
7th World Congress on Structural and Multidisciplinary Optimization
COEX Seoul, 21 May - 25 May 2007, Korea

Optimal Partitioning and Coordination Decisions in System Design Using
an Evolutionary Algorithm

James T. Allison, Panos Y. Papalambros

Department of Mechanical Engineering, The University of Michigan

Ann Arbor, Michigan U.S.A.

{optimize,pyp}@umich.edu

1. Abstract

Use of decomposition-based design optimization methods requires a priori selection of system parti-
tioning and of the corresponding coordination strategy. Typically, partitioning systems into smaller,
easier to solve subproblems leads to more complicated, computationally expensive coordination strate-
gies. Previous optimal partitioning techniques have not addressed the coordination issue explicitly. A
Pareto-optimal problem formulation was proposed recently to address simultaneous partitioning and
coordination decisions. Due to the combinatorial nature of this problem, exhaustive enumeration was
used to demonstrate the approach to small system examples. This article presents and demonstrates an
evolutionary algorithm that can solve this problem for systems of moderate size. A readily partitioned
truss design formulation is introduced on which design problems with a wide variety of interaction pat-
terns and system sizes can be based. An eight-bar truss problem is used to demonstrate the effectiveness
of the proposed evolutionary algorithm.

2. Keywords: Decomposition-based design optimization, evolutionary algorithm, partitioning, coordi-
nation, truss design.

3. Introduction

Decomposition-based design optimization methods can ease difficulties associated with complex system
design. Their application, however, requires that both a system partition and a coordination strategy
are defined a priori. The partitioning task involves clustering m analysis functions required for the
system design problem into N subproblems. Subproblem solution must be coordinated in a way that
leads to a consistent and optimal system design. Partitioning and coordination decisions should be made
such that the decomposed problem is less complex to solve than the original undecomposed problem.
Engineering insight traditionally is used to partition a system, and system designers can select a co-
ordination strategy based on their experience or follow qualitative selection guidelines available in the
literature. Formal approaches can lead to improved partitioning and coordination decisions [1]. System
partitioning methods have been developed that cluster system elements into balanced subproblems with
minimal communication requirements between subproblems [2, 3, 4, 5, 6]. The execution sequence of
subproblems is one aspect of coordination that has been studied thoroughly. Design task sequencing,
a problem analogous to subproblem sequencing, has been solved using heuristic rules [7, 8] and genetic
algorithms [3, 9, 10] in order to reduce design task iterations.

Partitioning and coordination decisions have been treated largely as independent, thus ignoring
potential interaction and synergy between these decisions. Kusiak and Wang did account for part of
this interaction using a sequential approach where subproblem order is considered after partitioning
[1]. Altus, Kroo, and Gage employed a genetic algorithm to partition a system and simultaneously
determine the evaluation order of analysis functions within subproblems [3]. Since only a single solution
was presented, the tradeoff between subproblem and coordination difficulty could not be evaluated.
This tradeoff exists because finely partitioned systems with easily solved subproblems have numerous
interconnections and a complex coordination problem, while coarsely partitioned systems are generally
easy to coordinate, but have larger and more difficult to solve subproblems. This tradeoff was studied
recently for three small example systems using exhaustive enumeration [11]. In addition to providing
quantitative guidance for making Pareto-optimal partitioning and coordination decisions, tradeoff data
can be used to assess the sensitivity of a system to partitioning and its suitability for decomposition-based
design optimization. It was also shown that partitioning and coordination decisions are coupled, and
a simultaneous decision-making approach is required to identify Pareto-optimal decisions. The analysis

1

was limited to small systems (less than seven analysis functions) because exhaustive enumeration was
employed as the solution algorithm. This article demonstrates how to identify Pareto-optimal decisions
and obtain tradeoff data for systems of practical size using an evolutionary algorithm.

3.1. System Representation
Solution of a system design problem requires the evaluation of a coupled set of analysis functions that
generate design objective and constraint values for a particular design. The i-th analysis function
ai(xi,yi) depends on xi, a subset of the vector of all system design variables x; and yi, a subset of
the vector of all analysis coupling variables y. Analysis coupling variables are analysis outputs that are
required as inputs to other analysis functions, and yi is the set of analysis coupling variables input to
the i-th analysis function.

