
Proceedings of the ASME 2008 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference

IDETC/CIE 2008
August 3-6, 2008, Brooklyn, New York, USA

DETC2008-49823

CONSISTENCY CONSTRAINT ALLOCATION IN AUGMENTED LAGRANGIAN
COORDINATION

James T. Allison and Panos Y. Papalambros
Optimal Design Laboratory

Department of Mechanical Engineering
University of Michigan, Ann Arbor, Michigan 48109

Email: {optimize,pyp}@umich.edu

ABSTRACT
Many engineering systems are too complex to design as a

single entity. Decomposition-based design optimization meth-
ods partition a system design problem into subproblems, and co-
ordinate subproblem solutions toward an optimal system design.
Recent work has addressed formal methods for determining an
ideal system partition and coordination strategy, but coordina-
tion decisions have been limited to subproblem sequencing. An
additional element in a coordination strategy is the linking struc-
ture of the partitioned problem, i.e., the allocation of constraints
that guarantee that the linking variables among subproblems are
consistent. There can be many alternative linking structures for a
decomposition-based strategy which can be selected for a given
partition, and this selection should be part of an optimal simulta-
neous partitioning and coordination scheme. This paper develops
a linking structure theory for a particular class of decomposition-
based optimization algorithms, Augmented Lagrangian Coordi-
nation (ALC). A new formulation and coordination technique for
parallel ALC implementations is introduced along with a specific
linking structure theory, yielding a partitioning and coordination
selection method for ALC that includes consistency constraint
allocation. This method is demonstrated using an electric water
pump design problem.

1 Introduction
Many engineering systems are too complex to design as a

single entity, but can be divided into smaller and more manage-

able subproblems. Numerous methods have been developed that
involve formulating each subproblem as an optimization prob-
lem. A coordination strategy is then used to guide repeated sub-
problem solutions toward a consistent and optimal system de-
sign. This approach is known as decomposition-based design
optimization, and requires a mathematical model of the system.
These models are represented here using a set of m interrelated
analysis functions, illustrated in Fig. 1.

y21

y12

yj1

y1j

. . .

. . .

. . .

f,g,h. . .

a1(x1,y1) a2(x2,y2) am(xm,ym)

j = 3, 4, . . . ,m

ymj

yjm

xm = [x!m,xsm]x2 = [x!2,xs2]x1 = [x!1,xs1]

Figure 1. Input and output relationships for a system of analysis func-
tions

Each analysis function may be an objective, constraint, or
intermediate function. We assume here that the input and output

1 Copyright c© 2008 by ASME

requirements of these functions are known precisely; this is the
case when the analysis functions correspond to computer simu-
lations. The i-th analysis function ai(xi,yi) depends on xi, which
is a subset of the system design variable vector x, and on yi,
which is composed of the components of the system coupling
variable vector y that are input to ai. Coupling variables are anal-
ysis function outputs that are required as inputs to other analysis
functions; yi j is the vector of quantities passed from a j to ai. De-
sign variables input to ai only are the local design variables x!i,
and design variables input to ai and at least one other analysis
function are the shared design variables xsi. The set of all shared
design variables is xs. Coupling variables and shared design vari-
ables together comprise a system’s set of linking variables: z.

Application of decomposition-based design optimization to
solve a system design problem requires a priori definition of a
system partition and coordination strategy. A restricted growth
string (RGS) [1], p of length m, can be used to specify a parti-
tion; the value of pi is the subproblem that analysis function i be-
longs to. Available coordination strategy options depend on the
type of system optimization formulation used. Collaborative op-
timization (CO) uses a master optimization problem to drive sub-
problems toward system optimality and consistency [2], while
formulations such as Analytical Target Cascading (ATC) [3] and
Augmented Lagrangian Coordination (ALC) [4, 5] use penalty
relaxation methods in tandem with algorithms for solving sys-
tems of equations. In the latter class of formulations, subprob-
lem solution sequence in the coordination algorithm influences
computational expense. Allison et al. showed that partitioning
and subproblem sequence decisions are coupled, and proposed a
combined partitioning and coordination decision method for re-
ducing problem complexity and computational expense [6]. Co-
ordination decisions in this method were limited to subproblem
sequence. This article describes another component of coordina-
tion decisions, consistency constraint allocation, and shows how
to incorporate it into a combined partitioning and coordination
decision method for ALC.

2 Augmented Lagrangian Coordination
When a system is partitioned, some design variables may

be shared across subproblems, and some coupling variable re-
lationships may cross subproblem boundaries. These variables
are termed external linking variables. ALC requires that sub-
problems are solved independently of each other. This is accom-
plished by using separate copies of external linking variables in
each subproblem. The ALC coordination algorithm must ensure
that these copies match at convergence to guarantee system con-
sistency.

