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ABSTRACT

Solution of complex system design problems using distributed,
decomposition-based optimization methods requires determina-
tion of appropriate problem partitioning and coordination strate-
gies. Previous optimal partitioning techniques have not ad-
dressed the coordination issue explicitly. This article presents
a formal approach to simultaneous partitioning and coordina-
tion strategy decisions that can provide insights on whether a
decomposition-based method will be effective for a given prob-
lem. Pareto-optimal solutions are generated to quantify tradeoffs
between the sizes of subproblems and coordination problems,
as measures of the computational costs resulting from different
partitioning-coordination strategies. Promising preliminary re-
sults with small test problems are presented. The approach is
illustrated on an electric water pump design problem.

1 Introduction

Numerous methods have been developed to solve complex
system design problems partitioned into smaller subproblems.
This decomposition-based approach can ease several difficulties
encountered in system design, such as computational expense
and management of complex interactions between system ele-
ments. Solving a problem in this way requires system designers
to decide how to partition the system into subproblems and how
to coordinate solution of subproblems toward a consistent, opti-
mal system design. Partitioning decisions have been studied an-
alytically, while only qualitative guidance exists in the literature

for selecting an appropriate coordination method. The interac-
tion between partitioning and coordination (P/C) decisions has
not been studied systematically, but one expects that partitioning
decisions will influence coordination decisions, and vice versa.
In this article an optimal partitioning and coordination decision-
making model is formulated and solved for test problems. Ini-
tial results indicate that accounting for the interaction between
partitioning and coordination can lead to better decomposition
strategies.

1.1 Decomposition-based System Design

The system design problems considered here involve multi-
disciplinary, coupled analyses (e.g., a set of coupled CAE simu-
lations) where input/output properties are assumed to be known
precisely. The vector of quantities computed by the j-th analy-
sis function and required as input to the i-th analysis function is
termed analysis coupling variable y;;. The vector of all coupling
variables input to analysis i from any other analysis in the system
is y;, and all design variables required as input to analysis i form
the vector x;. In this manner, we define the i-th analysis function
as a;(x;,y;). Design variables that are inputs to a;(x;,y;) only
are termed local variables xy;; design variables that are inputs to
a;(x;,y;) and at least one other function are termed shared vari-
ables x,;. Shared and local variables together form x; = [Xy;, Xy]
(vectors are assumed to be row vectors). The collections of all
design variables, coupling variables, and analysis functions are
X, y, and a(x,y), respectively. Shared and coupling variables for
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subproblem i comprise its set of linking variables z;.

A system is consistent if the values of all copies of a shared
variable agree for all shared variables, and if the value of every
coupling variable is equal to its corresponding analysis output.
More precisely, shared variable consistency is achieved if

.X((jk):X((il) Vk#I1, k€ Ds(xg) M

is satisfied for all shared variables, where x, is a component of x
that is shared among the analysis functions a;(x;,y;) Vi € Dy(x,),
with Dy(x,) being the set of indices of analysis functions that
depend on the shared variable x,; superscripts indicate the anal-
ysis function where the shared variable copy is input. Coupling
variable consistency is achieved, if for every coupling variable
yij —aj(x;,y;) =0 )
is satisfied. The set of all such equality constraints is y —
Sa(x,y) = 0, where S is a boolean selection matrix that extracts
the components of a(x,y) that correspond to the components of
y. These coupling variable consistency constraints are referred to
as the system analysis equations. Equations (1) and (2) together
form the system consistency constraints.
The optimal system design problem is formulated as

min. £(%yp(x)) )

g(xyp(x)) <0

h(x,y,(x)) =0,

where y,(x) is a solution to the system analysis equations for
a given design, and the objective and constraint function values
are outputs of a subset of analysis functions. This formulation
is known as multidisciplinary feasible (MDF) [1] or All-in-One
(AiO), and implicitly achieves shared variable consistency. For
every optimization iterate X the system analysis equations must
be solved for y, (x).

