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Coordination Decisions in
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Optimization
The solution of complex system design problems using decomposition-based optimization
methods requires determination of appropriate problem partitioning and coordination
strategies. Previous optimal partitioning techniques have not addressed the coordination
issue explicitly. This article presents a formal approach to simultaneous partitioning and
coordination strategy decisions that can provide insights on whether a decomposition-
based method will be effective for a given problem. Pareto-optimal solutions are gener-
ated to quantify tradeoffs between the sizes of subproblems and coordination problems as
measures of the computational costs resulting from different partitioning and coordina-
tion strategies. Promising preliminary results with small test problems are presented. The
approach is illustrated on an electric water pump design problem.
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Introduction
Numerous methods have been developed to solve complex sys-

em design problems partitioned into smaller subproblems. This
ecomposition-based approach can ease several difficulties en-
ountered in system design, such as computational expense and
anagement of complex interactions between system elements.
olving a problem in this way requires system designers to decide
ow to partition the system into subproblems and how to coordi-
ate solution of subproblems toward a consistent optimal system
esign. Partitioning decisions have been studied analytically,
hile only qualitative guidance exists in the literature for select-

ng an appropriate coordination method from a set of viable alter-
atives. The interaction between partitioning and coordination
P /C� decisions has not been studied systematically, but one ex-
ects that partitioning decisions will influence coordination deci-
ions and vice versa. In this article a partitioning and coordination
ecision-making model is formulated as an optimization problem
nd solved for test problems. Initial results indicate that account-
ng for the interaction between partitioning and coordination can
ead to better decomposition-based optimization strategies.

1.1 Decomposition-Based System Design. The system de-
ign problems considered here involve multidisciplinary coupled
nalyses �e.g., a set of coupled computer-aided engineering simu-
ations� where input/output properties are assumed to be known
recisely. The vector of quantities computed by the jth analysis
unction and required as input to the ith analysis function is
ermed as the analysis coupling variable yij. The vector of all
oupling variable input to analysis i from any other analysis in the
ystem is yi, and all design variables required as input to analysis
form the vector xi. In this manner, we define the ith analysis

unction as ai�xi ,yi�. Analysis functions can be objective, con-
traint, or intermediate functions in the system design optimiza-
ion problem. Design variables that are inputs to ai�xi ,yi� only are
ocal variables x�i; design variables that are inputs to ai�xi ,yi� and
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at least one other function are shared variables xsi. Shared and
local variables together form xi= �x�i ,xsi� �vectors are assumed to
be row vectors�. The collections of all design variables, coupling
variables, and analysis functions are x, y, and a�x ,y�, respec-
tively. Shared and coupling variables for ai�xi ,yi� comprise its set
of linking variables zi.

A system is consistent if the values of all copies of a shared
variable agree for all shared variables, and if the value of every
coupling variable is equal to its corresponding analysis output.
More precisely, shared variable consistency is achieved if

xq
�k� = xq

�l�, ∀ k � l, k,l � Ds�xq� �1�

is satisfied for all shared variables, where xq is a component of x
that is shared among the analysis functions ai�xi ,yi�∀ i�Ds�xq�,
with Ds�xq� being the set of indices of analysis functions that
depend on the shared variable xq; superscripts indicate the analy-
sis function where the shared variable copy is input. Coupling
variable consistency is achieved, if for every coupling variable

yij − Sija j�x j,y j� = 0 �2�

is satisfied, where the Boolean matrix Sij selects the components
of a j that correspond to yij. The set of all such equality constraints
is y−Sa�x ,y�=0, where S is a selection matrix that extracts the
components of a�x ,y� that correspond to y. These coupling vari-
able consistency constraints are referred to as the system analysis
equations. Equations �1� and �2� together form the system consis-
tency constraints.

The optimal system design problem is formulated as

min
x

f�x,yp�x��

subject to g�x,yp�x�� � 0 �3�

h�x,yp�x�� = 0

where yp�x� is a solution to the system analysis equations for a
given design, and the objective and constraint function values are
outputs of a subset of analysis functions. This formulation is
known as multidisciplinary feasible �MDF� �1� or all-in-one �AiO�
and implicitly achieves shared variable consistency. For every op-

timization iterate x the system analysis equations must be solved

AUGUST 2009, Vol. 131 / 081008-109 by ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



f

a
s
g
i
t
i
a
d
�
s
S
u
s
r

p
l
p
s
S
n
s
p
w
s
c
l
e
t
e
f
p
p
p
c
e
s
i
t
o
�
�
C
�
m
p
o
s
�
A
p
w
i
l
c
o