The copies of design variables shared between subproblems
i and j, local to subproblem i, are x̄i j

s . The coupling variables
passed from subproblem j to i are ȳi j, and the corresponding
analysis functions are āi j(x̄ j, ŷ j, ȳ j), where ȳ j are the external

coupling variables input to subproblem j, and x̄ j are the design
variables for subproblem j. Coupling variables that link analy-
sis functions within subproblem j are the internal coupling vari-
ables ŷ j. The external linking variables between subproblems i
and j are z̄i j = [x̄i j

s , ȳi j]. ALC uses consistency constraints on
external linking variables in the subproblem formulations to en-
sure consistency between subproblems. The external consistency
constraints between subproblems i and j are:

c̄i j(x̄i, x̄ j, ŷi, ŷ j, ȳi, ȳ j) = (1)
[
ȳi j − āi j(x̄ j, ŷ j, ȳ j), ȳ ji− ā ji(x̄i, ŷi, ȳi), x̄i j

s − x̄ ji
s
]

Note that the components of x̄i j
s are part of the vector x̄i, and ȳi j

is part of the vector ȳi.
Equation (1) specifies a very large number of consistency

constraints; only a subset is actually required to ensure consis-
tency. The number of possible ways to choose (i.e., allocate)
consistency constraints is very large, and is a task beyond intu-
ition for all but the smallest system design problems. Allocation
guidelines have been proposed for constructing bi-level or hi-
erarchical consistency constraint structures for ALC implemen-
tations [4, 5]. These recommendations are helpful, but do not
capitalize on the potential benefit realized through tailoring ALC
structure to a specific system. This article introduces an auto-
mated technique for ALC consistency constraint allocation.

After consistency constraints are selected, an augmented La-
grangian penalty function is used to relax them:

φi j(c̄i j) = vi j c̄T
i j +‖wi j ◦ c̄i j‖2

2 (2)

where vi j and wi j are vectors of penalty weights on the linear
and quadratic terms, respectively, and ◦ indicates the Hadamard
product (i.e., element-by-element multiplication).

Internal coupling variable consistency is fulfilled using aux-
iliary equality constraints in subproblem formulations. The anal-
ysis functions that correspond to ŷi are âi(x̄i, ŷi, ȳi). The internal
consistency constraints for subproblem i are:

ci(x̄i, ŷi, ȳi) = ŷi− âi(x̄i, ŷi, ȳi) = 0 (3)

The set of indices for subproblems with external linking
variables common to subproblem i is Ni. The design inequality
and equality constraints computed by analysis functions in sub-
problem i are gi and hi, respectively. The set of decision variables
for subproblem i includes x̄i, ŷi, and ȳi. The ALC formulation of
the optimization problem for subproblem i is:

min
x̄i,ŷi,ȳi

fi(x̄i, ŷi, ȳi)+ ∑
j∈Ni| j>i

φi j(c̄i j(x̄i, ȳi j, ŷi))

+ ∑
j∈Ni| j<i

φ ji(c̄ ji(x̄i, ȳi j, ŷi)) (4)

subject to gi(x̄i, ŷi, ȳi)≤ 0
hi(x̄i, ŷi, ȳi) = 0,

ci(x̄i, ŷi, ȳi) = ŷi− â(x̄i, ŷi, ȳi) = 0

2 Copyright c© 2008 by ASME

A parallel coordination strategy for ALC is described in the
following section. The formulation in Eq. (4) makes a distinc-
tion between shared and coupling variables, in contrast to the
original ALC formulations [4, 5]. This formulation applies only
to quasiseparable problems, which are problems that have link-
ing variables but not linking functions. Simulation-based design
problems frequently are quasiseparable. Recent ALC formula-
tions apply also to problems with linking functions.

3 Parallel ALC
This section introduces a new parallel coordination approach

for ALC where the number of subproblems exceeds the number
of processors. An example system with six analysis functions is
used to illustrate concepts:

a1(x1,y15), a2(x1), a3(x6,y32),
a4(x1,x2), a5(x2,x3,y52,y54), a6(x4,x5,y65)

a1 a2 a3

a4

x1

x2 x3 x4

a5 a6

y15

y54

y52

y65

y32

x5

x6

Figure 2. Analysis function digraph for example system

The structure of this system can be visualized using a di-
rected graph representation (Fig. 2), and is represented com-
pactly with its reduced adjacency matrix [6]:

A =

a1 a2 a3 a4 a5 a6 x1 x2 x3 x4 x5 x6
a1 0 0 0 0 1 0 1 0 0 0 0 0
a2 0 0 0 0 0 0 1 0 0 0 0 0
a3 0 1 0 0 0 0 0 0 0 0 0 1
a4 0 0 0 0 0 0 1 1 0 0 0 0
a5 0 1 0 1 0 0 0 1 1 0 0 0
a6 0 0 0 0 1 0 0 0 0 1 1 0

The ALC coordination algorithm specifies when each sub-
problem is to be solved, communicates values between subprob-
lems, and updates penalty weights as needed. Coordination diffi-
culty typically increases with the number of external linking vari-
ables [4]. The coordination of ALC subproblems can be viewed
as the solution to a system of nonlinear equations where subprob-
lems are optimal value functions and external linking variable

copies are the unknown quantities. The subproblem i input ar-
guments are z̄i = [x̄si, ȳi], and the outputs include updated values
for x̄si and external coupling variables passed from subproblem i
to other subproblems (ȳ•i). The optimal value function for sub-
problem i is:

z̄•i = [x̄si, ȳ•i] = πππi(z̄i) (5)

The structure of the coordination problem can be analyzed
using a directed graph where subproblems are represented by
vertices, and the linking variables passed between subproblems
correspond to arcs. Partitioning the example system from Fig. 2
using p = [1,2,2,3,3,4] results in the subproblem graph depicted
in Fig. 3.

a1 a2 a3

a4 a5 a6

P1
P2

P3 P4

x
(2)
1

x
(1)
1

x
(1)
1

x
(3)
1

y65 = ȳ43

y52 = ȳ32y15 = ȳ13

Figure 3. Subproblem graph

The shared variable superscripts indicate subproblem of ori-
gin. Figure 3 illustrates that only one quantity must be passed for
each coupling variable, while shared variables require two. Orig-
inal ALC formulations [4, 5] treat coupling variables as shared
variables, increasing both subproblem and coordination burden.
Note that while subproblems 2 and 3 share x1, copies of x1 are
not communicated between them. Figure 4 illustrates the sub-
problem graph in more compact form.