If no feedback loops exist among analysis functions, the sys-
tem analysis equations can be satisfied simply by executing the
analysis functions in the proper sequence; analysis function out-
puts give the coupling variable values directly. An iterative al-
gorithm is required for system analysis if feedback loops exist.
Alternatively, the optimization algorithm can solve for y,(x) us-
ing equality constraints to enforce coupling variable consistency.
This enables coarse-grained parallel processing and can ease
numerical difficulties associated with strongly coupled analysis
functions [2]. The Individual Disciplinary Feasible (IDF) formu-
lation is the simplest way to use this approach [1]. Balling and
Sobieski suggested a hybrid approach that uses function sequenc-
ing to satisfy feedforward coupling relationships, and equality
constraints to satisfy feedback coupling relationships [3].

Distributed system optimization formulations are applied to
systems that have been partitioned into smaller subproblems. A
separate optimization problem is defined for each subproblem; a
coordination algorithm guides the repeated solution of subprob-
lems toward a state of system consistency and optimality. Dis-

subject to

tributed optimization can employ equality constraints or penalty
functions within subproblem optimization formulations to help
satisfy system analysis equations. The set of design variables
that are inputs for the functions in subproblem i and at least one
other subproblem are the external shared variables X,;. Coupling
variables passed from functions in subproblem j to subproblem i
are the external coupling variables §;;. Independent subproblem
solution requires local copies not only of external coupling vari-
ables, but also of external shared variables. The coordination al-
gorithm must ensure all copies match at convergence, satisfying
the system consistency constraints. Some examples of coordina-
tion algorithms include optimization algorithms (e.g., Collabora-
tive Optimization (CO) [4]), fixed point iteration (e.g., Analytical
Target Cascading (ATC) [5]), Newton’s method (e.g., ATC [6]),
and penalty methods (e.g., ATC and Augmented Lagrangian De-
composition (ALD) [7]). Distributed methods are appropriate
when systems are large and sparsely connected [8], when the
design environment is distributed [9], or when specialized opti-
mization algorithms can be exploited for solving particular sub-
problems [10, 11]. The techniques introduced in this article can
be used to assess quantitatively whether distributed optimization
is appropriate for a particular problem.

1.2 Partitioning and Coordination
The partitioning problem (P) is to decide which of m anal-

ysis functions should be clustered into each of the N subprob-
lems. The coordination problem (C) is to specify a method for
satisfying system consistency requirements; this typically con-
sists of consistency constraint management and subproblem so-
lution strategy. Graph theory can be used to study P/C decisions.
Design variables and analysis functions are viewed as vertices
in a directed graph whose arcs indicate a dependency relation-
ship. For example, consider the following system of analysis
functions:

ar(x1,x2,X4)

az(xe,y21)

a3 (x2,x3,X4,Y31,Y34)

as(X4,Xs,y41).-
A directed graph representation of this system is shown in Fig. 1.
If a system’s graph is acyclic, then no feedback couplings exist.

A system graph can be represented compactly using its ad-

jacency matrix. Since the n design variables are independent, the
lower n rows of the adjacency matrix are empty and may be omit-
ted without loss of information. The reduced system adjacency
matrix for the above example is:

Graph and adjacency matrix representations of systems have
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Figure 1: GRAPH REPRESENTATION OF THE EXAMPLE
SYSTEM

been used extensively. Steward introduced the design structure
matrix (DSM) that describes the interrelationship between de-
sign tasks [12]. Wagner introduced the functional dependence
table (FDT), which identifies the variables each objective and
constraint function depends on [13]. The FDT and the DSM
together contain all of the information in the system adjacency
matrix above.

Subproblem difficulty increases with the number of analy-
sis functions and linking variables. Coordination problem diffi-
culty is proportional to the number of external consistency con-
straints [7]. Selecting a fine partition reduces subproblem dif-
ficulty at the expense of more external consistency constraints,
while coarse partitions ease coordination difficulty at the cost of
more difficult subproblems. As demonstrated further below, A
can be used to estimate how much subproblem and coordination
difficulties contribute to the overall computational expense.

The following sections formalize the P/C decision problem,
provide some solution techniques, and show the advantages of a
simultaneous P/C decision approach. Optimal design of an elec-
tric water pump demonstrate the ideas on a physically meaning-
ful design problem.

2 Partitioning and Coordination Decision-Making

System partitioning often follows physical or disciplinary
system boundaries [13]; or product, process, or organization
divisions [9] [10]. Formal partitioning approaches using FDT
or DSM information are important, as they may identify non-
intuitive but useful partitions [14].