d
m
c
m
T
f
c
i
c

0

Downloa
or yp�x�.
If no feedback loops exist among analysis functions, the system

nalysis equations can be satisfied simply by executing the analy-
is functions in the proper sequence; analysis function outputs
ive the coupling variable values directly. An iterative algorithm
s required for system analysis if feedback loops exist. Alterna-
ively, the optimization algorithm can solve for yp�x� using equal-
ty constraints to enforce coupling variable consistency. This en-
bles coarse-grained parallel processing and can ease numerical
ifficulties associated with strongly coupled analysis functions
2�. The individual disciplinary feasible �IDF� formulation is the
implest way to use this approach �1�. Balling and
obieszczanski-Sobieski �3� suggested a hybrid approach that
ses function sequencing to satisfy feedforward coupling relation-
hips and equality constraints to satisfy feedback coupling
elationships.

Decomposition-based design optimization formulations are ap-
lied to systems that have been partitioned into smaller subprob-
ems. A separate optimization problem is defined for each sub-
roblem; a coordination algorithm guides the repeated solution of
ubproblems toward a state of system consistency and optimality.
ystem partitioning results in links between subproblems; the
umber and nature of these links can be a dominant factor in the
olution process. In many cases the subproblems may be solved in
arallel; henceforth we assume serial computation. Additional
ork investigates partitioning and coordination decisions for a

pecific parallel system optimization formulation �4�. Equality
onstraints or penalty functions may be employed within subprob-
em optimization formulations to help satisfy system analysis
quations. The set of design variables that are inputs for the func-
ions in subproblem i and at least one other subproblem are the
xternal shared variables xsi. Coupling variables passed from
unctions in subproblem j to subproblem i are the external cou-
ling variables yij. External shared and coupling variables for sub-
roblem i comprise its set of external linking variables zi. Inde-
endent subproblem solution requires local copies of both external
oupling and shared variables. The coordination algorithm must
nsure all copies match at convergence, satisfying the system con-
istency constraints. Some examples of coordination algorithms
nclude optimization algorithms �e.g., quasiseparable decomposi-
ion approach of Haftka and Watson �5�, concurrent subsystem
ptimization �CSSO� �6�, and collaborative optimization �CO�
7��, fixed point iteration �e.g., analytical target cascading �ATC�
8��, Newton’s method �e.g., ATC �9��, and penalty methods �e.g.,
SSO �10�, ATC, and augmented Lagrangian coordination �ALC�

11��. Note that Rodriguez et al. �10� introduced the use of aug-
ented Lagrangian penalty relaxation with the method of multi-

liers as a coordination method for decomposition-based design
ptimization; this first approach was based on CSSO with re-
ponse surface approximations for subproblems. Tosserams et al.
11� later introduced an augmented Lagrangian formulation for
TC �12� and then ALC. Decomposition-based methods are ap-
ropriate when systems are large and sparsely connected �13�,
hen the design environment is distributed �14�, or when special-

zed optimization algorithms can be exploited for solving particu-
ar subproblems �15,16�. The techniques introduced in this article
an be used to assess quantitatively whether decomposition-based
ptimization is appropriate for a particular problem.

1.2 Partitioning and Coordination. A method for
ecomposition-based design optimization �i.e., a decomposition
ethod� is defined here to include both a system partition and a

oordination strategy �17�. To apply a decomposition method we
ust first determine a system partition and a coordination strategy.
he partitioning problem �P� is to decide which of m analysis

unctions should be clustered into each of the N subproblems. The
oordination decision problem �C� is to specify a method for sat-
sfying system consistency requirements; this typically involves

onsistency constraint management and a strategy for guiding re-
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peated subproblem solutions toward system optimality and con-
sistency. Decomposition methods in this article are assumed to be
penalty relaxation methods where consistency constraints are only
satisfied at convergence and design constraints are satisfied at ev-
ery subproblem solution. This class includes the ATC and ALC
formulations. The system design problems are assumed to be qua-
siseparable, i.e., subproblems may share design variables but not
design constraints. Proofs exist for ATC �18� and ALC �11,19� that
demonstrate convergence under standard assumptions, such as
convexity, and show that the solution to the decomposed problem
is identical to that of the original design problem. Convergence
and equivalence to AiO for a few other methods, such as those
proposed by Rodriguez et al. �10� and Haftka and Watson �5�,
have been proven under looser conditions, but these methods relax
design constraints and therefore do not fall under the class de-
scribed above. It is important to acknowledge that several alterna-
tive decomposition methods, such as CO, have been shown to
have theoretical and practical problems �20�, highlighting the im-
portance of the methods described above with proven conver-
gence and equivalence properties. The coordination algorithm is
assumed to be a fixed point iteration �FPI�, and therefore decom-
position method convergence is subject to FPI convergence con-
ditions �2� �the a priori verification of which is very difficult in
most practical cases�. Subproblem solution sequence can influence
convergence rate significantly �21� and is a defining property of
the coordination strategy. This article studies partitioning deci-
sions as well as the subproblem sequence aspect of coordination.
Investigation of consistency constraint management is addressed
in Ref. �4�, and alternative coordination algorithms are a topic for
future work.