π1 π2

π3 π4

z̄21

z̄12

z̄13 z̄31

z̄32

z̄43

Figure 4. Condensed subproblem graph

3 Copyright c© 2008 by ASME

The ALC coordination algorithm requires an inner and outer
loop. The inner loop solves the system of equations formed
by subproblem optimal value functions for the external link-
ing variable values. The system of equations to be solved is
z̄ = πππ(z̄)S, where z̄ is the set of all external linking variable
copies, πππ = [πππ1,πππ2, . . . ,πππN] is the optimal value function for all
subproblems, and S is a selection matrix that matches the out-
puts of πππ to the components of z̄. The outer loop computes new
penalty weight values using inner loop results and the method of
multipliers [7].

An algorithm for solving systems of nonlinear equations is
used for the inner loop problem. A typical approach is to apply
fixed point iteration (FPI), also known as nonlinear Gauss-Seidel,
by solving each subproblem in sequence, providing the most re-
cent linking variable information for each subproblem solution.
Jacobi iteration may also be used to enable parallel solution of
all subproblems. If the number of processors available is insuffi-
cient for complete parallel execution, block parallel Gauss-Seidel
may be applied to blocks of subproblems sequenced into stages.
The assignment of subproblems into stages is specified by the
stage assignment vector s, where the value of si is the stage that
subproblem i belongs to. The inner loop stages for the running
example system correspond to Fig. 5 if s = [1,1,2,2]. At each
inner loop iteration, subproblems 1 and 2 are solved in parallel
using values for z̄12, z̄21, and z̄13 from the previous inner loop
iteration. Subproblems 3 and 4 are solved in parallel using z̄31
and z̄32 computed during stage 1, and z̄43 from the previous inner
loop iteration. Using a stage assignment that reduces the num-
ber of values obtained from the previous iteration can help speed
inner loop convergence.

π1 π2

π3 π4

z̄21

z̄12

z̄13

z̄31

z̄32

z̄43

Stage 1

Stage 2

Figure 5. Stage graph

4 Linking Structure Analysis
One distinguishing characteristic of formulations for

decomposition-based design optimization is linking structure,
i.e., different formulations allow specific approaches to struc-
turing consistency constraints. Most methods require a bi-level
or multi-level hierarchical constraint structure. ALC is unique
in the flexibility it provides for consistency constraint struc-
ture, which enables potentially more efficient implementations
where linking structure is tailored to the problem at hand. While
flexibility is a beneficial feature, it may be difficult to manage.
Early ALC approaches rely on bi-level or multi-level hierarchi-
cal structures to guide linking structure decisions. Deciding be-
tween the numerous non-hierachical possibilities is a task beyond
intuition for all but the most simple systems. Optimization tech-
niques can be applied effectively to this task, resulting in superior
ALC implementations. A deeper understanding of consistency
constraint structure is developed in this section using techniques
from constraint satisfaction programming. The theory required
to provably identify the set of valid consistency constraint allo-
cation options for ALC is developed, and the following section
uses these results to define an optimal partitioning and coordina-
tion decision problem for ALC with linking structure considera-
tions.

We will focus on consistency with respect to a single linking
variable, z, that in general could be external or internal. The
language below is appropriate for the external case. A system
is consistent with respect to a linking variable when all pairs of
linking variable copies are consistent:

z(i) = z(j) ∀ i (= j, i, j ∈ {1,2, . . . ,nz}. (6)

Here z(i) is the copy of z associated with subproblem i, and nz

is the number of subproblems that share z. The above statement
implies nz(nz−1) constraints are required to assure consistency
with respect to z. Since z(i) = z(j) is equivalent to z(j) = z(i), the
number of constraints can be reduced to nz(nz − 1)/2 by adopt-
ing the convention that the terms in the constraint z(i) = z(j) are
ordered such that i < j. It will be shown that certain subsets of
consistency constraints can ensure consistency of a linking vari-
able, and that nz−1 constraints is the minimum number required
to ensure consistency. It will be demonstrated that these minimal
constraint sets are linearly independent, which is a requirement
of the augmented Lagrangian penalty method used in ALC.

4.1 Consistency Constraint Graphs
Montanari introduced the concept of using graphs to repre-

sent constraint sets, where vertices correspond to variables and
edges correspond to constraints on variables whose vertices they
connect [8]. These constraint graphs are helpful in analyzing
constraint set structure and developing solutions for constraint
satisfaction problems [9]; along with results from constraint pro-
gramming, they provide a framework for understanding consis-

4 Copyright c© 2008 by ASME

tency constraints in system optimization. Applications of con-
straint satisfaction theory in engineering design have included
ensuring geometric feasibility of assemblies [10] and high-speed
machinery design [11].