Wagner defined the FDT with rows that represent constraint
or objective functions, and columns that represent design, be-
havior, or state variables [13]. The FDT is useful for partitioning
methods that seek to minimize the number of linking variables
between subproblems. Behavior and state variables are coupling
variables, and the design constraints represented by FDT rows in-
clude coupling variable consistency constraints. The FDT is an
incidence matrix mapped to an undirected hypergraph where hy-
peredges represent linking variables that connect multiple func-

tions [11]; it conceals input-output relationships and makes no
distinction between shared and coupling variables. Wagner ar-
gued that defining input-output relationships a priori may limit
partitioning options. In a simulation-based analysis environment,
however, these relationships are often dictated a priori. In addi-
tion, failure to distinguish between shared and coupling variables
eliminates the ability to exploit information flow direction for re-
duction of both coordination and subproblem size.

Michelena and Papalambros demonstrated the use of FDT-
based spectral decomposition [11] and network reliability meth-
ods [15] for partitioning that minimizes links and exactly bal-
ances subproblem sizes. Krishnamachari and Papalambros used
integer programming to generate partitions that allow some size
imbalance between subsystems [16]. Chen, Ding, and Li intro-
duced an iterative two-phase approach where the FDT is first
ordered so that coupling relationships are banded along the di-
agonal, and then independent variable blocks and a system-wide
linking variable block are formed [17]. The sequencing phase ef-
fectively reduces the ‘length’ of linking relationships in the sys-
tem, but does not identify an optimal subproblem sequence.

Steward introduced the DSM as a tool for identifying feed-
back circuits in the design process and for determining a de-
sign task sequence with minimal feedback circuits [12], where
rows and columns exist for all design ‘parameters’ and ‘tasks’,
which are analogous to design variables and analysis functions,
respectively. Rogers introduced DeMAID, a heuristic DSM-
based software tool for sequencing design tasks [18], and later
DeMAID/GA, which utilized a genetic algorithm to perform se-
quencing tasks [19]. Kroo suggested that, after sequencing has
been used to minimize feedback loops, consistency constraints
could be used to break any remaining feedback loops [20].
Meier, Yassine, and Browning reviewed DSM-based sequencing
approaches and compared their objective functions, which pri-
marily involved some combination of minimizing feedback, im-
proving concurrency and modularity, or reducing computational
expense [21]. These DSM-based approaches cannot use shared
variables or analysis function dependance on design variables as
factors in P/C decisions.

A few cases exist where some aspect of P/C interaction has
been taken into account. Kusiak and Wang showed that after an
FDT is used to determine appropriate subproblems, the prece-
dence matrix (a form of the DSM) can be used to identify ef-
ficient subproblem sequences [14]. Meier et al. stated that after
sequencing is performed subproblems may be more readily iden-
tified [21]. Making partitioning and coordination decisions se-
quentially, however, cannot account for all P/C decision interac-
tions. It will be shown that sequential or independent approaches
can fail to identify Pareto-optimal P/C options, while a simul-
taneous approach does not. Altus, Kroo, and Gage developed
a genetic algorithm that simultaneously determined function se-
quence as well as ‘breaks’ between functions in the sequence that
define the subproblems [22]. Only a single result was presented
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with a prescribed number of subproblems, and tradeoffs inherent
to P/C decisions were not studied. Altus et al. assumed paral-
lel subproblem solution and therefore did not define subproblem
order.

The coordination decision model introduced here assumes
IDF-type subproblem formulations and studies how to order sub-
problem solution sequences. The model is more appropriate for
cases where not all subproblems can be solved in parallel. The
system adjacency matrix is used to provide both FDT and DSM
information while distinguishing between shared design and cou-
pling variables.

Dealing with consistency constraints has not yet been thor-
oughly investigated. Different distributed design optimization
formulations provide varying levels of flexibility in consistency
constraint allocation: CO completely prescribes allocation; ATC
allows consistency constraints for linking variables between sub-
problems to be assigned to any subproblem that is a common an-
cestor; ALD offers complete flexibility in consistency constraint
allocation, an attractive feature for studying the effect of con-
sistency constraint allocation decisions. A coordination decision
model that includes consistency constraint allocation requires as-
sumption of a particular formulation. This article examines only
generic coordination formulations and does not account for con-
sistency constraint allocation. A more sophisticated model for
ALD formulations that includes both sequencing and constraint
allocation is the object of future work.

