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ABSTRACT
Design of modern engineering products requires complex-

ity management. Several methodologies for complex system
optimization have been developed in response. Single-level
strategies centralize decision-making authority, while multi-level
strategies distribute the decision-making process. This article
studies the impact of coupling strength on single-level Multi-
disciplinary Design Optimization formulations, particularly the
Multidisciplinary Feasible (MDF) and Individual Disciplinary
Feasible (IDF) formulations. The Fixed Point Iteration solution
strategy is used to motivate the analysis. A new example problem
with variable coupling strength is introduced, involving the de-
sign of a turbine blade and a fully analytic mathematical model.
The example facilitates a clear illustration of MDF and IDF and
provides an insightful comparison between these two formula-
tions. Specifically, it is shown that MDF is sensitive to variations
in coupling strength, while IDF is not.
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1 INTRODUCTION
This article endeavors to illustrate the implementation of

single-level formulations for complex system optimization via an
analytical example. Specifically, the effect that subsystem inter-

dependence (coupling) has on the performance of these formu-
lations is explored. Background in complex system optimization
is provided, and the mathematical model for the illustrative ex-
ample is developed and presented. This work aims at improving
general understanding of techniques for complex system opti-
mization, and it is part of a greater effort to review single and
multi-level MDO formulations [1,2].

Design of products classified as complex systems poses sub-
stantive challenges to both analysis and optimization, necessitat-
ing specialized solution techniques. A complex system is de-
fined as an assembly of interacting members that is difficult to
understand as a whole. An interaction between members exists
if some aspect of one member affects how the system responds to
changes in another member. A system is difficult to understand
if an individual cannot understand the details of all members and
all interactions between members. A system may qualify as com-
plex due to its large scale (large number of members or inputs),
or due to strong interactions. These interactions complicate op-
timization, but provide opportunity to exploit synergy between
system members.

Analysis of complex systems as an undivided whole can be
inefficient, if not intractable. An alternative is to partition the
system into smaller subsystems (or subspaces). Wagner [3] iden-
tified four categories of system partitioning methods: by object,
by aspect, sequential, or matrix. The aspect (discipline) parti-
tioning paradigm is used in this article, and the term ‘subspace’
is used to refer to system members. System partitioning is also
characterized by the structure of its communication pathways.
A non-hierarchic system has no restrictions on these pathways
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(Figure 1), while a hierarchic system allows communication only
between parent and child subspaces, as depicted in Figure 2. The
highest level subspace, the master problem, coordinates all sub-
ordinate subspaces. Some formulations for complex system op-
timization transform non-hierarchic systems into hierarchic sys-
tems using auxiliary constraints.

Subspace 2

Subspace 1

Subspace 4

Subspace 3

Figure 1. ILLUSTRATION OF A NON-HIERARCHIC SYSTEM

Master Problem

Subspace 1 Subspace 2

Subspace 3 Subspace 4

Figure 2. ILLUSTRATION OF A HIERARCHIC SYSTEM

Subspace interaction may be simple and unidirectional, or
it may be multidirectional. Classical examples of the latter
are aeroelasticity and combustion. In aircraft wing analysis,
structural analysis requires the aerodynamic pressure distribu-
tion (calculated by the aerodynamic analysis) to find the wing
deflections, and the aerodynamic analysis requires wing deflec-
tions to predict the pressure distribution. Structural and aerody-
namic analyses are coupled—they depend on each other. Com-
bustion requires the analysis of fluid transport, heat transfer, and
chemical reactions. Each of the three disciplines depends upon
the other two, resulting in a total of six couplings. If a system
hasN subspaces, then the system has a possibleN(N−1) cou-
plings (which may be scalar, vector, or function valued). The
combustion example is fully coupled, since all of the possible
3(3−1) = 6 couplings exist. The number and strength of these
couplings influences system analysis difficulty. A coupling is

strong if the behavior of a subspace is highly sensitive to changes
to some aspect of the subspace it is coupled to. Formal methods
for quantification of these sensitivities have been developed, such
as Global Sensitivity Equations [4] and Coupling Factors [5].
Sosaet al. present a scheme to characterize these sensitivities
as strong or weak based on design expert knowledge [6,7].