Graphs have been used to represent the structure of a system design problem. The design struc-
ture matrix (DSM) is the adjacency matrix of a directed graph that can represent interactions between
analysis functions [7]. Each vertex corresponds to an analysis function, and arc 〈i, j〉 exists if aj(xj ,yj)
depends on the output of ai(xi,yi). The specific coupling variable yij is the quantity passed from
aj(xj ,yj) to ai(xi,yi); yij is a component of yi and exists if element ij of the DSM is nonzero. The
DSM can help guide sequencing decisions. The functional dependence table (FDT) represents functional
dependence on design and coupling variables [12]. It can be viewed as the incidence matrix for a hyper-
graph where design objective and constraint functions are vertices and hyperedges are design or coupling
variables [4]. This representation is undirected, and so the FDT cannot be used to make subproblem
sequencing decisions, but it is useful for partitioning decisions since it accounts for dependence on both
design and coupling variables.

A directed graph can be defined that contains all information in both the FDT and DSM. Figure
1 shows a directed graph representation of an example system where arcs indicate analysis function
dependence on design and coupling variables [11]. The analysis structure of a system with n design
variables and m analysis functions can be compactly represented using the corresponding (n+m)×(n+m)
adjacency matrix. Since design variables are independent, all adjacency matrix rows corresponding to
design variables are zero, and no information is lost by omitting these rows. The reduced adjacency
matrix for the example system is given in Fig. 2.

a1 a2

a3 a4

x1

x2

x3 x4

x5

x6

y21

y41y31
y34

Figure 1: Directed graph representation of analysis structure (after [11])

A =

a1 a2 a3 a4 x1 x2 x3 x4 x5 x6

a1 0 0 0 0 1 1 0 1 0 0
a2 1 0 0 0 0 0 0 0 0 1
a3 1 0 0 1 0 1 1 1 0 0
a4 1 0 0 0 0 0 0 1 1 0

Figure 2: Reduced adjacency matrix representation

3.2. Simultaneous Partitioning and Coordination Decisions
The reduced adjacency matrix A is a compact representation of the combined information required to
make simultaneous partitioning and coordination decisions. It is the basis of the decision model intro-
duced in [11], and used also here. Given a system partition and subproblem sequence, the coordination

2

problem size (CS) and subproblem sizes (SSi, i ∈ {1, 2, . . . , N}) can be computed using A. These
size metrics are proxies for the computational expense associated with solving the coordination problem
and subproblems, respectively. CS is the number of consistency constraints that must be solved in the
coordination problem and SSi is the size of the i-th subproblem.

A restricted growth string (RGS) [13] p of length m is used to specify a system partition. Analysis
function i belongs to the subproblem identified by the value of pi. Redundant representations of partitions
are avoided since, as an RGS, p must satisfy [13]:

p1 = 1 ∧ pi ≤ max{p1, p2, . . . , pi−1}+ 1 (1)

The coordination decision model used here is restricted to subproblem sequence choice. A more so-
phisticated model that also includes consistency constraint allocation is under development. Subproblem
sequence is represented by os, a vector of length N where the value of osi is the evaluation position of
subproblem i, and osi 6= osj , ∀ i, j ∈ {1, 2, . . . , N}.

A simultaneous approach to partitioning and coordination decision-making considers p and os to-
gether, rather than independently or in sequence, and can be formulated as a multiobjective optimization
problem:

min
p,os

{CS, SSmax}, (2)

where SSmax is the maximum subproblem size. Since specification of p and os are coupled tasks, a
simultaneous approach is required to obtain Pareto-optimal solutions to Eq. (2).