A binary constraint is a constraint on at most two variables,
and a binary constraint graph corresponds to a set of binary con-
straints [12]. The set of nz(nz − 1)/2 binary consistency con-
straints on a linking variable can be represented by the com-
plete undirected graph Knz . An edge {i, j} represents the con-
straint z(i) = z(j), which can be expressed in negative null form
as z(i)− z(j) = 0. A convenient representation of this constraint
is:

θθθi j z̃T = 0 (7)

where θθθi j is the constraint vector that corresponds to edge {i, j},
and z̃ is the vector of all nz copies of the linking variable z. More
precisely:

θθθi j = ei− e j (8)

z̃ =
[
z(1),z(2), . . . ,z(nz)

]
(9)

where ei is the ith unit vector of length nz. Two constraints are ad-
jacent if their corresponding constraint graph edges are adjacent
(i.e., they share a common variable). A consistency constraint
graph Gc is defined as a subgraph of Knz that corresponds to a
subset of the nz(nz − 1)/2 consistency constraints. The consis-
tency constraint matrix ΘΘΘ for Gc is composed of all constraint
vectors θθθi j that correspond to edges in Gc. The edges in Gc spec-
ify which consistency constraints are to be used in an ALC solu-
tion process.

4.2 Valid Consistency Constraint Graphs
Not every possible consistency constraint graph is valid for

use with ALC. A consistency constraint graph is valid if its as-
sociated constraints are equivalent to the constraints specified by
Knz , and if the rows of the corresponding ΘΘΘ are linearly inde-
pendent. The first requirement ensures complete consistency of
the associated linking variable and the second is necessary for
the success of the augmented Lagrangian penalty method used
in ALC. After the development of preliminary concepts, neces-
sary and sufficient conditions for the validity of constraint graphs
will be given.

Two sets of constraints are equivalent if their feasible do-
mains are equal. The task of finding reduced sets of constraints
equivalent to some original set is known as problem reduction.
A constraint is redundant if its removal does not change the fea-
sible domain of a constraint set. The composition of adjacent
constraints can induce implicit constraints. For example, if the
constraints z(2) = z(5) and z(5) = z(7) are specified explicitly in
the problem linking structure, the constraint z(2) = z(7) will be
satisfied implicitly if the two explicit constraints are met. A con-

straint is said to be explicit if its corresponding edge exists in
Gc, and implicit if it does not. A constraint is redundant if it is
both explicit and implicit [9]. The properties of consistency con-
straint graphs enable easy identification of implicit and redundant
constraints for the purpose of problem reduction. A consistency
constraint graph is minimal if it specifies the fewest number of
constraints required to ensure consistency.

Identification of implicit constraints requires application of
a binary operator called constraint composition that generates a
new constraint from two adjacent constraints [12].

Definition Let γ1(i, j) and γ2(j,k) be two binary constraints
with a common variable

(
z(j)

)
corresponding to vertex j, and

let their composition be γc(i,k). A binary constraint composi-
tion is valid if values for z(i) and z(k) satisfy γc(i,k) if and only
if there exists a value of z(j) such that γ1(i, j) and γ2(j,k) are
satisfied.

In a consistency constraint graph two constraints with a
common variable can be composed to form an implicit constraint
by taking the vector sum of the corresponding constraint vectors.

Proposition 4.1 The composition of the consistency constraints
defined by θθθi j and θθθ jk with the common variable z(j) is θθθik =
θθθi j +θθθ jk = ei− e j + e j − ek = ei− ek.

Proof Let ai and ak be values for z(i) and z(k), respectively, such
that θθθikz̃T = 0 is satisfied. By definition of θθθik, ai = ak. By se-
lecting a value a j for z(j) such that ai = a j = ak, the constraints
θθθi j z̃T = 0 and θθθ jkz̃T = 0 consequently are satisfied. Let bi, b j,
and bk be values for z(i), z(j), and z(k), respectively, that satisfy
θθθi j z̃T = 0 and θθθ jkz̃T = 0. Since this satisfaction implies bi = b j
and b j = bk, bi = bk and the composed constraint θθθikz̃T = 0 is
satisfied. Therefore, θθθik = θθθi j + θθθ jk is a valid constraint compo-
sition.

A higher than binary constraint composition is defined by
the recursive application of a binary constraint composition. Bi-
nary consistency constraints that share a common variable have
corresponding edges that are incident to the common variable
vertex. At each stage of recursive composition a new edge can be
included in the composition if it has a common vertex with the
implicit edge generated by the intermediate composition. This
occurs when all edges in a set to be composed lie in a connected
path on Gc. Suppose pi j is a connected path of length m between
the vertices i and j defined by the sequence of unique vertices
〈v1,v2, . . . ,vm,vm+1〉 where v1 = i and vm+1 = j. The constraint
vector resulting from the extended composition of edges in pi j is
θθθi j = ∑{k,l}∈pi j θθθkl = ei− e j.

Proposition 4.2 A constraint defined by θθθi j , whether implicit or
explicit, can be obtained through composition if and only if a
path pi j exists in Gc.

5 Copyright c© 2008 by ASME

Proof If a path pi j exists in Gc, extended constraint composition
can be applied to obtain θθθi j:

θθθi j = ∑
{k,l}∈pi j

θθθkl

= ev1 − ev2 + ev2 − ev3 + . . .+ evm − evm+1

=
m

∑
k=1

evk −
m+1

∑
k=2

evk (10)

= ev1 +
m

∑
k=2

evk −
m

∑
k=2

evk − evm+1

= ev1 − evm+1 = ei− e j

If a path pi j does not exist in Gc, then at least one edge
{k, l} in every possible set of constraint edges will be pendant,
i.e., incident to a vertex of degree 1. If k is the pendant vertex, θθθkl
will contribute ek to the constraint composition. Since only edge
{k, l} is adjacent to k, no constraint vector in the composition
can annihilate ek. The case for l pendant is similar. Therefore,
θθθi j = ei− e j cannot be obtained if pi j does not exist in Gc.