Analysis function interactions and dependence on design vari-
ables are important factors in partitioning and coordination deci-
sions. Matrix representations can effectively describe relationships
in system design problems. Steward �22� proposed the structural
matrix �SM� for illustrating relationships in systems of equations.
SM rows correspond to equations and columns to variables that
appear in the equations. The SM is useful for making partitioning
decisions but lacks directionality information required for deter-
mining solution sequence. An output set is required to define di-
rectionality. Steward �23� later introduced the design structure ma-
trix �DSM� that describes the inter-relationship between design
elements, rather than equations and variables. These design ele-
ments were originally described as either design tasks or param-
eters, although later DSM approaches typically limit design ele-
ments to either design tasks or parameters but not both. The DSM
is a square adjacency matrix where the elements represented by
rows and columns are identical. The DSM is well suited for de-
scribing information flow direction and has been used extensively
in ordering design tasks to reduce feedback loops �24�. A DSM
could be used to make combined partitioning and sequence deci-
sions if its design elements included both analysis functions and
design variables. Another related matrix representation is the
functional dependence table �FDT� introduced by Wagner �17�.
The FDT is similar to the SM but is intended specifically for
partitioning large equation-based design optimization problems.
Instead of mapping variables to equations, the FDT maps design
and coupling variables to objective and constraint functions. It
lacks directionality information like the SM and cannot be used
for sequencing unless an output set is defined.

Other matrices associated with engineering design, but nor-
mally not used in P /C decisions, include the relation matrix �RM�
and correlation matrix �CM� from quality function deployment
�25�, and the design matrix �DM� from axiomatic design �26�. The
RM maps product engineering characteristics to customer require-
ments, and the CM describes correlations between engineering
characteristics. The DM maps design variables to functional re-
quirements and is intended for evaluating independence of func-

tional requirements when comparing design concepts.
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An example system is used to illustrate the matrix representa-
ion used in this article. Consider the following system of analysis
unctions:

a1�x1,x2,x4�

a2�x6,y21�

a3�x2,x3,x4,y31,y34�

a4�x4,x5,y41�

he analysis functions are interdependent, and x2 and x4 are
hared design variables. A directed graph �digraph� represents sys-
em relationships effectively �Fig. 1�. If a system’s digraph con-
ains a cycle, then feedback coupling exists. Only simulation-
ased design problems are considered here. These have well-
efined input-output relationships; therefore, a digraph is an
ppropriate representation.

This system could be represented with an SM and output set, or
DSM with both analysis functions and design variables. Such a
SM, shown below with the design elements in arbitrary order, is

he transpose of the system digraph’s adjacency matrix:

DSM =

x1 x2 a1 a3 x3 a2 a4 x4 x5 x6

x1 0 0 0 0 0 0 0 0 0 0

x2 0 0 0 0 0 0 0 0 0 0

a1 1 1 0 0 0 0 0 1 0 0

a3 0 1 1 0 1 0 1 1 0 0

x3 0 0 0 0 0 0 0 0 0 0

a2 0 0 1 0 0 0 0 0 0 1

a4 0 0 1 0 0 0 0 1 1 0

x4 0 0 0 0 0 0 0 0 0 0

x5 0 0 0 0 0 0 0 0 0 0

x6 0 0 0 0 0 0 0 0 0 0

esign variables are independent quantities; therefore, rows rep-
esenting them are zero and can be omitted without loss of infor-
ation. Organizing the matrix such that analysis functions appear

efore design variables aid visualization of system structure. In
ddition, ordering functions and variables by index value is con-
enient for calculating metrics used in P /C decisions. This con-
ensed and reordered matrix is termed the reduced adjacency ma-
rix A. The system adjacency matrix is �AT ,0�. The reduced

