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ABSTRACT

An often cited motivation for using decomposition-based opti-
mization methods to solve engineering system design problems
is the ability to apply discipline-specific optimization techniques.
For example, structural optimization methods have been em-
ployed within a more general system design optimization frame-
work. We propose an extension of this principle to a new do-
main: control design. The simultaneous design of a physical sys-
tem and its controller is addressed here using a decomposition-
based approach. An optimization subproblem is defined for both
the physical system (i.e., plant) design and the control system de-
sign. The plant subproblem is solved using a general optimiza-
tion algorithm, while the controls subproblem is solved using a
new approach based on optimal control theory. The optimal con-
trol solution, which is derived using the the Minimum Principle
of Pontryagin (PMP), accounts for coupling between plant and
controller design by managing additional variables and penalty
terms required for system coordination. Augmented Lagrangian
Coordination is used to solve the system design problem, and is
demonstrated using a circuit design problem.

1 Introduction

Numerous methods have been developed for solving engi-
neering system design problems that have been partitioned into
smaller subsystem design subproblems. These decomposition-
based design optimization methods, or decomposition methods,
solve subproblems iteratively, guiding the system toward a con-
sistent and optimal system design solution using a coordination

algorithm. Advantages of decomposition methods include com-
putational parallelism, exploitation of problem sparsity, and so-
lution of increasingly complex design problems [1, 2].

Another often cited benefit of decomposition methods is
the opportunity to employ specialized optimization algorithms
to solve individual subproblems [3,4]. These algorithms exploit
problem structure to solve them more efficiently. Incorporating
specialized algorithms within a decomposition-based optimiza-
tion framework has been demonstrated for systems involving
structural design [5,6]. Another discipline with well-developed
theory and optimization techniques is optimal control [7]. While
multidisciplinary approaches exist that account for interactions
between the design of a physical system (i.e., the plant) and its
controller [8], these all employ either a sequential or nested de-
sign optimization process rather than the distributed approach of
decomposition methods. An alternate strategy is applied here; a
new optimal control solution is derived that accounts directly for
interactions with other aspects of an engineering system, and fits
naturally within existing decomposition methods. This type of
system design approach enables specialists, such as controls en-
gineers, to focus deeply on developing analysis and design tech-
niques for their discipline, but within a formal interaction man-
agement framework that eases integration with other aspects of
system design.

1.1 Decomposition-Based Desigh Optimization

Decomposition methods apply to system design problems
that have been partitioned into multiple design subproblems.
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Each subproblem is formulated as an optimization problem,
and is solved independently of the other subproblems, enabling
coarse-grained parallelism. Subproblem independence is tempo-
rary; non-trivial partitioned systems exhibit interaction, or link-
ing, between subproblems. Subproblems may be linked in two
ways: through shared design variables, or through coupling vari-
ables. At the system-wide solution, subproblems must be con-
sistent with respect to these links. Consider the following unde-
composed optimization problem:

min £(x¥p(x))

g(x,yp(x)) <0 ey
h(x,y,(x)) =0,

Solutions to Eqn. (1), x*, minimize the objective function
f(x,yp(x)), while satisfying the inequality and equality design
constraints, g(X,yp(x)) < 0 and h(x,y,(x)) = 0, respectively.
Calculating the objective and constraint functions for a given
design vector x may involve the solution of a coupled system
of equations. In engineering design these equations often take
the form of numerical simulations, a collection of which can be
viewed as a system of analysis functions: a(x,y). The objective
and constraint function values are outputs of a subset of analysis
functions. Analysis function outputs required as input to other
analysis functions are coupling variables: y. If feedback cou-
pling exists, a set of consistent coupling variables yp(x) must be
found for a given x using an iterative algorithm. A coupling vari-
able vector is consistent if it satisfies y — Sa(x,y) = 0, where S
is a selection matrix that extracts the components of a(x,y) that
correspond to'y.