4. Evolutionary Algorithm

Evolutionary algorithms (EAs) seek to improve the ‘fitness’ of a population composed of candidate
problem solutions through two primary means: selection and variation [14]. A subset of the population
is chosen to produce the population for the next generation using variation operators. This process is
repeated until some termination criterion is met. EAs are particularly effective at searching very large
decision spaces and arriving at good, even if not optimal, solutions in a reasonable amount of time. EAs
handle multiobjective problems with little additional expense. The discrete decision space of Eq. (2)
is vast; the number of possible partitioning and coordination instances increases exponentially with m.
The partitioning and sequencing problems are themselves NP -complete and NP -hard, respectively. An
exact solution for the combined problem is possible only for very small systems. It is proposed here
that an EA tailored to the properties of the simultaneous partitioning and coordination problem is an
effective solution technique for systems of practical size.

In an EA each individual is abstractly represented by its chromosome, or genotype. The genotype
representation must be compatible with the variation operators used in the EA. Frequently the repre-
sentation of a candidate solution in the original problem statement, also called the phenotype, is not
suitable for use as a genotype representation. In this case an appropriate genotype space must be de-
fined along with a surjective mapping onto the phenotype space. Rather than devise variation operators
that apply directly to p and os, a genotype compatible with standard crossover and mutation variation
operators was developed.

Choice of genotype representation can strongly influence EA success. An ideal representation should
not increase problem difficulty, should enable variation operators to work properly, and should result
in a process that is robust to solution location [15]. To meet these requirements it is important that a
representation have good locality (i.e., small changes in the genotype space result in small changes in
the phenotype space) and little bias toward particular genotypes.

4.1. Partition Genotype Representation
Rather than attempt to define an effective variation operator to operate directly on restricted growth
strings, the system partition is represented in the genotype space using p̂, where p̂i ∈ {1, 2, . . . ,m}, i =
1, 2, . . . ,m. Note that the number of analysis functions m is the maximum possible number of subprob-
lems N . The vector p̂ defines a partition, although not uniquely. There exist mm possible ways to
assign values to p̂, while the number of unique partitions is the m-th Bell number Bm [13]. The ratio
µ = mm/Bm quantifies redundancy incurred by using p̂, and increases quickly with m. For a system of
size m = 6, µ = 229.83.

3

An algorithm was developed that maps p̂ values in the genotype space to p values in the phenotype
space. Figure 3 illustrates (for m = 6) the normalized frequency of partition sizes using the phenotype
and genotype representations, where N is the partition size. Both distributions are biased toward
intermediate values. While genotype bias impedes EA effectiveness, this representation was selected for
its favorable properties under crossover and mutation.

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Partition Size

n
o
rm

al
iz

ed
 f

re
q
u
en

cy

Phenotype distribution

Genotype distribution

Figure 3: Genotype and Phenotype representation partition size distributions

4.2. Sequence Genotype Representation
The subproblem sequence representation poses a challenge because the length of os depends on p. An
extension of the Random Key (RK) representation can be utilized to address this problem [16]. A random
key is a real-valued vector that can be used to encode an integer sequence. For example, suppose ôs

is a real valued vector of length N where 0 ≤ ôsi ≤ 1, i = 1, 2, . . . , N . The components of ôs are
then sorted in ascending order, and the order of the original component indices after sorting defines the
sequence. RK representations have proven to be more effective than using variation operators designed
for permutations. RKs exhibit high locality, and standard variation operators for real values are effective
[15].

RK representation works well when the number of elements to be sequenced is fixed. Since this is
not the case here, an extension was made. The vector ô contains an element for each analysis function:
0 ≤ ôi ≤ 1, i = 1, 2, . . . ,m. The meaning of ô depends on p. If Pj is the set of analysis function
indices that belong to the j-th subproblem, then ôsj =

∑
i∈Pj

ôi/|Pj |. The sequence os is then obtained
through sorting ôs.

The number of possible subproblem sequences increases with partition size, biasing distribution of
candidate subproblem sequences toward finer partitions (Fig. 4). All possible pairs of p and os for a
given system comprise its phenotype space. The distribution of all these instances for a system of size
m = 6 is shown in Figure 5. The bias present here means that an EA will likely expend most of its effort
exploring candidate solutions with 4, 5, or 6 subproblems.

