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Overview

1. Overview of single-level methods for decomposition based

optimization

2. Demonstrate IDF finds optima hidden to traditional methods

3. Introduce a thermoelastic design problem

4. Investigate the performance of MDF and IDF on problems

with varying levels of coupling strength
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Decomposition Based Optimization

• Some systems must be approached in a decomposed manner

– Distributed analysis sometimes required (design groups/analysis tools)
– Single, complete analysis may be infeasible
– Interactions between system members must be considered

• System Analysis: seek to find a consistent analysis solution

• System Design: seek to find a feasible and optimal design
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Partitioned Analysis

SS1 SS2 SSN

g1,h1

x1 = [x!1xs1] x2 = [x!2xs2] xN = [x!NxsN ]

fN ,gN ,hNg2,h2

y21

y12

yj1

y1j

. . .

. . .

. . .
yNj

yjN

University of Michigan Department of Mechanical Engineering October 29, 2005



Partitioned Design: Multidisciplinary Feasible (MDF)
Approach

min
x

f(x)

subject to g(x) = [g1, g2, . . . , gN] ≤ 0

h(x) = [h1, h2, . . . , hN] = 0

• Can find system optimum

• Analysis may converge slowly, or not at
all

• Sequential process

System Optimizer

System Analysis

SS1 SS2 SSN

g1,h1

x1 = [x!1xs1] x2 = [x!2xs2] xN = [x!NxsN ]
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Partitioned Design: Individual Disciplinary Feasible (IDF)
Approach

System optimizer chooses design variable values x and coupling variable
values y, i.e., simultaneous analysis and design (SAND).

• Auxiliary equality constraints enforce system consistency

• Parallel process
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IDF Formulation and Architecture

min
x,y

f(x, y)

subject to g(x, y) = [g1, g2, . . . , gN] ≤ 0

h(x, y) = [h1, h2, . . . , hN] = 0

haux(x, y) = y(x, y) − y = 0

System Optimizer

SS1 
Analysis

SS2 
Analysis

x!1,xs1,y1j x!2,xs2,y2j

g1,h1,yi1 f,g2,h2,yi2
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System Analysis: Fixed Point Iteration

y21(y12) = y21 y12(y21) = y12

y12

y21

(Step 0) choose initial guess y0
12, set i = 0

(Step 1) i = i + 1

(Step 2) yi
21 = y21(y

i−1
12 )

(Step 3) yi
12 = y12(y

i
21)

(Step 4) if ‖yi − yi−1‖ < ε stop, otherwise go to (Step 1)
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Fixed Point Iteration Convergence

Developed proof of new convergence condition form
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Fixed Point Iteration Divergence
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Multiple Fixed Points

FPI:

Unknown if a repelling fixed
point would have led to a better
solution.

• Attractive fixed point
◦ Repelling fixed point

y21(y12)

y12(y21)

y12

y21
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Hidden Optimum Example

min
x

f(x) = y
2
12 − 100y21 + 0.1x′x

where y21(y12, x1) = a(x1)(y12 − b)
2

y12(y21, x2) = c(x2)y21 + d

a(x1) =
0.25

1 + ex1
+ .5

b = 3

c(x2) = −
„

1

1 + ex2
+ .5

«
d = 3.5
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Solution Results

MDF solution: −0.244
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Solution Results

MDF solution: −0.244

IDF solution: −975.7
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New Example Problem—Thermoelastic Turbine Blade
Design

Developed in order to aid studies on
coupling strength variation
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Thermoelastic Turbine Blade Design

w

t

L0

x

vg, Tg

fac
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Coupled Turbine Blade Analysis

SS1: Thermal Analysis

q(w, t, L)

T (x, w, t, L)

SS2: Structural Analysis
m(w, t)
L(w, t, T (x))
δtotal(w, t, T (x))
σb(w, t, T (x), x)
σa(w, t, T (x), x)
σr(w, t, T (x), x)

y21 = T (x)

y12 = L

x1 = [w, t] x2 = [w, t]
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MDF Formulation

min
x=[w,t]

q

subject to g1(x) = Tmax − Tmelt ≤ 0

g2(x) = δtotal − δallow ≤ 0

g3(x, x) = σa(x)− σr(T (x)) ≤ 0

g4(x, x) = σb(x)− σr(T (x)) ≤ 0

g5(x, x) = m−mmax ≤ 0

0 ≤ x ≤ L0 + δtotal

[w∗, t∗] = [0.0131, 0.0075]
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IDF Formulation
min

x=[w,t],T (x),L
q

subject to g1(x) = Tmax − Tmelt ≤ 0

g2(x) = δtotal − δallow ≤ 0

g3(x, x) = σa(x)− σr(T (x)) ≤ 0

g4(x, x) = σb(x)− σr(T (x)) ≤ 0

g5(x, x) = m−mmax ≤ 0

g6(x, x) = T (x)− T (x, x) = 0

g7(x, x) = L− L(x) = 0

0 ≤ x ≤ L0 + δtotal

[w∗, t∗] = [0.0128, 0.0074]
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MDF and IDF Comparison
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Conclusion
• Prediction of Cramer et al. that IDF is more computationally efficient

confirmed, in the case of strong coupling

• Dependence of method performance on coupling strength exposed

• Demonstrated that IDF can find optima hidden to MDF

Future Work:

• Investigate thresholds of performance advantages

• Study method behavior on problems with multiple analysis solutions

• Perform these studies on IDF and other methods, including multilevel,
that utilize optimization for analysis tasks
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Thanks for Your Attention!
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Sample Analysis Results
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