Equation (1) is known as the All-in-One (AiO) or Multi-
disciplinary Feasible (MDF) formulation [9]. MDF may lead to
solution difficulty when the dimension of x is large, or when the
underlying system of analysis functions is strongly coupled [10].
Decomposition methods can address these issues by partition-
ing the system design problem into smaller optimization sub-
problems. How a system is partitioned influences the success of
a decomposition method implementation [11]; if partitions cut
across many or strongly-coupled links, a decomposition method
may be inefficient, whereas thoughtful partition choices can ex-
ploit problem sparsity by minimizing links between subprob-
lems. Decomposition methods also facilitate application of spe-
cialized optimization algorithms to appropriate portions of a sys-
tem; in this article we address the extension of optimal control
techniques for use in decomposition methods.

subject to

If an analysis function in one subproblem requires as input
an output from an analysis function from another subproblem,
the associated coupling variable ‘links’ the two subproblems.
The second way subproblems may be linked is through shared
design variables xg, which are design variables required as input
by more than one subproblem. Coupling variables between sub-
problems and shared design variables together form the linking

variable vector z = [y, xs]. Decomposition methods employ local
copies of linking variables in appropriate subproblems. These
copies must agree (i.e., are consistent) at convergence of the de-
composition method. System consistency typically is enforced
with equality constraints on these copies, or with penalty func-
tions. Local linking variable copies are requisite for independent
subproblem solution and application of specialized subproblem
optimization methods. A coordination algorithm directs the re-
peated solution of subproblems, and guides the system toward a
state of system consistency and optimality.

The specific decomposition method used here is Augmented
Lagrangian Coordination (ALC) [12, 13], which is a generaliza-
tion of Analytical Target Cascading (ATC) [14], based on aug-
mented Lagrangian decomposition methods [15, 16]. Both ATC
and ALC have convergence proofs under standard assumptions.
The most general ALC formulation allows for linking functions,
in addition to linking variables. Many system design problems,
including co-design problems, are formulated naturally without
linking functions (i.e., quasi-separable).

After a system design problem, in the form of Eqn. (1), with
linking variables and an additively separable objective function
(i.e., f(x) =Y, fi(x)), is partitioned, local copies of linking vari-
ables are made for each subproblem; z; are the local copies for
subproblem i, and the consistency constraint ¢;(x;,2;,2;) = 0 en-
sures consistency between subproblem i and subproblems it is
linked to. In the consistency constraints, X; are the design vari-
ables required by subproblem i, and Z; are the local copies of
z; from other subproblems; consistency constraints are satisfied
when z; = Siii, where Si is a selection matrix that maps com-
ponents of Z; to corresponding elements of z;; this notation al-
lows for linking variables that connect more than one subprob-
lem. Consistency constraints are relaxed using an augmented
Lagrangian penalty function [17]. This enables independent sub-
problem solution, while ensuring consistency at ALC conver-
gence:

i (ei(X,21,2:), Vi, Wi) = Vici (Xi,2,2) T + || Wi 0 €i(x1,2,2:) |3,

@)
The ALC coordination algorithm manages v; and w;, the lin-
ear and quadratic penalty weights, respectively; o indicates
the Hadamard product (i.e., element-by-element multiplication).
The linear weights converge to the Lagrange multipliers for the
consistency constraints. Note that each z; does not need to con-
tain copies of all components of z; problem sparsity can be ex-
ploited by including only those components that link subproblem
i with the rest of the system. The quasi-separable ALC formula-
tion for the i-th subproblem is:

min fi(x;,z;
Xi i

=

+ 0i(ci(xi,2i,Zi), Vi, Wi)
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If subproblem i has any analysis functions that pass coupling
variables to other subproblems, auxiliary equality constraints
fl,’(X,’,Z,’) are required to treat the associated components of z;
as independent optimization variables. Alternatively, these con-
straints may be eliminated through substitution if coupling and
shared design variables are treated separately [18], which will be
demonstrated in the next section. Note that Z; and the penalty
weights are held fixed during the solution of subproblem i.

The ALC coordination algorithm consists of an outer loop
and an inner loop. For a given set of penalty weights, the ALC
inner loop iteratively solves all subproblems until a fixed point
for the linking variable copies is found. A fixed point does not
guarantee system consistency; the ALC outer loop updates the
penalty weights after solving the inner loop, guiding the system
toward consistency and optimality. The basic update formula is:

v = v owk o wk o et
whHl — Bwk,

The outer loop iteration number is k; the system penalty weight
vectors v and w are formed via concatenation of subproblem
penalty weight vectors; ¢ is the system consistency constraint
vector at the end of inner loop k. At outer loop convergence,
assuming the original problem given in Eqn. (1) is feasible
and meets ALC convergence requirements, the consistency con-
straints are satisfied, and the resulting solution is system-optimal.

