analyses strongly indicate that activity can be used to estimate 
parameter sensitivity. The main advantage to this is that 
sensitivity analysis in this case took 64 simulation runs in both 
cases (this can be reduced, but must always be at least equal to 
the number of parameters), while activity analysis by its nature 
always takes just one. Also, the run required for activity 
analysis can be the same one used to calculate the objective 
function in an optimization procedure. This means that for 
models that have significant computational expense the activity 
information can be gathered with almost no additional cost, 
while the sensitivity information may take dozens of runs to 
compute. This shows how activity analysis can be as efficient 
as principal component analysis.  

Second, if activity analysis is done prior to parameter 
identification, it may indicate which parameters within a model 
are not very identifiable for a given input and output. This 
might allow for the better design of experiments to ensure that 
parameters which are very important for the use of the model 
can be identified from the inputs and outputs chosen. Since 
activity analysis does not require a change of basis, we preserve 
our understanding of the physical meaning of the parameters in 
the same way as sensitivity analysis. 

Finally, since activity information is so easy to get it may 
be possible to develop an optimization procedure that 
continuously updates the set of parameters being identified. 
This means that if a parameter becomes unimportant based on 
the activity analysis it will be dropped from the identification 
parameter set. Conversely, if a parameter becomes important it 
can be added to the identification set. By updating the set of 
parameters as the optimization is carried out one can insure that 
those parameters, and only those parameters, which are 
important to the model output are identified.  

As a caveat one should be aware that all of the methods 
described in this work, with the exception of balanced 
truncation, are dependent on the input to the model having 
sufficient richness to excite all the important modes in the 
physical system. This is a separate problem that is much studied 
in the literature, but addressing it here goes beyond the scope of 
this work. It is assumed in this work that a properly rich input 
can be found and applied to the system in question. 

It should also be noted that the results shown here are 
probably not sufficient to fully confirm the hypothesis that 
activity can be used as an estimator of model sensitivity. A 
validation of these results in a real world case study should be 
carried out. Applying this procedure to a real system may have 
some challenges in that a model may not contain dynamics 
present in the real system. This may require filtering of the data 
or careful selection of inputs. Furthermore the stochastic nature 
of real systems may require some adjustments to the proposed 

optimization procedure. However, this work indicates that this 
further research is likely to agree with the results shown here. 

 
CONCLUSION 

In this work a theoretical examination of the links between 
activity and principal component analysis was made. 
Furthermore, a simple model was used to analyze the viability 
of using activity as an estimator of parameter sensitivity for 
identification problems. This method has the potential to 
increase the efficiency of large-scale model identification 
problems like principal component analysis, while preserving 
our physical understanding of what the parameters mean like 
sensitivity analysis. It has been shown that there is a strong 
correlation between activity, sensitivity, and principal 
component analysis, though further examination and evaluation 
is warranted. 
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APPENDIX 
 

TABLE 3: NOMINAL PARAMETER VALUES 
 

Ms 2000 kilograms 
Mus 200 kilograms 
Bs 35000 Ns/m 
Bt 1760 Ns/m 
Ks 79000 N/m 
Kt 790000 N/m 

 