Extended constraint composition leads to a necessary condi-
tion for the equivalence of Knz and Gc. If a consistency constraint
graph can be shown to be equivalent to Knz , its set of associated
constraints will ensure complete consistency for the linking vari-
able in consideration.

Proposition 4.3 A consistency constraint graph Gc is equivalent
to Knz if and only if Gc is connected.

Proof If Gc is equivalent to Knz , Gc specifies either an explicit or
an implicit edge for every constraint associated with Knz . There-
fore, a path must exist between every pair of vertices, and Gc is
connected. If Gc is connected, a path exists between every pair
of vertices and a constraint exists between every pair of vertices
in Gc, and the effective constraint sets and feasible domains of
Gc and Knz are identical.

A consistency constraint graph is therefore minimal if it con-
nects the required vertices using the fewest possible number of
edges. By definition, a spanning tree uses the minimum number
of edges (nz−1) to ensure a graph is connected.

Corollary 4.4 A consistency constraint graph is minimal if and
only if it is a spanning tree of Knz .

If Gc is connected and uses more than nz − 1 edges, then a
cycle exists, and more than one path connects at least one pair of
vertices. Such a graph is not minimal since at least one redundant
constraint exists that could be removed. Since any consistency
constraint can be composed through a composition of explicit
constraints if Gc is connected, the set of explicit constraints cor-
responding to a minimally connected Gc can be viewed as a basis
for the constraints in Knz . The constraint vectors in this set are in
fact linearly independent, so indeed form a basis.

Proposition 4.5 The constraint vectors corresponding to ex-
plicit edges in Gc are linearly independent if and only if Gc is
acyclic.

Proof If Gc is acyclic, at most one path exists between any pair
of vertices. Therefore, if a constraint vector θθθi j can be obtained,
either θθθi j is a column of ΘΘΘ and edge {i, j} exists in Gc, or a
unique path pi j with length greater than 1 exists such that θθθi j can
be induced. If θθθi j is a column of ΘΘΘ, edge {i, j} is the only path
pi j, and no composition of other constraints will yield θθθi j. Since
this is true for all explicit constraints, the columns of ΘΘΘ are lin-
early independent. If Gc contains a cycle C, then two adjacent
vertices on C (i and j) have at least two paths between them: the
edge {i, j} and C\{i, j}. Therefore θθθi j is an explicit constraint
that can be obtained through composition of other explicit con-
straints, and the columns of ΘΘΘ are not linearly independent.

Corollary 4.6 If Gc is minimal it is an acyclic spanning tree, and
therefore has a linearly independent set of explicit consistency
constraints.

The independence properties of spanning trees are general-
izable. If I is the set of all spanning trees of a graph G and their
power sets, and E is the set of all edges of G, (E,I) is the cycle
matroid of G. The maximal sets in I are bases, and I coincides
with the sets of linearly independent columns of the incidence
matrix of G [13]. Another result of Proposition 4.5 is that the
set of all constraint vectors on a linking variable and all linearly
independent sets of these vectors form a vector matroid that cor-
responds to the cycle matroid of Knz . The favorable properties
of binary consistency constraints enable not only the straightfor-
ward identification of valid constraint sets, but also open the door
to increased understanding of consistency constraints due to their
link to spanning trees and cycle matroids.

The foregoing propositions lead to the main result of this
section:

Proposition 4.7 Gc is a valid consistency constraint graph if
and only if Gc is a spanning tree of Kn.

Proof If Gc is valid, the columns of ΘΘΘ are linearly independent,
and by Proposition 4.5 Gc is acyclic. It also follows from the the
validity of Gc that consistency is assured, i.e., Gc is equivalent to
Kn. By Proposition 4.3 Gc is connected, and it follows that Gc
is a spanning tree of Kn. Conversely, if Gc is a spanning tree of
Kn, Gc is connected and acyclic. It follows from Propositions 4.3
and 4.5 that Gc ensures consistency and linear independence of
constraints. Therefore, Gc is valid.

This result means that the set of consistency constraint al-
location options for a linking variable z associated with nz sub-
problems is defined by the set of all possible spanning trees for
the complete graph Knz . These trees may be represented easily
and algorithms exist for their enumeration. This makes practical

6 Copyright c© 2008 by ASME

the inclusion of linking structure options in the optimal partition-
ing and coordination decision problem for ALC. Linking struc-
ture for other formulations, such as CO or ATC, has additional
restrictions not present for ALC problems, and their analysis is
left as future work.