1.2 Optimal Control and Co-design

In the 1960’s, modern control theory was the focal point of
the control and estimation community [19]. The ground break-
ing work of Pontryagin [20] became available in English for
the first time, igniting increased interest in the theory of opti-
mal control. Many useful results were published and the classic
texts of Athans [7], Bryson [21] and Kirk [22] were widely read.
Two major contributions by Kalman [23, 24] paved the way for
the Linear Quadratic Gaussian (LQG) framework of control and
estimation. The Linear Quadratic Regulator (LQR) technique,
which is the control methodology at the heart of LQG, has be-
come a popular approach primarily because of its ease of appli-
cation.

Although LQR is an effective control design technique, fur-
ther improvements in system performance require a more holis-
tic approach. The conventional control system design process
is sequential; the physical system, or plant, is designed first to
meet specified requirements (Fig. 1). The control system is then
designed, without an opportunity to readjust plant design [19].
During the plant design phase engineers may give consideration
to control system performance, but this does not account fully for
plant-controller design interaction [6,25-27]. In practice this is
managed using elaborate design iterations entailing rapid proto-
types [28] instead of a comprehensive system design framework.

Sequential Strategy Iterative Strategy

Improve plant without
degrading controller

I

Optimize controller

Optimize plant

Optimize controller

Figure 1: Sequential and Iterative Solution Strategies.

A design approach that tackles plant and control design si-
multaneously can account fully for controller-plant design cou-
pling, yielding optimal systems. Sequential strategies often re-
sult in suboptimal designs [29-31]. In some cases a simultaneous
design approach can identify optimal solutions where sequential
approaches fail even to deliver a feasible design.

Several techniques for combined plant and control design
(co-design) have been examined empirically [25,29,32,33]. One
approach is to simply repeat the sequential design process, iter-
ating until convergence on a system design (Fig. 1). This process
is similar to the block-coordinate descent algorithm, which may
not converge to the system optimum in some cases [34].

A nested approach has been proven to identify a system op-
timal solution [29]. The outer loop seeks to optimize the over-
all system performance by varying the plant design. For every
candidate plant design tested by the outer loop, the inner loop
computes the optimal control for the given plant design.

Optimize Combined
System by Varying Plant

Optimize Controller

Figure 2: Nested solution strategy

This article presents a new approach to co-design. Rather
than nesting control design within plant design, these two design
problems are solved using a decomposition method, which coor-
dinates their solutions such that a consistent and optimal system
design is produced. The primary contributions here are the for-
mulation of the co-design subproblem, and the extension of opti-
mal control theory to the solution of this subproblem. A decom-
position approach to co-design is then illustrated using a circuit
design example.
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2 ALC Codesign Formulation
The general co-design problem can be formulated as:

g)n;l f5(Xp;Xe)

gp(Xp;Xc) <0 4
gc(xpaxc) <0,

where xj, is the vector of plant design variables (such as geo-
metric specifications), X, is the vector of control design variables
(such as control gains K or control input u(t)), f;(Xp,Xc) is a met-
ric of overall system performance, and gp(Xp,X.) and g¢(Xp,Xc)
are plant and control design constraints, respectively.

Often dynamic performance of a system depends on phys-
ical properties of the plant, which depend on the plant design;
this relationship is expressed here as y = a;(xp), where y is a
vector of physical properties computed with the analysis func-
tion a; (xp). Here we assume the plant design constraints do not
depend on x.. Equation (4) now can be rewritten as:

Tm fs(ai(xp),Xc)
gp(xp) <0 (%)
gc(ai(xp),Xc) <0.

In the nested solution approach (introduced in the previous
section), the outer loop seeks to optimize the system objective
with respect to Xxp only, and an inner loop seeks to optimize the
system objective with respect to X only, for a fixed xp.

min. £; (a1 (xp))

gp(xp) <0 (6)
where £ (a)(xp)) = mxicnfs(al(xp)xc)

subject to

subject to

subject to

subject to  gc(a1(xp),Xc) < 0.