5. Comparative Examples

The exact Pareto-optimal solutions for three small example systems were presented in [11] and are
compared here against results using the EA described above. The first two example systems are defined
by the adjacency matrices A1 and A2:

A1 =


0 1 1 1 0 1 0 1 1 1 0 1
0 0 1 1 1 0 1 1 0 1 1 1
1 0 0 1 1 1 1 1 1 1 1 1
1 1 1 0 0 1 1 1 1 1 1 1
1 1 0 1 0 0 1 1 1 0 0 1

 , A2 =


0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1
1 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0
1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0
1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0
1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1

 .

4

1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

Partition Size

F
re

q
u

en
cy

Figure 4: Subproblem sequence distribution

1 2 3 4 5 6
0

2

4

6

8

10

12

14
x 105

Partition Size

Fr
eq

ue
nc

y
Figure 5: Combined subproblem sequence and par-
tition size distribution

The set of non-dominated points in the objective space identified by the EA was recorded for each
system. Figures 6 and 7 compare these points against the known Pareto points. In System 1 the EA
failed to identify two Pareto points, and two of non-dominated points were not Pareto points. In System
2 three Pareto points were not identified. It appears that the EA has difficulty identifying Pareto-optimal
solutions with small SSmax (i.e., large partition sizes). This is unexpected given the representation bias,
and is a topic of continued work.

15 20 25 30 35 40 45
0

5

10

15

20

25

30

SSmax

CS

Pareto Points
EA Solution

Figure 6: EA results for first example system

25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

35

40

SSmax

CS

Pareto Points
EA Solution

Figure 7: EA results for second example system

The third example system from [11] corresponds to the design of an electric water pump for use
in an automotive cooling system, and its analysis structure is defined by A3. Figure 8 illustrates that
for this smaller system (m = 4), the EA successfully identified all four Pareto-optimal solutions. The
following section develops a physically meaningful test problem formulation that can represent systems
of arbitrary size with a variety of possible analysis structures. The EA is then applied to a test problem
too large for exhaustive enumeration.

6. Decomposition-based Truss Design

Consider a family of structural trusses where all members are secured via pin joints, two or more ground
joints are fixed, at least one load is applied to a non-ground joint, and truss topology may or may not
exhibit static indeterminacy. Figure 9 illustrates one such truss with five joints and six members. Joints

5

A3 =

2664
0 1 1 0 1 1 1 1 1 0 0 0 0 0
1 0 0 1 1 1 1 1 0 0 0 0 0 0
1 1 0 0 1 1 1 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 1 1 1

3775

12 14 16 18 20 22 24 26 28
0

2

4

6

8

10

12

SSmax

CS

Pareto Points
EA Solution

Figure 8: EA results for third example system

1 and 4 are fixed, and joints 2 and 3 support external loads. A free-body diagram for member {2, 4} is
provided.

1 2 3

4 5

F3F2

4

2

F2

f23

f25

f45

f21

R4

Figure 9: Truss geometry and free-body diagram

Here Fi is the external force applied to joint i, Ri is the reaction force at joint i, ui is the two-
dimensional position for joint i before deformation, and di is the position after deformation. All members
have circular cross section, and the radius of member {i, j} is rij . The internal force of member {i, j}
in scalar form is fij , and the vector form is given by:

fij = fij
dj − di

‖uj − ui‖2
, (3)

which can also be interpreted as the force exerted on joint i by member {i, j}. The force exerted by this
same member on joint j is fji = −fij . Note that the member forces depend on deformed joint locations,
accounting for one source of nonlinearity. The set of all joint indices is J and the set of all unordered
member index pairs is M. The ordered pair {J ,M} comprises an undirected graph that describes truss
topology. The set of joints connected to joint i is Ai = {k|{i, k} ∈ M}. The indices of all fixed ground
joints comprise the set G, and L is the set of all joint indices with an applied external load force.