4.3 Example Consistency Constraint Graph
The consistency constraint graph for x1 from the exam-

ple system is used to demonstrate valid consistency constraint
options and their graph representations. When the partition
p = [1,2,2,3,3,4] is used, x1 is shared between subproblems 1,
2, and 3. The three available consistency constraints are dis-
played in Fig. 6(a) alongside graph edges that represent these
constraints. One possible valid consistency constraint graph is
shown in Fig. 6(b). The vector of x1 copies is:

z̃ =
[
x(1)

1 ,x(2)
1 ,x(3)

1

]
(11)

and the linearly independent consistency constraint matrix for x1
that corresponds to the edge set {〈1,2〉,〈1,3〉} shown in Fig. 6(b)
is:

ΘΘΘ =
[

θθθ12
θθθ13

]
=

[
1 −1 0
1 0 −1

]
(12)

P1 P2

P3 P4

x
(1)
1 − x

(2)
1 = 0

x
(1)
1 − x

(3)
1 = 0 x

(2)
1 − x

(3)
1 = 0

(a) All potential consistency constraints

P1 P2

P3 P4

x
(1)
1 − x

(2)
1 = 0

x
(1)
1 − x

(3)
1 = 0

(b) Sample valid consistency con-
straint graph

Figure 6. Graph represtenation of consistency constraint options for x1

5 Optimal Partitioning and Coordination Decisions
for Parallel ALC
The previous section demonstrated that the set of consis-

tency constraints used for a linking variable must connect asso-
ciated subproblems using a tree structure to meet ALC conver-
gence and system consistency requirements. Determining con-
sistency constraint structure for every linking variable is an im-
portant coordination decision, and influences the computational
expense and reliability of an ALC implementation. This section
extends the optimal partitioning and coordination method pre-
sented in [6] by including linking structure decisions along with
partitioning and sequencing decisions.

If υi is the number of subproblems linked by the i-th exter-
nal linking variable, then the number of valid options for allo-

cating consistency constraints for this variable is the number of
unique spanning trees for a graph with υi vertices, or υυi−2

i . If
nz is the number of external linking variables in a problem, then
υυ1−2

1 ·υυ2−2
2 · . . . ·υυnz−1−2

nz−1 ·υυnz−2
nz is the number of alternative

linking structure options for a problem with a given system par-
tition. The number of linking structure alternatives in a problem
can be reduced by exploiting the natural structure present in cou-
pling variable relationships. An analysis function output that is a
coupling variable may be communicated to one or more analysis
functions. All analysis functions receiving this coupling variable
as input link directly to the analysis function that computes the
coupling variable; this structure forms a star graph, which is a
spanning tree. While it is possible to use other trees for coupling
variable consistency constraints, we assume here that the natu-
rally occurring star graph is the consistency constraint graph used
for each coupling variable. This reduces the number of trees that
must be determined to the number of shared design variables.

Two important factors contribute to overall ALC computa-
tional expense: coordination problem difficulty and subproblem
difficulty. An intrinsic tradeoff exists between these two factors;
fine partitions may have lower subproblem expense, but can in-
cur higher coordination expense due to more complicated exter-
nal linking relationships. A metric for optimization problem size
is used here to estimate subproblem expense. Coordination ex-
pense is approximated using a metric based on the assumption
that block parallel Gauss-Seidel converges faster when linking
variables input to subproblems are recently computed. Jacobi it-
eration is one extreme possibility where all input data is from the
previous iteration, whereas sequential Gauss-Seidel (FPI) uses
the most recently available data. FPI is known to converge faster
than Jacobi iteration for linear systems [14]. These arguments
do not always extend to nonlinear systems, but are assumed to
be a reasonable approximation to enable a priori partitioning and
coordination decisions based on a system’s reduced adjacency
matrix.

Once a system partition is defined, the subproblem graph can
be constructed that describes external linking variable relation-
ships, along with its associated adjacency matrix. Ā is defined to
be the N×N valued adjacency matrix for a partitioned system’s
subproblem graph, where each entry indicates the dimension of
the corresponding linking variable. For example, if Āi j = 3, then
the dimension of z̄i j is 3. The coordination expense is estimated
here using CS, a metric for coordination problem size that ac-
counts for sequencing aspects of a coordination strategy:

CS =
N

∑
i=1

N

∑
j=1

ζi jĀi j

The value of ζi j quantifies how many stages previous to the
evaluation of subproblem i the linking variables z̄i j were com-
puted. CS not only quantifies the number of linking variables
in the coordination problem, but accounts for the length of time

7 Copyright c© 2008 by ASME

between linking variable calculation and use as an input. The
metric ζi j is defined as follows:

ζi j =
{

si− s j if si > s j
ns + si− s j if si ≤ s j

where ns = max(s) is the stage depth (i.e., the number of stages
in the implementation).

A usual estimate for subproblem expense is subproblem
size. Previous approaches for quantifying subproblem size were
based only on the number of analysis functions or equations in
each subproblem (e.g., [15]). The metric used here is somewhat
more sophisticated, being based upon optimization problem size.
The size of the optimization problem for subproblem i is:

SSi = (nx̄si +nx!i +nyi +nȳIi)+(nx̄sci +nyi +nȳi) +(nai)

The first four terms comprise the number of decision vari-
ables in subproblem i. The number of external shared variables
associated with subproblem i is nx̄si, the number of local vari-
ables is nx!i, the number of internal coupling variables is nyi, and
the number of external input coupling variables is nȳIi. The next
three terms express the number of consistency constraints in sub-
problem i. The number of consistency constraints for external
shared variables is nx̄sci, the number of internal coupling variable
consistency constraints is equal to nyi, and the number of consis-
tency constraints for external coupling variables is equal to nȳi.
The last term is the number of analysis functions (nai). The max-
imum subproblem size for each stage is computed, and S̄Smax is
the average of the maximum subproblem sizes.