Equations (5) and (6) are mathematically equivalent [29]. The
outer loop may be solved using a general-purpose optimization
algorithm, such as sequential quadratic programming [35], and
the inner loop may be solved with optimal control techniques (a
significant benefit). Nested solutions, however, are not amenable
to coarse-grained parallelism, can be computationally intensive,
and are hard to generalize to systems with more than two sub-
problems. Rather than adapt solution approach to fit existing
optimal control techniques, we propose a method that extends
optimal control theory to solve an optimal control subproblem
within a more general system design framework. This enables
parallelism, solution of systems with more than two subprob-
lems, and opens the door to combining other specialized opti-
mization algorithms for other disciplines with optimal control in
a system design optimization implementation.

The first step in the proposed approach is to partition the
co-design problem into plant and control design subproblems,
as illustrated in Fig. 3. The class of co-design problems con-
sidered here has no shared design variables, but are linked by a

Vi, W1 Vo, W2

P2

Plant Control
Subproblem Subproblem

Figure 3: Relationship between plant and control design sub-
problems

coupling variable computed in the plant subproblem and passed
to the control subproblem. For the control subproblem P2 to be
independent of the plant subproblem P1 during the ALC solution
process, a local copy of the coupling (linking) variable y is cre-
ated for each subproblem: z; = a;(xp) is the local copy of y for
P1, and z; is the local copy for P2. The ALC subproblems are:
P1: Plant Design

rr)1(in 01(21,22,v1,W1)
P

gp(xp) <0 @)
where  z; =a;(xp)

subject to

P2: Control Design
min f5(22,Xe) + 92(21,22, V2, W2)

gc(z2,xc) <0. (8

The values of z,, vi, and w; are fixed during the solution of
P1, and z,;, v,, and w; are fixed during the solution of P2. For
notational simplicity, Z, and z; have been used in place of Z;, de-
scribed in Eqn. (3), for P1 and P2, respectively. The augmented
Lagrangian penalty function is used to relax the consistency con-
straint z; = z, in each subproblem, and the penalty weights are
updated in the outer loop of the ALC coordination algorithm.
Also note that the auxiliary constraints for coupling variables is
eliminated from P1; the output of a;(xp) is substituted directly
for z1, and consequently z; does not appear in the set of opti-
mization variables for P1; this ALC simplification is described
in [18].

In this decomposition approach to co-design, P2 determines
how the control system would like the plant to behave, embodied
by the value of z, determined by the control subproblem. This
target value of z; is then passed to P1 by the ALC coordination
inner loop, and P1 seeks to find a feasible plant design xp that
produces plant characteristics z; that are as close as possible to
the target z;. Normally there is a conflict between control and
plant design; plant characteristics that are ideal for the control
typically violate plant design constraints gp(xp). The ALC co-
ordination algorithm can be viewed as a negotiation process that

subject to
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brings these conflicting requirements into agreement, satisfying
the consistency constraint z; = z, at convergence.

P1 can be solved using general optimization algorithms. It is
desirable to solve P2 using optimal control techniques. However,
the linking variable and penalty function have no time variance,
precluding direct application of established optimal control tech-
niques to the solution of P2. The following section presents an
extension of optimal control theory for solving P2.

The ALC co-design formulation may be extended to other
classes of co-design problems, such as those with shared design
variables and feedback coupling. This generalization is a topic
for future work.

3 Control Subproblem Solution

This section develops the solution to the control subproblem
given in Eqn. (8). A review of the relevant optimal control theory
is presented, followed by a derivation of a direct solution to the
control subproblem.