The truss design problem is to select the radii of all members r and positions of all movable joints
m (where m = [ui1 ,ui1 , . . . ,uik

], {i1, i2, . . . , ik} = J \(G ∪ L), and k = |J \(G ∪ L)|) such that the
system mass is minimized without violating stress or buckling constraints. Ground and load joints have
prescribed locations in the design problem, but the other joints are considered moveable, i.e., their unde-
formed location is at the discretion of the designer. Since statically indeterminate systems are allowed,
both structural compatibility and joint equilibrium equations are included in the analysis. State variables

6

include internal member forces (f = [fi1j1 , fi2j2 , . . . , fikjk
], {{i1, j1}, {i2, j2}, . . . , {ik, jk}} = M, and k

is the number of truss members), the deformed positions of non-ground joints (d̃ = [di1 ,di2 , . . . ,dik
],

{i1, i2, . . . , ik} = J \G, and k = |J \G|), and the reaction forces (R = [Ri1 ,Ri2 , . . . ,Ri|G|], {i1, i2, . . . , i|G|}
= G). The all-at-once (AAO) optimization formulation [17] for the general truss design problem includes
both design (m, r) and state (f , d̃,R) variables as decision variables, and treats state equations as equal-
ity constraints:

min
m,r,f ,d̃,R

∑
{i,j}∈M

Ωij (4)

subject to: |σij | − σallow ≤ 0, ∀{i, j} ∈ M
−fij − bij ≤ 0, ∀{i, j} ∈ M

‖di − dj‖2 − ‖ui − uj‖2 −
fij‖ui − uj‖2

πr2
ijE

= 0, ∀{i, j} ∈ M∑
k∈Ai

fik + Fi + Ri = 0, ∀i ∈ J

where: σij =
fij

πr2
ij

, bij =
π3r4

ijE

4‖ui − uj‖2
2

, Ωij = ρπr2
ij‖ui − uj‖2

Design parameters include material density ρ, elastic modulus E, allowable stress σallow, fixed ground
and load joint positions (di,∀i ∈ G ∪ L), and applied loads (Fi,∀i ∈ L). The mass of member {i, j} is
Ωij and the Euler buckling load for member {i, j} is bij .

The formulation presented above is readily partitioned for use with decomposition-based design
optimization. An analysis function is defined for each truss member that computes the internal force,
mass, stress, buckling criteria and state equation residuals for its member:

[fij ,Ωij , σij , bij ,∆ij] = aq(i,j)(rij ,ui,uj ,di,dj ,Ri,Rj , f
ij
i , f ij

j) (5)

The vector ∆ij contains the three residual values for the structural compatibility and joint equilib-
rium state equations, which are constrained to be zero in Eq. (4). The function q(i, j) maps the joint
indices for member {i, j} to the index of the analysis function that computes responses for that member.
The two-dimensional vector f ij

i is the cumulative force from adjacent members acting on member {i, j}:

f ij
i =

∑
{i,k}∈Ai\{i,j}

fik (6)

The truss member analysis functions follow the form ak(xk,yk) introduced earlier, where k = q(i, j),
xk = [rij ,ui,uj ,di,dj ,Ri,Rj], and yk = [f ij

i , f ij
j]. The coupling variables are formed using member

force values and geometry information (Eqs. (3) and (6)). Since fij is the only analysis output required
by other analysis functions, it is the only coupling variable, and is of prime interest when making
partitioning and coordination decisions for the partitioned truss design problem. All other analysis
outputs are local quantities.

These analysis functions can be clustered to form subproblems. When members in different subprob-
lems are connected at common joints, the corresponding internal member forces are coupling variables
between the subproblems. In addition, undeformed positions of common joints are shared design vari-
ables. Deformed locations and reaction forces for common joints are also shared variables since the
state variables di and Ri are treated as design variables. The objective function is additively separable,
enabling the formation of local subproblem objective functions that consist of the mass of all members
in a subproblem.

A wide variety of analysis structures and system sizes are available using this formulation depend-
ing on truss size and topology, making Eq. (4) an excellent platform for testing the performance of
decomposition-based design optimization methods, as well as methods for combined partition and coor-
dination decision-making.

7

7. Example: Eight-bar Truss

An eight-bar truss problem with topology adopted from [18] was formulated and solved for use in
demonstrating the evolutionary algorithm on a system too large for an exhaustive enumeration approach.
This truss is illustrated in Figure 10.