The optimal partitioning and coordination (P/C) decision
problem for parallel ALC with linking structure considerations is
to minimize simultaneously CS and S̄Smax by selecting a system
partition p, subproblem stage assignment s, and a valid consis-
tency constraint graph for each external shared design variable.
The length of the vector s is N, which depends on p. This compli-
cation is handled easily when the optimal P/C decision problem
is solved with exhaustive enumeration. The linking structure de-
cisions depend also on p. System partition changes the set of
external shared design variables, and the subproblems associated
with each external shared design variable. As with stage assign-
ment, linking structure can be handled with exhaustive enumer-
ation. An evolutionary algorithm for making partitioning and
coordination decisions was introduced in [16], and can handle
this type of decision variable dependence.

A set-valued decision variable C is defined for the purpose
of representing problem linking structure. The cardinality of C is
equal to the number of external shared design variables in a prob-
lem with a given partition. Each member of this set defines the
consistency constraint graph for one of the shared variables. One
approach to representing a consistency constraint graph, which
must be a spanning tree, is with an edge set. For example, the
variable x1 in Fig. 3 is shared between P1, P2, and P3, but the
constraints on x1 appear only in c̄12 and c̄13, which are the con-

sistency constraints connecting P1 with P2 and P1 with P3, re-
spectively. The edge set corresponding to these constraints for
x1 is {〈1,2〉,〈1,3〉}. By convention, edges are represented using
ordered pairs 〈i, j〉 such that i < j. This way each edge has only
one representation.

Now that we have defined the two objective functions and
the P/C decision variables, we can state formally the optimal P/C
problem:

min
p,s,C

{CS, S̄Smax} (13)

The solution to this problem is a set of Pareto-optimal P/C
decision alternatives. This Pareto set helps assess the intrinsic
tradeoffs in the optimal P/C problem. Also note that specifying
p, s, and C defines completely a parallel ALC partition, coordi-
nation algorithm, and set of subproblem formulations.

6 Example: Electric Water Pump Design Problem
The partitioning and coordination decision method for ALC

described above was applied to the electric water pump design
problem introduced in [6] and detailed in [17]. This design prob-
lem involves a centrifugal pump for an automotive cooling sys-
tem driven by an electric motor. The design objective is to re-
duce electric power consumption, subject to performance, ther-
mal, and geomteric constraints. The optimal pump consumes
140 W during operation, compared to 300 W consumed by a tra-
ditional belt-driven water pump. The reduced adjacency matrix
for the problem is the only information needed to solve the prob-
lem in Eq. 13 above:

A =

a1 a2 a3 a4 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
a1 0 1 1 0 1 1 1 1 1 0 0 0 0 0
a2 1 0 0 1 1 1 1 1 0 0 0 0 0 0
a3 1 1 0 0 1 1 1 1 1 0 0 0 0 0
a4 0 0 1 0 0 0 0 0 0 1 1 1 1 1

The analysis functions a1−4 evaluate motor temperature T , mo-
tor current I, a3 motor speed ω, and pump drive torque P, re-
spectively. Design variables x1−5 describe motor geometry, and
x6−10 describe pump geometry. Using exhaustive enumeration of
all p, s and C combinations for this problem, 9295 unique par-
titioning and coordination alternatives were identified, and two
Pareto-optimal points were found. All instances are displayed
in the CS–S̄Smax space in Fig. 7, and all partitioning and stage
assignment options that correspond to three of these points are
shown.

Point 1: Two P/C decision instances correspond to point 1 in
Fig. 7, and all share the same partition and problem size metrics:

CS = 2, S̄Smax = 11, p = [1,1,1,2]

Neither instance has any shared design variables, but can be
distinguished by subproblem stage assignment:

8 Copyright c© 2008 by ASME

10 12 14 16 18 20 22 24 26
0

10

20

30

40

50

60

Avg SS
max

C
S

T ω

I

τ

Stage 1

Stage 2

P1

P2

T ω

I

τStage 1

Stage 2

P1

P2

or

T ω

I τ

P1
T

τ

P2

I

P3

ω

P3
ωStage 1

Stage 2

or

P1
T

τ

P2

I

Stage 1

P11

3

2

Figure 7. ALC P/C results for electric water pump problem

Instance 1: s = [1,2], Instance 2: s = [2,1]

Point 2: Point 2 represents the single subproblem case, where
CS = 0 and S̄Smax = 20. Note that numerous P/C instances
exist with larger subproblem sizes and nonzero coordination
problem sizes. These points represent especially poor options
for constructing an ALC formulation of the electric water pump
problem. Note that moving from point 2 to point 1 reduces
S̄Smax from 20 to 11, and requires a coordination problem size
of just 2. This indicates a problem formulation that is a good
candidate for decomposition-based optimization.

Point 3: A third point, not in the Pareto set, is examined for
illustrative purposes. Point 3 corresponds to twelve unique P/C
instances, all with the same partition and problem size metrics:

CS = 30, S̄Smax = 18, p = [1,2,3,2]
All twelve instances have the same set of external shared design
variables: {x1,x2,x3,x4,x5}. The first four are shared between
three subproblems, so several consistency constraint allocation
options exist. One possible set of valid consistency constraint
graphs is shown in Fig. 8.