In systems optimization, each subspace must be a team
player, sacrificing its own objectives if required, to enhance the
overall system objective. The traditional sequential design pro-
cess [8] begins by optimizing the first subspace, fixing that aspect
of the system design, and then proceeding with subsequent sub-
space designs. The approach deals with the interactions, but can-
not exploit them to synergistically improve system performance.
A more holistic approach is required.

A general coupled system is used to introduce basic termi-
nology for complex system analysis and optimization (Fig. 3).
All N(N− 1) possible subspace interactions are shown (which
may not all exist in a real system). A designer, or an optimization
algorithm, provides the system analysis with the design variable
vector x. When the analysis is complete, the system response
functions, such asf , g, andh, are returned. The system design
variable vector is separated into two categories of variables: lo-
cal design variablesx`i and shared design variablesxsi. Local
variablesx`i are unique to subspacei—no other subspace takes
them as inputs. Shared variablesxsi are required inputs to sub-
spacei, but are also used as inputs in at least one other subspace.
The collection of all local variables isx`, and the collection of
all shared variables isxs. The aggregation of local and shared
variables for subspacei is xi .

When interaction is present, quantities referred to as cou-
pling variables are passed between subspaces during analysis.
The collection of values generated by subspacej and received
by subspacei is yi j . The collection of all coupling variables is
y. Coupling variables are artifacts of decomposition; they do
not exist in the system’s original design problem statement—x
andy have no common members. In addition to coupling vari-
ables, subspaces may compute values such as subspace objective
functions and constraint functions:fi , gi , andhi . The system ob-
jective functionf may simply be one of the subspace responses,
or in the general case is a function of several of the subspace re-
sponses. The set of all subspace constraints and any system level
constraints isg andh. As with the system objective function,
system constraints may be functions of one or more subspace
responses.

2 REVIEW OF SINGLE-LEVEL MDO FORMULATIONS
The formulations and strategies for the Multidisciplinary

Feasible (MDF), Individual Disciplinary Feasible (IDF), and
All-at-Once (AAO) methodologies are presented here. This
terminology was introduced in [9]. These are single level
formulations—that is, all decision making is centralized and per-

2 Copyright c© 2005 by ASME



}{ 1, , ,s N=x x x xA A…

( )
}{
}{

1

1

1

, ,

, ,

, ,

N

N

N

f f f

=

=

g g g

h h h

…

…

…

SS1

1 1 1, ,f g h

SSN

System Analysis

,N N sN=x x xA

, ,N N Nf g h

y12

y21

1 1 1, s=x x xA

SS2

2 2 2, s=x x xA

2 2 2, ,f g h

. . .

. . .

. . .
yj1

y1j

yNj

yjN

Figure 3. GENERAL NON-HIERARCHIC COUPLED SYSTEM

formed by a single optimizer. Balling and Sobieski provided an
updated review of these formulations in [10], and Balling and
Wilkinson implemented these formulations in the solution of an
analytical test problem [5]. None of the preceding publications,
however, address the variation of formulation performance with
respect to changes in coupling strength.

2.1 Multidisciplinary Feasible Formulation
The most basic of MDO formulations is the MDF ap-

proach, also known as ‘Nested Analysis And Design’ (NAND),
‘Single-NAND-NAND’ (SNN), ‘All-in-One’ (AIO), and ‘One-
at-a-Time’. The MDF architecture is depicted in Fig. 4. This
formulation is distinct from AAO, presented later in this section.
A single system-level optimizer is used, and from the perspec-
tive of the optimizer MDF is no different than a ‘standard’ op-
timal design problem. A system analyzer coordinates all of the
subspace analyzers. The optimizer supplies the system analyzer
with a designx, and the system analyzer supplies the optimizer
with the appropriate response functions,f , g, andh.