Fig. 1 Digraph representation of the example system
djacency matrix for the example system is

ournal of Mechanical Design
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A =

a1 a2 a3 a4 x1 x2 x3 x4 x5 x6

a1 0 0 0 0 1 1 0 1 0 0

a2 1 0 0 0 0 0 0 0 0 1

a3 1 0 0 1 0 1 1 1 0 0

a4 1 0 0 0 0 0 0 1 1 0

Subproblem solution difficulty typically increases with the num-
ber of analysis functions, design variables, and linking variables,
although analysis function properties also influence difficulty.
Similarly, coordination problem solution expense normally in-
creases with the number of external consistency constraints �19�.
Fine partitions reduce subproblem difficulty at the expense of
more external consistency constraints, while coarse partitions ease
coordination difficulty at the cost of more difficult subproblems.
As demonstrated in Secs. 2 and 3, A can be used to estimate how
much subproblem and coordination difficulties contribute to the
overall computational expense. As with most matrix representa-
tions, A describes the existence, but not the nature, of functional
relationships. The nature of these interactions influences conver-
gence rate. More sophisticated models involving function sensi-
tivities over the analysis and design space are too computationally
expensive to justify calculation. Initial findings indicate that a
P /C decision method based on A is reasonably efficient, and the
resulting P /C decisions provide an advantage when solving the
system optimization problem.

1.3 Partitioning and Coordination Decision-Making. Sub-
jective techniques for P /C decisions are in common use. System
partitioning often follows physical or disciplinary system bound-
aries �17�, or product, process, or organization divisions �14,15�.
Qualitative guidance for coordination method selection exists in
the literature �2,3,13,27�. Formal P /C decision techniques are im-
portant, as they may identify nonintuitive and potentially advan-
tageous system partitions and coordination strategies �28�. A re-
view of established P /C decision techniques follows; most center
on either partitioning or sequence decisions, a few consider some
aspect of P /C interaction.

Michelena and Papalambros �16� demonstrated the use of spec-
tral and network reliability methods �29� to obtain partitions that
minimize external linking variables and exactly balance subprob-
lem sizes. Krishnamachari and Papalambros �30� used integer pro-
gramming to generate partitions that allow some subproblem size
imbalance. Chen et al. �31� introduced an iterative two-phase ap-
proach where the FDT is first ordered so that coupling relation-
ships are banded along the diagonal, and then independent vari-
able blocks and a systemwide linking variable block is formed.

Steward used the DSM with a “tearing” algorithm to order de-
sign elements so that blocks of closely coupled tasks can be iden-
tified, forming a type of partition. In this approach partitions de-
pend on sequence decisions; partitioning decisions cannot be
made independently, and superior P /C decisions may be over-
looked. Rogers �32� introduced DEMAID, a heuristic DSM-based
software tool for sequencing design tasks, and later DEMAID/GA

�33�, which utilized a genetic algorithm to perform sequencing
tasks. Kroo et al. �34� suggested that, after sequencing was used to
minimize feedback loops, consistency constraints could be used to
break any remaining feedback loops. Meier et al. �35� reviewed
DSM-based sequencing approaches and compared their objective
functions, which primarily involved some combination of mini-
mizing feedback, improving concurrency and modularity, or re-
ducing computational expense.

A few approaches have accounted for some aspect of P /C in-
teraction. Kusiak and Wang �28� demonstrated a method that first
partitions a system based on its FDT, and then identifies an effi-
cient subproblem sequence using a precedence matrix. This is
similar to Steward’s SM approach, except that Steward first deter-
mined a sequence and then identified a partition. Meier et al. �35�

also described how partitions can be identified after a sequence is
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efined. A sequential P /C decision process, however, cannot ac-
ount for all P /C decision interactions. It will be shown that se-
uential or independent approaches can fail to identify Pareto-
ptimal P /C options, while a simultaneous approach does not.
ltus et al. �36� developed a genetic algorithm that simultaneously
etermined function sequence as well as “breaks” between func-
ions that form a partition. Only a single result was presented with
prescribed number of subproblems, P /C decision tradeoffs were
ot studied, and subproblem order was not defined since parallel
ubproblem solution was assumed.