2.1 Optimal Partitioning and Coordination

Partitioning and coordination decisions should minimize the
complexity of the resulting distributed optimization problem.
Complexity is quantified by the coordination problem size (CS)
and the maximum subproblem size (SSmax). These sizes are com-
puted from specific partitioning and coordination information
are are conflicting objectives to be minimized simultaneously.
The tradeoff between CS and SS.x is inherent to distributed
optimization problems and represents Pareto-optimum solutions.
Formulas for computing CS and SSp,x are presented next, fol-
lowed by a description of optimization strategies for minimizing
these quantities.

2.1.1 P/C Problem Formulation The coordination
problem size CS is defined as the total number of consistency
constraints for external shared variables and feedback coupling
variables, to be solved by the coordination algorithm:

CS= Nzom + nyf. (4)

The number of external shared variable consistency con-
straints is approximately ng,, a metric based on the number
of external shared variables. The number of feedback coupling
variable consistency constraints in the coordination problem is
equal to the number of feedback external coupling variables nyy.

It can be shown that the minimum number of consistency con-
straints required for the i-th shared variable is np; — 1, where np;
is the number of subproblems that share the i-th shared variable.
Therefore, the sum of np; — 1 over all ng, shared variables is a
reasonable approximation for the number of shared variable con-
sistency constraints: ng,, = Z?fl (np; — 1). The reason for using
nyr, rather than the total number of external coupling variables
ny, is that feedback slows coordination convergence [23]. This
metric penalizes existence of feedback external coupling variable
consistency constraints.

The size of subproblem i, SS;, is defined as the number of as-
sociated decision variables, consistency constraints, and analysis
functions. It is assumed that IDF-type formulations are used for
subproblems, meaning that no constraints are needed for internal
shared variables, and one constraint is required for each internal
coupling variable.

SS; = (n;s,-—knx{i—l-nyi—kny-f,-) 5)
+ (i i + 1y i)
+ (nai)

The number of external shared variables associated with sub-
problem i is nz;, the number of local variables is n,,;, the num-
ber of internal coupling variables is ny;, the number of coupling
variables input from subproblems executed after subproblem i is

nyri, and the number of analysis functions is n4;. SSmax is the
maximum of all SS; values.

2.1.2 P/C Problem Solution Four strategies can be
used to solve the P/C decision problem. In the first strategy,
labeled (P,C), the P and C problems are solved independently.
In the second strategy, labeled (P — C), the partitioning prob-
lem is solved first, and the resulting partition is used as a fixed
parameter in coordination decision problem. The third strategy,
labeled (C — P), solves the partitioning problem using a coordi-
nation method definition obtained by first solving the coordina-
tion decision problem. The fourth strategy, labeled (P||C), min-
imizes CS and SSp.x simultaneously, solving the actual Pareto-
optimization problem. The examples will show that the first three
strategies cannot capture CS—SSmax tradeoff information or al-
ways identify Pareto-optimal solutions, providing evidence that
interactions between partitioning and coordination decisions in-
deed exist and are important.

In the optimal P/C model a restricted growth string (RGS)
[24], p of length m, is used to specify the partition by prescrib-
ing which analysis functions belong to each subproblem. The
value of p; is the subproblem that analysis function i belongs to.
Redundant representations of partitions are avoided since as an
RGS, p must satisfy:

p1=1A pi <max{pi,p2,...,pi-1}+1 (6)

Coordination decisions here are restricted to subproblem se-
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quencing, defined by the vector oy, where the value of oy is
the evaluation position of subproblem i, and oy # o,; V i,j €
{1,2,...,N}. In the (P,C) and (C — P) strategies coordination
decisions are made without partitioning information, so it is im-
possible to specify a subproblem sequence and the analysis func-
tion sequence o is used in solving the independent coordination
problems.