3.1 Optimal Control

The objective of the control subproblem P2 is to compute
the optimal response trajectory of the dynamic system, while ac-
counting for interactions with the plant subproblem. The solution
to optimal control without plant interaction is presented here as
background. Figure 4 illustrates the system block diagram of
a linear, time invariant, causal system. This model defines the
relationships between the inputs and outputs of a system over
time. &(¢) and §(¢) are n-dimensional column vectors denoting
the plant state and the plant state time rate of change, respec-
tively. &, is an /-dimensional column vector representing the
exogenous states of the system. u(¢) is an m-dimensional col-
umn vector representing the plant control signals. y(¢) is the
r-dimensional output vector. The plant coefficient matrix A is
an n X n dimensional matrix. The control signal coefficients are
embodied in B, which is an n x m matrix. The plant observa-
tion coefficient matrix, C is an r x n matrix. If there is direct
feedthrough in the linear system then the corresponding coeffi-
cients of the feedthrough signals are embodied in D, which is
an n X m matrix. Finally, the plant exogenous coefficients are
captured by E, which is an / X / square matrix.

If state-feedback control is used, the control input is given
by u(r) = —KE&(r), where K is the gain matrix, and is also the
control design variable. The objective in optimal control is to
find K such that a cost function J(K) is minimized to J*. The so-
lution to the optimal control problem advanced by Pontryagin et
al. produced an open loop control signal and the corresponding
state trajectory for a specified initial state [36]. The solution is
embedded in a two-point boundary value (TPBV) problem. For
closed-loop feedback control, it is desirable to have an expres-
sion for the present optimal control u*(¢) as a function of the

Figure 4: LTI System Block Diagram

present state &(7). Bellman expanded on the the equivalence of
the open loop trajectory problem and the feedback control prob-
lem by introducing the principle of optimality, which is now the
cornerstone of dynamic programming [37].

Consider the dynamic process with a scalar control input,
u(t) =u

g

£ _ T3 9
E=2= 1w ©)
For this process the performance measure to be minimized is:
T
1= [ L&war, (10)
t

which corresponds to fi(Xp,Xc) in Eqns. (4) — (8). Using the
chain rule, J = Jef (€,u), where Jg = dJ/dE. From the perfor-
mance integral (Eqn. (10)), J = —L(&,u). Equating both expres-
sions for J, we obtain the partial differential equation:
—H:Jéf(g,u)JrL(Y;,u):O an
In the optimal control literature H is referred to as the Hamil-
tonian or H-function. By Bellman’s principle of optimality, the
optimal control is:
u” = argmax H(Jg,&,u) (12)
ueQd
where Q is the feasible control design space. This can be en-
forced using the inequality constraint in Eqn. (8). When u*,
the optimal value of the control u, is substituted into Eqn. (11),
the control-free Hamilton-Jacobi-Bellman (HJB) equation is ob-
tained. The solution of the HIB equation gives the optimal con-
trol as a function of the state.
The HJB equation entails the gradient Jg, and hence requires
differentiability of J. The standard HIB equation solution ap-
proach is by the method of characteristics. Let:

p=—Jg (the “costate”) (13)

Then Eqn. (11) becomes:
H:p/f(gau)_l‘(§7u) =0 (14)
The Pontryagin Minimum Principle (PMP), derived by methods
of the calculus of variations, starts with the Hamiltonian function
in Eqn. (14), without identifying the costate p with -Jg, elimi-
nating the requirement that J is differentiable. The relationship
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between the Dynamic Programming approach in Eqn. (11) and
the Minimum Principle approach in Eqn. (14) is proven in [22].

Continuing with the Pontryagin formulation, let u(t)* be the
optimal control in the sense that the value of J using ©* is smaller
than it is for any other control signal (7). According to the Min-
imum Principle, the necessary conditions for the control signal
{u*(7) : T € [t,T]} to be optimal are:

1. The H-function in Eqn. (14) has an absolute minimum at

u(t) = u*(1):

HE p"u*) <H®E p"u) (15)
2. The value of the Hamiltonian function H is zero:
HE p*,u*)=0 (16)

These observations lead to the dynamic and costate canonical
representation [7,22,36]:

oH
= 5(§,p7u> = f(&u) (17)

[')—(—;Z(&,p,u)—gép'f(g,u) (18)

If Eqn. (9) is Linear Time Invariant (LTI) and the integrand
of Eqn. (10) possesses a form that is quadratic in state and control
with an infinite horizon time interval, i.e.,

J= / (E'QE + u/Ru)dr
t
then Eqns. (17) and (18) are fashioned by:

. aH

p=- ag & (Ep.u) = —QE'(1) - A'p(1) (20)