The twelve instances that correspond to point 3 are distin-
guished by consistency constraint allocation and stage assign-
ment. The two stage assignments that appear here are:

Instances 1–6: s = [1,1,2], Instances 7–12: s = [2,2,1]

These stage assignments are illustrated in Fig. 7, and both
specify parallel solution of subproblems 1 and 2. No Pareto-

x1 x2 x3

x4

〈1, 2, 1, 3〉 〈1, 3, 2, 3〉

〈1, 3〉

P1 P2

P3

P1 P2

P3

P1 P2

P3

P1 P2

P3

P1

P3

x5

〈1, 2, 1, 3〉

〈1, 3, 2, 3〉

Figure 8. Consistency constraint allocation option for point 3

optimal points specify parallel subproblem solution. This is due
to both problem structure and the problem size metrics selected.
Only CS penalizes stage depth (i.e., the number of stages in a
parallel implementation). Other size metrics have been explored,
such as the sum of all maximum subproblem sizes for each
stage (∑SSmax). This metric penalizes stage depth, and when
employed along with CS, the resulting Pareto set contains only
single-stage P/C alternatives. An ideal metric would be an accu-

9 Copyright c© 2008 by ASME

rate estimate of computational expense. Since this is impractical
to compute a priori for most problems, approximate metrics must
be used.

7 Conclusion
This work has established a approach for constructing prob-

lem formulations for decomposition-based design optimization,
and one possible set of metrics was proposed (i.e., CS and S̄Smax).
These metrics approximate two competing sources of computa-
tional expense: coordination problem and subproblem solution
expense. A new formulation technique for parallel ALC imple-
mentations was introduced, and used to study linking structure
decisions. ALC linking structure is defined by the way consis-
tency constraints on linking variables are allocated throughout a
system design problem. Graph theory and constraint satisfaction
techniques were used to identify valid consistency constraint al-
location options for ALC. This development enabled inclusion
of linking structure decisions with the optimal partitioning and
coordination decision problem for ALC. This extends previous
P/C decision methods, which accounted only for partitioning
and sequencing decisions, and helps system designers take full
advantage of ALC linking structure flexibility to tailor solution
methods to system structure. Opportunities for future work in-
clude investigation of alternative problem size metrics, inclusion
of coupling variable consistency constraint allocation in the co-
ordination decision problem, and analysis of linking structure for
other system optimization formulations.

Acknowledgments
This work was partially supported by a US NSF Graduate

Research Fellowship and by the Automotive Research Center, a
US Army Center of Excellence at the University of Michigan.
This support is gratefully acknowledged.

REFERENCES
[1] Stanton, D., and White, D., 1986. Constructive Combina-

torics. Springer-Verlag, New York.
[2] Braun, R., 1996. “Collaborative optimization: An architec-

ture for large-scale distributed design”. Ph.D. dissertation,
Stanford University.

[3] Kim, H., Michelena, N., Papalambros, P., and Jiang, T.,
2003. “Target cascading in optimal system design”. Journal
of Mechanical Design, Transactions of the ASME, 125(3),
pp. 474–480.

[4] Tosserams, S., Etman, L., and Rooda, J., 2007. “An aug-
mented Lagrangian decomposition method for quasisepa-
rable problems in MDO”. Structural and Multidisciplinary
Optimization, 34(3).

[5] Tosserams, S., Etman, L., and Rooda, J., 2007. “Aug-
mented Lagrangian coordination for distributed optimal de-
sign in MDO”. To appear in the International Journal for
Numerical Methods in Engineering.

[6] Allison, J., Kokkolaras, M., and Papalambros, P.,
2007. “Optimal partitioning and coordination decisions
in decomposition-based design optimization”. In the pro-
ceedings of the 2007 ASME Design Engineering Technical
Conference DETC2007-34698.

[7] Bertsekas, D., 1999. Nonlinear Programming, second ed.
Athena Scientific, Belmont, MA.

[8] Montanari, U., 1974. “Networks of constraints: Funda-
mental properties and applications to picture processing”.
Information Sciences, 7, pp. 95–132.

[9] Tsang, E., 1993. Foundations of constraint satisfaction.
Academic Press, San Diego.

[10] Schmidt, L., Shi, H., and Kerkar, S., 2005. “A con-
straint satisfaction problem approach linking function and
grammar-based design generation to assembly”. Journal
of Mechanical Design, Transactions of the ASME, 127,
pp. 196–205.

[11] Hicks, B., Medland, A., and Mullineux, G., 2006. “The
representation and handling of constraints for the design,
analysis, and optimization of high speed machinery”. Ar-
tificial Intelligence for Engineering Design, Analysis, and
Manufacturing, 20, pp. 131–328.

[12] Mackworth, A., 1977. “Consistency in networks of rela-
tions”. Artificial Intelligence, 8(1), pp. 99–118.

[13] Oxley, J., 2003. “What is a matroid?”. Cubo Matemática
Educacional, 5(3), pp. 179–218.

[14] Bertsekas, D., and Tsitsiklis, J., 1997. Parallel and Dis-
tributed Computation: Numerical Methods. Athena Scien-
tific, Belmont, MA.

[15] Michelena, N., and Papalambros, P., 1997. “A hypergraph
framework for optimal model-based decomposition of de-
sign problems”. Computational Optimization and Applica-
tions, 8(2), pp. 173–196.

[16] Allison, J., and Papalambros, P., 2007. “Optimal parti-
tioning and coordination decisions in system design using
an evolutionary algorithm”. In the proceedings of the 7th
World Conference on Structural and Multidisciplinary Op-
timization.

[17] Allison, J., 2008. “Optimal partitioning and coordina-
tion decisions in decomposition-based design optimiza-
tion”. Ph.D. dissertation, University of Michigan.

10 Copyright c© 2008 by ASME