Recall that coordination decisions involve both subproblem se-
uence and consistency constraint management. Different decom-
osition methods provide varying levels of flexibility in how con-
istency constraints may be allocated in a decomposition method:
O prescribes allocation completely; ATC allows consistency
onstraints for linking variables between subproblems to be as-
igned to any subproblem that is a common ancestor; and ALC
ffers complete flexibility in consistency constraint allocation, an
ttractive feature for studying the effect of consistency constraint
llocation decisions. A coordination decision model that includes
onsistency constraint allocation requires assumption of a particu-
ar formulation. This article examines only generic coordination
ormulations and does not account for consistency constraint allo-
ation. A more sophisticated model for ALC formulations that
ncludes both sequencing and constraint allocation is presented in
ef. �4�.
The P /C decision model introduced here assumes IDF-type

ubproblem formulations and a fixed-point iteration coordination
lgorithm; the model aids study of interactions between partition-
ng and subproblem solution sequence decisions. P /C decisions
re based on metrics computed using the system reduced adja-
ency matrix. P /C decision results are optimal with respect to the
/C decision model.
Sections 2 and 3 formalize the P /C decision problem, provide

ome solution techniques, and show the advantages of a simulta-
eous P /C decision approach. Optimal design of an electric water
ump demonstrates the ideas on a physically meaningful design
roblem.

Partitioning and Coordination Decision Model
Partitioning and coordination decisions should minimize the

omplexity of the resulting system optimization problem. Com-
lexity is approximated here by the coordination problem size
CS� and the maximum subproblem size �SSmax�. These sizes are
omputed from specific partitioning and coordination information
nd are conflicting objectives to be minimized simultaneously.
he tradeoff between CS and SSmax is inherent to decomposition
ethods and represents P /C-optimum solutions. Formulas for

omputing CS and SSmax are presented next, followed by a de-
cription of optimization strategies for minimizing these quanti-
ies.

2.1 P ÕC Problem Formulation. The coordination problem
nd subproblem size metrics were derived based on a distributed
ptimization formulation, such as ATC or ALC, where consistency
s managed using a penalty relaxation method and the subprob-
ems are coordinated using fixed-point iteration. The coordination
roblem size CS is defined as the total number of consistency
onstraints for external shared variables and feedback coupling
ariables, to be solved by the following coordination algorithm:

CS = nx̄sm
+ nȳf �4�

he number of external shared variable consistency constraints is
pproximately nx̄sm

, a metric based on the number of external
hared variables. The number of feedback coupling variable con-
istency constraints in the coordination problem is equal to the
umber of feedback external coupling variables nȳf. It can be
hown that the minimum number of consistency constraints re-

uired for the ith external shared variable is nPi−1, where nPi is

81008-4 / Vol. 131, AUGUST 2009
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the number of subproblems that share the ith external shared vari-
able. Therefore, the sum of nPi−1 over all nx̄s

external shared
variables is a reasonable approximation for the number of external
shared variable consistency constraints: nx̄sm

=�i=1
nx̄s �nPi−1�. The

reason nȳf is used instead of the total number of external coupling
variables nȳ is to penalize feedback, which slows coordination
convergence �37�. CS does not model how coordination problem
size depends on consistency constraints allocation, and is there-
fore an approximation.

The size of subproblem i, SSi, is defined as the number of
associated decision variables, consistency constraints, and analy-
sis functions. Since IDF-type subproblem formulations are as-
sumed, no constraints are needed for internal shared variables, and
one constraint is required for each internal coupling variable.

SSi = �nx̄si
+ nx�i + nyi + nȳfi� + �nx̄si

+ nyi + nȳfi� + �nai� �5�

The number of external shared variables associated with subprob-
lem i is nx̄si

, the number of local variables is nx�i, the number of
internal coupling variables is nyi, the number of coupling variables
input from subproblems executed after subproblem i is nȳfi, and
the number of analysis functions is nai. SSmax is the maximum of
all SSi values.

2.2 P ÕC Problem Solution. Four strategies can be used to
solve the P /C decision problem. In the first strategy, labeled
�P ,C�, the P and C problems are solved independently. In the
second strategy, labeled �P→C�, the partitioning problem is
solved first, and the resulting partition is used in solving the co-
ordination decision problem. The third strategy, labeled �C→P�,
solves the partitioning problem using a coordination method defi-
nition obtained by first solving the coordination decision problem.
The fourth strategy, labeled �P �C�, minimizes CS and SSmax si-
multaneously, solving the actual Pareto-optimization problem.
The examples will show that the first three strategies cannot cap-
ture the CS−SSmax tradeoff information or always identify Pareto-
optimal solutions, providing evidence that interactions between
partitioning and coordination decisions indeed exist and are
important.

In the optimal P /C model a restricted growth string �RGS� �38�
p of length m is used to specify the partition by prescribing which
analysis function belongs to each subproblem. The value of pi is
the subproblem that analysis function i belongs to. Redundant
representations of partitions are avoided since as an RGS, p must
satisfy the following:

p1 = 1 ∧ pi � max�p1,p2, . . . ,pi−1� + 1 �6�
Coordination decisions here are restricted to subproblem sequenc-
ing, defined by the vector os, where the value of osi is the evalu-
ation position of subproblem i, and osi�osj ∀ i , j� �1,2 , . . . ,N�.
In the �P ,C� and �C→P� strategy coordination decisions are
made without partitioning information so it is impossible to
specify a subproblem sequence and the analysis function sequence
o is used instead.