1

2 3

4

5

F3

6

F6

x

y

Figure 10: Geometry and applied loads for the 8-bar truss problem

The member radii values are r = [r14, r24, r23, r34, r45, r35, r36, r56], the movable joint positions are
m = [u4,u5], the deformed positions of non-ground joints are d̃ = [d3,d4,d5,d6], and the reaction
forces are R = [R1,R2]. The reduced adjacency matrix for this system design problem is:

A4 =

a r m d̃ Rz }| { z }| { z }| { z }| { z }| {
aq(1,4) 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
aq(2,4) 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1
aq(2,3) 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1
aq(3,4) 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0
aq(4,5) 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0
aq(3,5) 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0
aq(3,6) 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0
aq(5,6) 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0

Observe that the submatrix formed by the first m = 8 rows and columns of A4 is symmetric. This is
true for any system defined using Eq. (4) since internal member forces are the only coupling variables.
Even with this limitation a wide variety of interesting system interaction patterns can be studied.

The design parameters used in this problem and the optimal geometry are given in Table 1. The opti-
mal mass is 1.80 kg; as expected, the stress constraints for the members in tension ({2, 3}, {2, 4}, {3, 5},
{3, 6}) are active, and the buckling constraints for the members in compression ({1, 4}, {3, 4}, {4, 5},
{5, 6}) are active.

Table 1: Design parameters and optimal geometry for the 8-bar truss problem
Design Parameters: Optimal Geometry:

ρ 7.80 · 103 kg/m3 d3 [300, 300] mm r14 3.44 mm r36 1.33 mm
E 200 GPa d6 [600, 300] mm r23 1.70 mm r45 2.74 mm
σallow 250 MPa F3 [0,−1000] N r24 1.10 mm r56 2.61 mm
d1 [0, 0] mm F6 [0,−1000] N r34 2.50 mm u4 [232, 108] mm
d2 [0, 300] mm r35 0.83 mm u5 [434, 180] mm

The EA was used to solve Eq. (2) with the analysis structure defined by A4, and the resulting non-
dominated solutions are displayed in Fig. 11. The exact solution is unavailable due to system size, so
the number of actual Pareto-optimal solutions identified is unknown. The EA parameters were adjusted

8

until the same best set of non-dominated solutions was generated consistently over several runs. The
approximate Pareto set illustrates the CS–SSmax tradeoff for this system and indicates that this problem
is a good candidate for partitioning since SSmax can be reduced by almost half before incurring much
coordination expense.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

SSmax

CS

1

2
3
4
5

6
7

8
9
10

11
12

13
14
15

16

Figure 11: Non-dominated solutions for 8-bar truss problem

Point 16 corresponds to a partition with only one subproblem (p = [1, 1, 1, 1, 1, 1, 1, 1], os = [1]) and
has a large subproblem size (SS = 92) but no coordination expense. The solution approach represented
by point 16 is equivalent to solving Eq. (4) directly without decomposition. Moving from point 16 to point
11 (p = [1, 1, 2, 1, 1, 2, 2, 2], os = [2, 1]) requires dividing the analysis functions into two subproblems and
increases the coordination problem size to 10, but reduces SSmax from 92 to 49. Moving from point 11
to point 6 (p = [1, 2, 2, 1, 3, 4, 4, 4], os = [3, 4, 1, 2]) also increases CS by 10, but only reduces SSmax by
20. Point 11 appears to be an appropriate choice since moving away from it leads to a sharp increase in
either CS or SSmax.

Point 1 (p = [1, 2, 3, 4, 5, 6, 7, 7], os = [3, 5, 4, 2, 6, 1, 7]) has a partition size of N = 7 and is the
finest partition selected by the EA. Either reducing SSmax below 20 is unachievable by choosing p =
[1, 2, 3, 4, 5, 6, 7, 8], or the EA failed to identify a Pareto-optimal solution with a partition size of N = 8.
The latter possibility is tenable given that the EA had difficulty identifying low SSmax solutions in the
comparative examples.

Although the EA cannot generate exact solutions, it provides valuable information for assessing the
suitability of a system for decomposition-based design optimization and for making partitioning and
coordination decisions. The sensitivity of a system design problem to increased partition size can be
visualized using CS–SSmax tradeoff data, and the EA efficiently identifies (approximate) Pareto-optimal
solutions.