0= %—I:(p,u) =R,u" +Bp” (1)
where Q is an n X n positive definite matrix known as the state
weighting matrix, and R, is a scalar known as the control weight-
ing factor [22]. A and B are the LTI system matrices. Solving
(21) for u* and substituting into (19) yields a set of 2n linear
homogenous differential equations:

-1

This system of differential equations can be solved for the opti-
mal state trajectory. Using the boundary conditions, p* can be
eliminated and the optimal control u* is:

u* = —R,'B'ME (23)
where M is the solution to the matrix Riccati equation:
M=-MA—-A'M—-Q+MBR,'B'M (24)

Note the dependence of M on ¢ has been removed for conve-
nience. M is an n x n symmetric matrix; therefore n(n+1)/2
first-order differential equations must be solved to find M.

3.2 Control Subproblem

In the optimal control subproblem, we consider a special
form of the state regulator problem described in Section 3.1. In
the extension of this problem presented in this section, a finite
horizon quadratic cost functional is minimized subject to linear
differential constraints, with the distinguishing characteristic that
both the cost functional and the differential constraints are func-
tions of time, ¢, and the linking variables, z. In considering this
special problem, we show that the linking variables impose an
additional condition to the first order conditions of the Minimum
Principle of Pontryagin (PMP) by taking the following steps:

1. Define precisely the PMP for this special state regulator
problem.

2. Demonstrate how to obtain the optimal state trajectory,
E(1)*, for this special state regulator problem using the PMP.

P2, in the PMP framework, is:

!/

min L [ (£0,22)Qx(t,22) + ult) Ru(t))dt +v€} + |woes |3
u(t)z, 2 I
subject to:  &(t,22) = A(22)E(r,22) + Bu() (25)

The first term of the objective function is a quadratic cost inte-
gral with finite horizon, and the minimization is performed with
respect to both u(r) and z;. The additional terms comprise the
ALC penalty function that helps manage interactions between
plant and control design subproblems, introduced in Eqns. (7)
and (8). Note that ¢), = ¢,(z1,2z2) = z; — 2. Thus, Eqn. (25)
is comprised of two important parts: A quadratic cost integral
that measures the cost on the system dynamics and control, and
a penalty function that aims to enforce system consistency. The
two parts of the objective function are weakly coupled as ex-
pressed in the dynamic state vector &(¢,2;). This coupling arises
from the fact that the dynamic state is the solution of:

!
E(t,22) = Egeh) + / A1) g1,
fo

i.e., dynamic plant response depends not only on time, but also
on plant characteristics z; that vary with plant design x;, (when z;
and z, are consistent). To solve optimal control problems using
the PMP, knowledge of the boundary conditions or transversality
conditions is required. We assume that 7 is fixed (ty — T = 0),
the problem ends at # = T, and the final state is specified: §(7;) =
x(T) = xy. Next we form the H-function for the co-design sub-
problem using Eqn. (14):

H=1 [(8(1,22) Q&(1.22) +ult) Ru(1))]

2
+vey + [wo (e2)I3
+p(t) [A(22)8(1,22) + Bu(t)] (26)
For Eqn. (26), conditions (15) and (16) become:
H(E . p"u'23) <H(E .p",u,22) @7
H(E,p",u",23) =0 (28)
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To meet the above conditions, we compute the first order neces-
sary conditions for optimality:

&(Z,Zz): ?)Is = A(Zz)&([,lz) —l—BM(l) (29)
pl.ae)= 5 = ~E0.2)Q- AR GO
0= %—IZ =u(®)R+p()B 31)
0= %Z =¥ p,2) (32)

Equations (29) — (32) are the first order necessary condi-
tions for P2. They are a system of differential algebraic equa-
tions (DAEs) which must be solved simultaneously. Equa-
tions (29) and (30) are ordinary differential equations (ODEs),
and Eqns. (31) and (32) are the algebraic equations. In some
problems, it may be possible to eliminate either Eqn. (31) or
Eqn. (32), or both. In that case, Eqns. (29) — (32) collapse into
a system of ODEs that can be solved simultaneously for the op-
timal trajectory. Note that at this point the linking variable z,
can be either solved for explicitly or computed using a numerical
solution. Due to the nonlinear relationship between x,, and A in
the circuit problem presented in the next section, the algabraic
equations could not be eliminated.