Two independent problems are solved in the (P,C) strategy,
and the corresponding formulations are shown in Fig. 2. The
independent partitioning problem seeks to find p that minimizes
a surrogate for CS, subject to a maximum imbalance constraint
(Baiow) and a specified number of subproblems (Nyjjow). B is
the maximum subproblem size difference incurred by p, where
SS; — 2nyy; is used instead of SS; for subproblem size since nyy;
depends on o5, which is unavailable. The value used here for
Billow 18 proportional to system size: Bajiow = |0.2(m+n)|. The
surrogate used for CS that does not depend on oy is ng, + ny.
Forms of the independent partitioning problem have been solved
previously based on FDT information [11,14-17,22,25,26]. The
independent coordination decision problem seeks to find o that
minimizes the number of feedback coupling variables n,. Since
p is unavailable, CS and SSp,x again cannot be used. Versions of
this problem have also been solved previously [12, 18, 19,21].

min Ngem + ny
P g

subject to B < Byjiow “},in Nyf
N = Najiow
Figure 2: INDEPENDENT (P,C) OPTIMIZATION AP-
PROACH

The (P — C) strategy [14] first solves the independent parti-
tioning problem and then passes the result p* as a fixed parameter
to the coordination decision problem (Fig. 3). Since a partition
is defined the subproblem sequence can be used as the decision
vector, and both CS and SSy,,x can be used in the formulation.

min ng,, +ny min CS
P * Os
subject to B < Byjiow P, subject to SSmax < SSallow

N = Njiow

Figure 3: P — C SEQUENTIAL OPTIMIZATION

The (C — P) strategy begins with solving the independent

coordination decision problem for the analysis function sequence
o (Fig. 4). Calculation of CS and SSp.x in the second stage re-
quires definition of a subproblem sequence. A heuristic is used
here to map o to o,: subproblems are ranked in ascending order
according to the lowest value of o; in each subproblem to define
the subproblem sequence.

min CS
o* P
subject to SSmax < SSallow

min nyf
o vf

Figure 4: C — P SEQUENTIAL OPTIMIZATION

The (P||C) strategy seeks optimal values for p and o, simul-
taneously (Fig. 5). Pareto-optimal solutions are obtained by vary-
ing SSmax as a parameter.

min CS
P,0s

subject to SSmax < SSallow

Figure 5: SIMULTANEOUS (P||C) OPTIMIZATION

2.2 Examples

The four strategies were applied to two randomly generated
reduced adjacency matrices to demonstrate the tradeoff between
CS and SShax and the interaction between partitioning and coor-
dination decisions. The optimal P/C decision problems were all
solved using exhaustive enumeration, and the appropriate con-
straints were varied in an effort to generate Pareto sets.

The first example has five analysis functions and seven de-
sign variables; its reduced adjacency matrix is:

011101011101
001110110111
Aj=(1001111111T11
111001111111
110100111001

Figure 6 depicts the histogram of all possible CS and SSmax
values for an exhaustive enumeration of all possible p and oy
combinations. The CS distribution is biased toward larger values,
while the SSp,x is biased toward smaller values. This is expected
since the number of possible sequences and partitions increase
with N, and CS decreases with N while SSp,,x increases with V.
Figure 7 plots all P/C instances for A in the CS/SSmax space.
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The minimum CS value of zero occurs when N = 1, which
corresponds to a pure IDF formulation for the system design
problem (with a problem size of 42). In general, distributed opti-
mization makes sense if subproblem size can be reduced from the
IDF size through partitioning without requiring a large coordina-
tion problem. This is most likely to occur when A is sparse. More
complex products tend to have sparse adjacency matrices [10]. A
minimum SSpax value normally occurs when each analysis func-
tion is assigned to its own subproblem but is associated with a
large coordination problem.

Figure 7 also shows solutions obtained by the four differ-
ent strategies. As expected, (P||C) finds all 12 Pareto points;

(P,C), (P — C), and (C — P) identify 2, 4 and 7 Pareto points,
respectively. These latter strategies performed well for this small
example in that they identified several Pareto-optimal points. In
the next slightly larger example the performance discrepancy be-
tween simultaneous and non-simultaneous approaches is more
significant.