8. Concluding Remarks

An evolutionary algorithm was developed for the solution of the combined partitioning and coordination
decision problem. The results from this algorithm were compared against exact solutions for small
systems, demonstrating that a good approximation to Pareto-optimal solutions can be obtained using
the EA. A formulation for a truss structure design with arbitrary size and topology was introduced as a
test example. The EA successfully generated a set of approximate Pareto-optimal solutions for a truss
design of moderate size but with high computational complexity. Continuing work involves improved
efficiency of the EA and the inclusion of more sophisticated coordination decision models.

9. Acknowledgments

This work was partially supported by a US NSF Graduate Research Fellowship and by the Automotive
Research Center, a US Army Center of Excellence at the University of Michigan. The authors would
also like to thank Michael Kokkolaras for reviewing the article and offering helpful suggestions.

9

10. References

[1] A. Kusiak and J. Wang. Decomposition of the design process. Journal of Mechanical Design,
Transactions of the ASME, 115(4):687–695, 1993.

[2] N. F. Michelena, T. Jiang, and P. Y. Papalambros. Decomposition of simultaneous analysis and
design models. In Proceedings of the 1995 1st World Congress of Structural and Multidisciplinary
Optimization, WCSMO-1, May 28-Jun 2 1995, May 28-June 2, 1995 1995.

[3] S. Altus, I. Kroo, and P. Gage. Genetic algorithm for scheduling and decomposition of multidisci-
plinary design problems. Journal of Mechanical Design, Transactions of the ASME, 118(4):486–489,
1996.

[4] N. F. Michelena and P. Y. Papalambros. A hypergraph framework for optimal model-based decom-
position of design problems. Computational Optimization and Applications, 8(2):173–196, 1997.

[5] R. S. Krishnamachari and P. Y. Papalambros. Optimal hierarchical decomposition synthesis using
integer programming. Journal of Mechanical Design, Transactions of the ASME, 119(4):440–447,
1997.

[6] L. Chen, Z. Ding, and S. Li. A formal two-phase method for decomposition of complex design
problems. Journal of Mechanical Design, Transactions of the ASME, 127(2):184–195, 2005.

[7] D. V. Steward. The design structure system: a method for managing the design of complex systems.
IEEE Transactions on Engineering Management, EM-28(3):71–4, 08/ 1981.

[8] J.L. Rogers. DeMAID—a design manager’s aid for intelligent decomposition user’s guide. Technical
Report TM-101575, NASA, 1989.

[9] J. L. Rogers. DeMAID/GA - an enhanced design manager’s aid for intelligent decomposition (genetic
algorithms). In 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Seattle, WA, September 4-6, 1996.

[10] C. Meier, A. A. Yassine, and T. R. Browning. Design process sequencing with competent genetic
algorithms. To appear in Journal of Mechanical Design, Transactions of the ASME, 2007.

[11] J. T. Allison, M. Kokkolaras, and P. Y. Papalambros. Optimal partitioning and coordination
decisions in decomposition-based design optimization. In ASME Design Engineering Technical
Conference DETC2007-34698, Sept. 4-Sept 7 2007 (in review).

[12] T.C. Wagner. A General Decomposition Methodology For Optimal System Design. PhD thesis,
University of Michigan, 1993.

[13] D. Stanton and D. White. Constructive Combinatorics. Springer-Verlag, New York, 1986.

[14] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer-Verlag, Germany,
2003.

[15] F. Rothlauf. Representations for Genetic and Evolutionary Algorithms. Springer-Verlag, Berlin,
second edition, 2006.

[16] J. C. Bean. Genetic algorithms and random keys for sequencing and optimization. ORSA Journal
on Computing, 6:154–60, 1994.

[17] E. J. Cramer, J. E. Dennis, P. D. Frank, R. M. Lewis, and G. R. Shubin. Problem formulation for
multidisciplinary optimization. SIAM Journal of Optimization, 4:754–776, 1994.

[18] M. Giger and P. Ermanni. Evolutionary truss topology optimization using a graph-based parame-
terization concept. Structural and Multidisciplinary Optimization, 32(4):313–326, 2006.

10