Two independent problems are solved in the �P ,C� strategy,
and the corresponding formulations are shown in Fig. 2. The in-
dependent partitioning problem seeks to find p that minimizes a
surrogate for CS, subject to a maximum imbalance constraint
�Ballow� and a specified number of subproblems �Nallow�. B is the

Fig. 2 Independent „P ,C… optimization approach
maximum subproblem size difference incurred by p, where SSi
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2nȳfi is used instead of SSi for subproblem size since nȳfi de-
ends on os, which is unavailable. The value used here for Ballow
s proportional to system size: Ballow= �0.2�m+n��. The surrogate
sed for CS that does not depend on os is nx̄sm

+nȳ. Forms of the
ndependent partitioning problem were solved previously
16,28–31,36,39,40�. The independent coordination decision
roblem seeks to find o that minimizes the number of feedback
oupling variables nyf. Since p is unavailable, CS and SSmax again
annot be used. Versions of the independent coordination problem
ere also solved previously �23,32,33,35�.
The �P→C� strategy �28� first solves the independent partition-

ng problem and then passes the result p� as a fixed parameter to
he coordination decision problem �Fig. 3�. Since a partition is
efined the subproblem sequence can be used as the decision vec-
or, and both CS and SSmax can be used in the formulation.

The �C→P� strategy begins with solving the independent co-
rdination decision problem for the analysis function sequence o
Fig. 4�. Calculation of CS and SSmax in the second stage requires
efinition of a subproblem sequence. A heuristic is used here to
ap o to os: Subproblems are ranked in ascending order according

o the lowest value of oi in each subproblem to define the sub-
roblem sequence.

The �P �C� strategy seeks optimal values for p and os simulta-
eously �Fig. 5�. Pareto-optimal solutions are obtained by varying
Sallow as a parameter.

2.3 Examples. The four strategies were applied to two ran-
omly generated reduced adjacency matrices to demonstrate the
radeoff between CS and SSmax and the interaction between parti-
ioning and coordination decisions. The optimal P /C decision
roblems were all solved using exhaustive enumeration, and the
ppropriate constraints were varied in an effort to generate Pareto
ets.

The first example has five analysis functions and seven design
ariables; its reduced adjacency matrix is

A1 = 	
0 1 1 1 0 1 0 1 1 1 0 1

0 0 1 1 1 0 1 1 0 1 1 1

1 0 0 1 1 1 1 1 1 1 1 1

1 1 1 0 0 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1 1 0 0 1



igure 6 depicts the histogram of all possible CS and SSmax values
or an exhaustive enumeration of all possible p and os combina-
ions. The CS distribution is biased toward larger values, while the

Fig. 3 P\C sequential optimization

Fig. 4 C\P sequential optimization
Fig. 5 Simultaneous „P ¸C… optimization
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SSmax is biased toward smaller values. This is expected since the
number of possible sequences and partitions increase with N, and
CS decreases with N while SSmax increases with N. Figure 7 plots
all P /C instances for A1 in the CS /SSmax space. In other words,
every point represents a different system partition and coordina-
tion strategy option. In many cases several p and os combinations
result in the same CS /SSmax values.

The minimum CS value of zero occurs when N=1, which cor-
responds to a pure IDF formulation for the system design problem
�with a problem size of 42�. In general, decomposition methods
make sense if subproblem size can be reduced from the IDF size
through partitioning without requiring a large coordination prob-
lem. This is most likely to occur when A is sparse. Complex
products tend to have sparse adjacency matrices �15�. A minimum
SSmax value normally occurs when each analysis function is as-
signed to its own subproblem but is associated with a large coor-
dination problem.

Figure 7 also shows solutions obtained by the four different
strategies. As expected, �P �C� finds all 12 Pareto points; �P ,C�,
�P→C�, and �C→P� identify 2, 4, and 7 Pareto points, respec-
tively. These latter strategies performed well for this small ex-
ample in that they identified several Pareto-optimal points. A para-
metric study on Ballow values revealed that increasing allowed
imbalance for the �P ,C� and �P→C� approaches initially im-
proves the number of Pareto points identified, but increasing Ballow

Fig. 6 CS and SSmax histograms for A1
Fig. 7 Optimization results for A1
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uch beyond �0.2�m+n�� does not continue to improve results. In
ll cases nonsimultaneous approaches identified only a fraction of
he Pareto set. In the next slightly larger example the performance
iscrepancy between simultaneous and nonsimultaneous ap-
roaches is more significant. The second example has six analysis
unctions and ten design variables.