The second example has six analysis functions and ten de-
sign variables:

01110011111 11101
10111001110101T10
A,_ |1 101010101 111010
2771111000101 0010000
11110011111 110T10
11111011101 110T11

The biases in the CS and SSyax distributions are now clearer
in the histogram of P/C instances for A, (Fig. 8). These distri-
butions can influence the performance of algorithms other than
exhaustive enumeration (such as genetic algorithms) for solving
the optimal P/C problem [21].
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Figure 8: CS AND SSmax HISTOGRAMS FOR A,

Figure 9 shows CS and SSp,x values for all P/C instances
that exist for Ay. P||C located all 9 Pareto points. No solutions
to the non-simultaneous approaches are Pareto-optimal except
for the trivial case of N = 1. This result is significant because
if any non-simultaneous approach is used to make P/C decisions
for this system, both subproblem expense and coordination prob-
lem expense could be reduced further. This sub-optimality is
expected to be more pronounced as system size and complexity
increases.

CS—SSmax tradeoff information can be used to assess
whether a system is a good candidate for solution via distributed
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optimization since it illustrates the sensitivity of best-case solu-
tion expense to increases in partition refinement. If partitioning
the system causes CS to rise sharply without appreciable SSpax
reduction, AiO or IDF may be preferable to distributed optimiza-
tion. Thus, the second example is a good candidate for dis-
tributed optimization since SSyax can be substantially reduced
with a small associated coordination problem. In addition to
helping assess whether a system should be partitioned, P||C anal-
ysis could be used to determine whether adding more sophisti-
cated features to a coordination strategy is worthwhile if these
features are accounted for in the coordination decision model.
An interesting phenomenon is displayed in Figure 9: there
exists an instance where SSmax = 64, which is greater than 62,
the size of a single large subproblem. This partition cuts across a
very large number of linking variables, and the subproblem order
maximizes feedback. It is conceivable that some systems could
exhibit this behavior for most or all P/C options, making them
exceptionally poor candidates for distributed optimization.

3 Water Pump Electrification Example

A newly-developed electric water pump design problem il-
lustrates P/C decision results for a physically meaningful sys-
tem. A centrifugal water pump is used for an automotive cooling
system driven by a permanent magnet DC electric motor. Tradi-
tional automotive water pumps are belt driven by the engine, and
pump speed is proportional to engine speed. Such a pump must
produce adequate flow and pressure even at low engine speeds.
Since a pump cannot be simultaneously efficient at high and low
rotational speeds, it operates at off-design flow conditions dur-
ing much of its duty cycle and requires more input power than
a pump driven by a constant-speed source, such as an electric

motor. A motor-driven pump also has the advantage of being
operated only when needed, further reducing power consump-
tion. Electrification of belt-driven automotive components can
improve fuel economy [27-29]. Surampudi et al. tested a speed-
controlled electric water pump on a class-8 tractor and measured
an 80% reduction in energy consumption [30].

This section describes an analysis model for an automotive
electric water pump, its associated design problem, and presents
P/C decision results for this application.

3.1 Analysis and Design of an Electric Water Pump
The model involves five analysis functions that compute per-
formance metrics based on ten design variable values. Four anal-
ysis function outputs are coupling variables described in Table 1.
Design variables x;—x5 define motor geometry, and x¢—x1( define
pump geometry; 7 is computed using a thermal resistance model
similar to that found in [31], adapted for permanent magnet DC
motors; I and ® are computed based on fundamental DC motor
equations [32,33] adapted to the specific geometry of this motor.
The pump drive torque and pressure differential are computed
for a prescribed flow rate Q using fluid mechanics equations for
centrifugal pumps [34]. Model details are presented in [35].
Several analysis interactions exist in this model. For exam-
ple, the temperature is computed based on the motor current and
speed, but the temperature affects the electrical resistance and
current, and the current influences the motor speed. All model
interactions are captured in the reduced adjacency matrix:

T I ®tdddi Lt DybBPBrBs

rTro11011 11100000
A3=17(100111 1100000 0
wfl10011 11100000
tTf001000 000 111 1 1

Since P and 7 are computed during the same analysis proce-
dure and depend on identical quantities, P has been omitted from
A3 for simplicity. The design problem is:

min P, =VI (N
P > Py = 100 kPa

T <Thx =428K

L+/.<02m

0 =1.55-10"3 m3/sec

The source voltage V is 14.4 volts. The pressure differen-
tial and flow constraints ensure the engine is adequately cooled.
The flow constraint is implicitly satisfied during the torque and
pressure analysis. The temperature constraint ensures the motor
wire insulation is not damaged, and the constraint on L and £, is
required for packaging.