As we will discuss in Section 3, the fixed point iteration al-
gorithm is a popular solution method for MDF, although other
analysis options exist. A formulation strategy is classified as
MDF if a complete system analysis is performed for every op-
timization iteration. The analysis is “nested” within the design
(hence the name NAND). The optimizer is charged with the re-
sponsibility to find the optimal designx∗ (the design solution),
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Figure 4. MDF ARCHITECTURE

while the system analyzer is solely responsible to find the set of
consistent coupling variablesy.

The MDF problem statement is shown in Eq. (1). MDF
is completely non-hierarchic in nature (no communication re-
strictions). In a purely computational context, this approach is
desirable if the subspaces are weakly coupled (fast analysis con-
vergence), and if the subspace analyses are not computationally
expensive. In an organizational context, MDF allows the con-
tinued use of legacy analysis tools without modification. If the
organization already performs a complete analysis before mak-
ing a design decision, MDF is a natural fit.

min
x=[x`,xs]

f (x) (1)

subject to g(x) = [g1,g2, . . . ,gs]≤ 0

h(x) = [h1,h2, . . . ,hs] = 0

Although the merits of MDF are notable, its shortcomings
must be clearly understood. MDF is dependent upon the effi-
ciency and robustness of the analyzer: If the analyzer does not
converge for even one design point (or finite difference point),
the optimizer may fail. MDF cannot be parallelized, resulting in
substantive design cycle time: One analysis may be sitting idle
for significant periods of time waiting for required input. Finally,
if a gradient-based optimization algorithm is employed, several
more complete analyses must be performed for finite differenc-
ing. MDF is aptly termed a ‘brute force’ approach [11]. These
limitations motivate the development of other formulations that
offer better convergence properties, fit a wider variety of organi-
zational structures, and allow for parallelization of analysis.
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2.2 Individual Disciplinary Feasible Formulation
The IDF approach overcomes some of the limitations of

MDF. IDF is also known as Simultaneous Analysis And Design
(SAND) or Single-SAND-NAND. Like MDF, an analyzer for
each subspace is employed, and a single system-level optimizer
is used. The key difference is that the optimizer coordinates the
interactions between the subspaces. This enables parallelization,
improves convergence properties, and drives the design toward
better solutions if multiple analysis solutions exist. IDF has no-
tably improved robustness over MDF.

The IDF architecture is illustrated in Fig. 5. The optimizer
chooses values for both design and coupling variablesy. The
distinction between analysis and design processes is blurred—
they are performed simultaneously (hence the name SAND). The
system optimizer provides all inputs required for all subspaces.
Since the subspaces no longer must wait for the output of other
analyses, they may be evaluated in parallel. As with MDF, de-
sign decision making is centralized in the IDF formulation, and
analysis is distributed.

Analyzer

Optimizer

Analyzer

s s

x1, xs1, y1j x2, xs2, y2j

f1, g1, h1, yi1 f2, g2, h2, yi2

Figure 5. IDF ARCHITECTURE

Auxiliary equality constraints enforce system consistency at
convergence, ensuring that the coupling variables computed by
the subspaces are equal to the coupling variables supplied by the
optimizer. If the process is interrupted, the intermediate design
may not be consistent and/or feasible. In contrast, if an MDF
process is interrupted prematurely, the design will be consistent
but not be feasible.

The auxiliary constraints perform another important
function—they break down any non-hierarchical links in the sys-
tem so that the problem can be solved in a hierarchical manner
(Fig. 5). Any arbitrary non-hierarchical system can be reposed
as a hierarchical system through the use of auxiliary constraints,

allowing the utilization of methods intended for strictly hierar-
chical systems.

The term Individual Disciplinary Feasible arises since each
discipline satisfies its governing equations at each optimization
iteration, and the system is only consistent at convergence. IDF
is more centralized than MDF, and the dimension of the opti-
mization problem is increased due to the coupling variables be-
coming decision variables. IDF maps to a design organization
with a single project manager, making all of the design decisions
and guiding the analysis groups into agreement.