Now we prove the existence and uniqueness of the global
optimum for Eqn. (26) in the scalar case while noting that it can
be extended to the vector case with ease. We start with the Weier-
strass Theorem to help show existence of a global minimum.

Lemma 1 (Weierstrass Theorem). LerS be a compact sub-
set of a finite-dimensional real vector space, V, and let f be
the mapping f:S — R. If f is a continuous function and
x € dom(f), then the mapping f attains a global maximum and
a global minimum. O

For the control subproblem, it is also important to establish the
conditions under which a unique solution will be available. The
following result will prove the existence and uniqueness of the
optimum for our specific problem.

Theorem 1 (P2 Unique Minimum). LetS be a compact sub-
set of R and let:

H= %(Ez(zz)cﬁ— U R) +vzo + ||wza |3 + p(a(z2)E(z2) + bu)

be the scalar H-function under consideration where &, u € S and
w,v,22,R € Sy. If ¢ > 0, then the function H always attains a
unique minimum in S.

Proof. Since & u € S and w,v,22,¢,R € S with ¢ > 0 assumed
and since it is easy to show that H is a continuous function, we

Figure 5: Circuit design example.

conclude that there exists:

Hyin = {V&(z2) €S+ f(Gmin(22)) < f(§(22))}
Hypax = {V&(z2) €S+ f(Gmax(22)) = f(E(22))}

That is, we conclude that a global minimum and a global maxi-
mum exist for H. This establishes the existence of the optimum.

To show uniqueness let us consider the Hessian for our H-
function. If the Hessian is positive semidefinite V¢ € S, then H is
convex, which implies no duality gap and by implication means
a unique solution exists [17]. After taking the second partial of
H with respect to &:

o’H

)

e 279
Since z; € S and ¢ > 0 and the Hessian is positive semidefinite,
a unique global minimum exists for H. U

4 Circuit Design Example

A circuit design problem, adapted from [19], is presented
here to clarify the ALC co-design formulation. The circuit to
be design is illustrated in Fig. 5. The objective is to regulate
the voltages Vi and V, and to choose an optimal value for the
capacitance ¢| to minimize:

J= / (&(t,c1) Q&(t,c1) + u'Ru)dt
t

&(t7cl) = A(Cl)g(tacl) +Bu

Note that ¢ is a function of the plant design variables p, de-
fined below. In the formulations that follow, the copy of ¢ in
the plant design problem is z;, and the copy in the control design
problem is z. The differential equations that govern the dynamic
response of the circuit can be put into linear state space form, as
shown in Fig. (4), defined by the matrices:

§(t,c1) = A(c)§(t,c1) +Bu(t)
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subject to:



a an b2
) 2
where:
an= — [RZ"+Di(Ry'+R'+R)
ap = [Ry' +R;'DI]
ay = [R31 R;'D2]
an= - [R;' +D2(R +Ry +R7Y)]
Dy = [1+R Ry +R '+ R ™!
Dy = [1+Ra(Ry ' + Ry R
b1 = R, 'D;
by = R,'D,

For the control subproblem the desired state conditions are con-
stant. The output matrix C is the identity matrix. In a spherical
capacitor, the capacitance c; depends on the outer radius p, and
inner radius p,:

_ 4n3Pan

Pb—Pa

where € = 8.85 x 10_12% is the permittivity constant in free
space. Packaging requirements are given by:

Pa < Py < Pomax, Pa +pg < Po

where Ppmqy is a packaging constraint and p, is the minimum
allowable gap between p, and p,. Note that if p, +p, < pj is
satisfied, then p, < p;, is also satisfied, eliminating the need for
the latter constraint. The simultaneous optimization formulation
is:

min /Iw (&(t,p)'Q&(t,p) + u/Ryu) dt

u,p=[pa;pp]

subject to: E(t,p) = A(p)E(t,p) +Bu
rank[B,A(p)B...A(p)" 'B|
cig(A(p) —BK) <0
Pb < Pbmaxs  PatPg < Pb;

where the rank and eigenvalue constraints ensure stability and
controllability. The nested optimization formulation is given by:

= dim(§(,p))

min  J*(p)
subject to: Pb < Pbmax
PatPg =P

where: J'(p) = min [ (E(t,p)/QE(r,p) +u/Rut)ds

&(1.p) = A(p)E(r,p) + Bu
rank[B,A(p)B...A(p)" 'B]
eig(A(p) —BK) <0

subject to:

= dim(§(z,p))

The ALC formulation is given by:

P1:
rr}’in o(z1(p),22,v1,w1)
subject to: Pb < Pomax
PatPg < Ps
P2:
Tg] /too&(hzz)’QE..(t,Zz) +u'Ryu di +¢(z1,22,v2,w2)
subject to: E(1,22) = A(2)E(1,22) +Bu

rank[B,A(z2)B...A(z2)" " 'B]
eig(A(z2) —BK) <0,

where z; is the target value for ¢, which is the linking variable
in this example problem, set by P2, and z; is the value of c;
achieved by P1. The H-function for this problem becomes:

H = pi (biu—an& +ank)+ p2 (bau+axn&i +andy)
R, u> P
o+ qz—l T+ %&%4—&(11 —n)+wi (a1 —2)". (33)
The first two terms of Eqn. (33) are ‘“costate” terms (see
Eqn. (14)). The remaining terms constitute L, the instantaneous
cost, in Eqn. (14). The first order optimality conditions for this
problem are:

= dim(§(1,22))

+

Hy = aupr—anpi+aqi& (34
He, = appr—anpr+q:& (35)
H, = bu—an& +and (36)
Hy,, = bu+an& —and (37
H, = w5(2z—-2z)-n. (38)

Eqns. (34) — (38) are a system of DAEs that need to be
solved simultaneously. This system was solved numerically in
MATLAB™with the following circuit parameters:

R=20MQ, Ro=10MQ, R =50MQ
Ry =30MQ, R3=4MQ, c,=1uF
q1 =10, g =1, pg=0.20mm, Pppe=0.5m

After eleven ALC outer loop iterations, with a convergence tol-
erance 1 x 10~* on the Euclidian norm of the consistency con-
straint 71 —z» = 0, ALC converged, where z] = 0.1303 uF and
75 = 0.1304 uF. The corresponding time histories of Vi and V>
are plotted in Fig. 6, where the initial conditions are V;(0) = 15
and V,(0) = —2.5. Both states converge quickly to the setpoint.

5 Conclusion

The design of physical systems and their controllers is a set
of coupled tasks. The sequential design process utilized in cur-
rent industry practice does not account fully for plant and con-
troller coupling; it can result in suboptimal designs, and may
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Figure 6: Optimal response of V| and V, using ¢; = 0.1304 uF.

even fail to produce feasible system designs for particularly chal-
lenging system design problems. System design methods that
account for plant and controller coupling have been developed,
including the nested approach that utilizes existing optimal con-
trol techniques, and has been proven to produce system optimal
solutions. The nested approach, however, has limitations. In
this article we introduced a new approach to co-design; the con-
trol design problem was integrated with plant design using aug-
mented Lagrangian coordination, a decomposition-based design
optimization approach. A control subproblem was defined that
incorporates linking variables and the associated penalty func-
tions to help manage interactions between control design deci-
sions and the rest of the system design.

The first order conditions for the control design subproblem
P2 were derived using PMP. This direct solution to the ALC con-
trol subproblem not only obtains optimal control inputs and state
trajectories, but optimal linking variable values, which are time-
invariant. The solution presented here is limited to co-design
problems with uni-directional coupling, and no shared design
variables. Generalizing this approach to problems with feedback
coupling and shared design variables is a topic for future work.
The ALC co-design method presented here was demonstrated us-
ing a circuit design problem.

This approach to system design is valuable because it al-
lows domain experts to continue advancing specialized analy-
sis and design techniques, but within a framework that provides
formal management of system interactions. In current practice
these interactions typically are managed only informally. Adopt-
ing a more holistic system design approach can enable designers
to improve system performance because of the mechanisms in
place to account for interactions, while providing freedom to fo-

cus deeply on domain expertise.
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