A2 = 	
0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1

1 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0

1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0

1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0

1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0

1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1



he biases in the CS and SSmax distributions are now clearer in the
istogram of P /C instances for A2 �Fig. 8�. These distributions
an influence the performance of algorithms other than exhaustive
numeration �such as genetic algorithms �41�� for solving the op-
imal P /C problem �35�.

Figure 9 shows CS and SSmax values for all P /C instances for
2. P �C located all nine Pareto points. No solutions to the non-

imultaneous approaches are Pareto-optimal except for the trivial
ase of N=1. This result is significant because if any nonsimulta-
eous approach is used to make P /C decisions for this system,

Fig. 8 CS and SSmax histograms for A2
Fig. 9 Optimization results for A2
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both subproblem and coordination problem sizes could be reduced
further. This suboptimality is expected to be more pronounced as
system size and complexity increases.

CS−SSmax tradeoff information can be used to assess system
suitability for solution via a decomposition method since it illus-
trates the sensitivity of best-case solution expense to increases in
partition refinement. If increasing N causes CS to rise sharply
without appreciable SSmax reduction, AiO or IDF may be prefer-
able. Thus, the second example is a good candidate for
decomposition-based design optimization.

An interesting phenomenon is evident in Fig. 9: There exists an
instance where SSmax=64, which is greater than 62, the size of a
single large subproblem. The corresponding partition cuts across a
very large number of linking variables, and the subproblem order
maximizes feedback. It is conceivable that some systems could
exhibit this behavior for most or all P /C options, making them
exceptionally poor candidates for a decomposition-based ap-
proach.

3 Water Pump Electrification Example
A newly developed electric water pump design problem illus-

trates P /C decision results for a physically meaningful system. A
centrifugal water pump is used for an automotive cooling system
driven by a permanent magnet dc electric motor. Traditional au-
tomotive water pumps are belt driven by the engine, and pump
speed is proportional to engine speed. Such a pump must produce
adequate flow and pressure even at low engine speeds. Since a
pump cannot be simultaneously efficient at high and low rota-
tional speeds, it operates at off-design flow conditions during
much of its duty cycle and requires more input power than a pump
driven by a constant-speed source, such as an electric motor. A
motor-driven pump also has the advantage of being operated only
when needed, further reducing power consumption. Electrification
of belt-driven automotive components can improve fuel economy
�42–44�. Surampudi et al. �45� tested a speed-controlled electric
water pump on a class-8 tractor and measured an 80% reduction
in energy consumption.

Section 3.1 describes an analysis model for an automotive elec-
tric water pump, its associated design problem, and Sec. 3.2 pre-
sents P /C decision results for this application.

3.1 Analysis and Design of an Electric Water Pump. The
model involves five analysis functions that compute performance
metrics based on ten design variable values. Four analysis func-
tion outputs are coupling variables described in Table 1. Design

Table 1 Functions and variables for the electric water pump
problem

Analysis functions

T=a1�I ,� ,d ,d2 ,d3 ,L ,�c� Motor winding temperature �K�
I=a2�� ,T ,d ,d2 ,d3 ,L� Motor current �A�
�=a3�I ,T ,d ,d2 ,d3 ,L ,�c� Motor speed �rad/s�
�=a4�� ,D2 ,b ,�1 ,�2 ,�3� Pump drive torque �N m�
P=a5�� ,D2 ,b ,�1 ,�2 ,�3� Pressure differential �kPa�

Design variables
x1=d Motor wire diameter �m�
x2=d2 Inner motor armature diameter �m�
x3=d3 Outer motor armature diameter �m�
x4=L Motor armature length �m�
x5=�c Motor commutator length �m�
x6=D2 Pump impeller diameter �m�
x7=b Pump impeller blade width �m�
x8=�1 Pump blade angle at inlet �rad�
x9=�2 Pump blade angle at outlet �rad�
x10=�3 Pump diffuser inlet angle �rad�
variables x1−x5 define motor geometry, and x6−x10 define pump
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eometry; T is computed using a thermal resistance model similar
o that found in Ref. �46� adapted for permanent magnet dc mo-
ors; I and � are computed based on fundamental dc motor equa-
ions �47,48� adapted to the specific geometry of this motor. The
ump drive torque and pressure differential are computed for a
rescribed flow rate Q using fluid mechanics equations for cen-
rifugal pumps �49�. Model details are presented in Ref. �50�. The
ump design problem is not globally convex, and it is not known
hether it satisfies convergence and equivalence requirements for
LC. This article focuses on coupled partitioning and coordina-

ion decisions, not equivalence of decomposed problems with
iO. Convergence and equivalence analysis is left for future
ork.
Several analysis interactions exist in this model. For example,

he temperature is computed based on the motor current and
peed, but the temperature affects the electrical resistance and
urrent, and the current influences the motor speed. All model
nteractions are captured in the following reduced adjacency ma-
rix:

A3 =

T I � � d d2 d3 L �c D2 b �1 �2 �3

T 0 1 1 0 1 1 1 1 1 0 0 0 0 0

I 1 0 0 1 1 1 1 1 0 0 0 0 0 0

� 1 1 0 0 1 1 1 1 1 0 0 0 0 0

� 0 0 1 0 0 0 0 0 0 1 1 1 1 1

ince P and � are computed during the same analysis procedure
nd depend on identical quantities, P has been omitted from A3
or simplicity. The design objective is to minimize electrical
ower consumption �Pe�, and the optimization formulation is as
ollows:

min
x

Pe = VI

subject to P � Pmin = 100 kPa

T � Tmax = 428 K �7�

L + �c � 0.2 m

Q = 1.55 · 10−3 m3/s

he source voltage V is 14.4 V. The pressure differential and flow
onstraints ensure the engine is adequately cooled. The flow con-
traint is satisfied implicitly during the torque and pressure analy-
is. The temperature constraint ensures the motor wire insulation
s not damaged, and the constraint on L and �c is required for
ackaging.

The analysis functions are very strongly coupled, and so the
rst- and second-order algorithms failed in most cases to find a
onsistent system analysis solution. The design problem was suc-
essfully solved using mesh adaptive direct search �51� and the
DF formulation. One possible alternative solution algorithm is
IRECT �52,53�. The minimal power consumption is 140 W, a
ubstantial improvement over traditional water pumps of similar
apacity, which consume nearly 300 W continuously �43�.

3.2 P ÕC Decision Results. The P /C decision problem was
olved using all four optimization strategies. As can be seen in
ig. 10, �P �C� and �P→C� identified all four Pareto points, while
P ,C� and �C→P� were only able to identify one Pareto point
the trivial solution with N=1�.

Of particular interest is the initial low sensitivity of CS to in-
reased N. SSmax can be reduced from 28 to 19 with a CS of 1,
aking this system an excellent candidate for decomposition-

ased design optimization. Only the �P �C� and �P→C� strategies
an reveal this low sensitivity.

The matrix A3 represents a physical system, so P /C decisions

ade based on engineering intuition can be compared with opti-

ournal of Mechanical Design

ded 02 Aug 2009 to 141.212.126.163. Redistribution subject to ASM
mal P /C modeling results. Dividing the system into motor and
pump-related functions corresponds to the partition p
= �1,1 ,1 ,2�. If the motor subproblem is solved first, then CS=1
and SSmax=20, a good but suboptimal solution. Using a model-
derived partition p= �1,2 ,3 ,4� as a starting point to solve coordi-
nation problem defined in Fig. 3 for the optimal sequence, the
solution os

�= �4,3 ,2 ,1� yields CS=12 and SSmax=13, which is a
Pareto point. In this simple example, intuitive and semi-intuitive
approaches are rather effective but cannot quantify the tradeoff
between CS and SSmax. Much larger systems are likely to realize
greater benefits from the �P �C� strategy but algorithms more so-
phisticated than exhaustive enumeration will be required in such
implementations �41�.

4 Conclusion
We introduced a formal approach for simultaneous partitioning

and coordination decision-making to investigate the suitability of
a system for decomposition-based design optimization. The ap-
proach quantifies P−C tradeoffs by computing Pareto optima for
minimum subproblem size and coordination problem size. The
problem-size metrics proposed here captured P /C interactions in
the examples successfully. Other metrics can be used instead if
desired. Simultaneous P /C decision-making can lead to superior
decomposition solutions. Comparison to nonsimultaneous strate-
gies confirmed the existence of P /C decision interaction and dem-
onstrated the value of a simultaneous approach. Exhaustive enu-
meration was used to generate results for small examples, and a
simplified coordination decision model incorporated only sub-
problem sequencing. An improved coordination decision model
that accounts for consistency constraint allocation is the next step
in this research. Exhaustive enumeration must be replaced by
more efficient algorithms that can generate the Pareto-optimal so-
lutions for larger systems, a topic currently under investigation.
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