The analysis functions are very strongly coupled, and so first
and second-order algorithms failed in most cases to find a con-
sistent system analysis solution. The design problem was suc-

subject to
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cessfully solved using mesh adaptive direct search [36] and the
IDF formulation. The minimal power consumption is 140 W, a
substantial improvement over traditional water pumps of similar
capacity, which consume nearly 300 W continuously [28].

Table 1: FUNCTIONS AND VARIABLES FOR THE ELEC-
TRIC WATER PUMP PROBLEM

Analysis Functions

T =ai(l,0,d,dy,d3,L,{;) | Mot. winding temp. (K)
I=ay(t,T,d,dy,d3,L)

o=a3(1,T,d,d»,d3,L, 1)
T=a4(®,D7,b,B1,B2,B3)
P =as5(w,D,,b,B1,B2,P3) | Pressure differential (kPa)

Motor current (amps)
Motor speed (rad/sec)

Pump drive torque (Nm)

Design Variables

x1=d Motor wire diameter (m)
xp=dp Inner motor armature diameter (m)
x3=d3 Outer motor armature diameter (m)
x4 =L Motor armature length (m)

x5 =L, Motor commutator length (m)

x¢ =Dy | Pump impeller diameter (m)
x7=>b Pump impeller blade width (m)
xg =Py Pump blade angle at inlet (rad)

x9 = P2 Pump blade angle at outlet (rad)

x10 = B3 | Pump diffuser inlet angle (rad)

3.2 Optimal P/C Solution Results

The optimal P/C problem was solved using all four strate-
gies. As can be seen in Fig. 10, (P||C) and (P — C) identified all
four Pareto points, while (P,C) and (C — P) were only able to
identify one Pareto point (the trivial solution with N = 1).

Of particular interest is the initial low sensitivity of CS to
increased N. SSmax can be reduced from 28 to 19 with a CS
of 1, making this system an excellent candidate for distributed
optimization. Only the (P||C) and (P — C) strategies can reveal
this low sensitivity.

The matrix A3 represents a physical system, so P/C deci-
sions made based on engineering intuition can be compared to
optimal P/C modeling results. Dividing the system into mo-
tor and pump-related functions corresponds to the partition p =
[1,1,1,2]. If the motor subproblem is solved first, then CS =1
and SSmax = 20, a good but suboptimal solution. Using a model-
derived partition p = [1,2,3,4] as a starting point to solve coor-
dination problem defined in Fig. 3 for the optimal sequence, the
solution o} = [4,3,2,1] yields CS = 12 and SSmax = 13, which

o
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12 -©O—O—) . . . . . P,C H
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Figure 10: OPTIMAL P/C RESULTS FOR PUMP PROBLEM

is a Pareto point. In this simple example, intuitive and semi-
intuitive approaches are rather effective, but cannot quantify the
tradeoff between CS and SSiyax. Much larger systems are likely
to realize greater benefits from the (P||C) strategy, but algorithms
more sophisticated than exhaustive enumeration will be required
in such implementations, a topic for future work.

4 Conclusion

We introduced a formal approach for simultaneous parti-
tioning and coordination decision-making, in order to investigate
the suitability of a system for distributed optimization. The ap-
proach quantifies P-C tradeoffs by computing Pareto optima for
minimum subproblem size and coordination problem size. The
problem-size metrics proposed here captured P/C interactions in
the examples successfully. Other metrics can be used instead
if desirable. Simultaneous P/C optimization can lead to supe-
rior decomposition solutions. Comparison to non-simultaneous
strategies confirmed the existence of P/C decision interaction,
and demonstrated the value of a simultaneous approach. Ex-
haustive enumeration was used to generate results for small ex-
amples, and a simplified coordination decision model incorpo-
rated only subproblem sequencing. An improved coordination
decision model that accounts for consistency constraint alloca-
tion is a next step in this research. Exhaustive enumeration must
be replaced by more efficient algorithms that can generate the
Pareto-optimal solutions for larger systems, a topic currently un-
der investigation.
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