The IDF formulation is given in Eq. (2). It is similar to the
MDF formulation, except that the decision variables include the
design variablesx and the coupling variablesy, and the auxiliary
constraintshaux(x,y) are included to ensure system consistency.

min
x=[x`,xs],y

f (x,y) (2)

subject to g(x,y) = [g1,g2, . . . ,gs]≤ 0

h(x,y) = [h1,h2, . . . ,hs] = 0

haux(x,y) = y(x,y)−y = 0

In both a computational and an organizational context the paral-
lel nature of IDF has an advantage over the sequential MDF ap-
proach. If parallel analysis tools (multiple analysis groups or par-
allel processors) are available, IDF can offer a significant com-
pression of the design process. If a high level of centralization is
acceptable, then IDF may be an ideal design strategy.

2.3 All-at-Once Formulation
The last MDO formulation covered here is the All-at-Once

strategy (AAO). It is also referred to as Single-SAND-SAND,
and sometimes just SAND. Occasionally the term AAO is used to
refer to the AIO (i.e., MDF) approach; in the present terminology
AAO and AIO are distinct formulations.

AAO is a highly centralized approach. Instead of utilizing
analyzers to complete the analysis for each subspace, evaluators
are used that compute only the residuals of the governing equa-
tions. The system optimizer is now saddled with three sets of
decision variables: the original design variablesx, the coupling
variablesy, and the state variabless (such as velocity fields,
strain fields, etc.). AAO centralizes both design and analysis,
but still distributes evaluation of governing equations. This can
result in impressive efficiency, but is difficult to map to organiza-
tional structures or simulation tools due to its centralization and
specialized structure.

The AAO architecture is illustrated in Fig. 6. The state vari-
able vector is divided into the state variables for each subspace
(s = [s1,s2, . . . ,sN]), and the residuals for each subspacewi are
reported to the optimizer along with other pertinent values.

The formulation of the AAO approach is given in Eq. 3. It is
similar to the IDF formulation, but includes an additional auxil-
iary constraint to ensure zero residuals at problem convergence,

4 Copyright c© 2005 by ASME



Evaluator

Optimizer

Evaluator

x1, xs1, y1j, s1 x2, xs2, y2j, s2

f1, g1, h1,
yi1, w1

f2, g2, h2,
yi2, w2

Figure 6. AAO ARCHITECTURE

and the decision variables includex, y, ands. This approach is
called All-At-Once, since design, system analysis, and subspace
analyses are all performed simultaneously.

min
x=[x`,xs],y,s

f (x,y) (3)

subject to g(x,y,s) = [g1,g2, . . . ,gs]≤ 0

h(x,y,s) = [h1,h2, . . . ,hs] = 0.

haux(x,y,s) =
{

y(x,y,s)−y
w(x,y,s)

}
= 0.

2.4 Single-Level Summary
Selection of the appropriate formulation is facilitated by an

understanding of the strengths and weaknesses of each [9]. For
example, a key distinction is the dimension of the optimization
problem. Figure 7 illustrates how MDF and AAO may be viewed
as opposite extrema with respect to the number of decision vari-
ables the system optimizer explicitly controls. IDF is an inter-
mediate occupant of this continuum.

Many Explicit Variables Few Explicit Variables

AAO IDF MDF

Figure 7. CONTINUUM OF SINGLE-LEVEL MDO FORMULATIONS

The AAO formulation does not allow for the use of legacy
simulation tools, while the other two do. Only the MDF approach
guarantees system consistency before optimization convergence,

yet it lacks robustness due to issues explored in the next section.
It was predicted in [9] that IDF would yield faster computation
times than MDF. Investigation of this prediction is a focal point
of this article.

3 FIXED POINT ITERATION
Coupled systems may be viewed as simultaneous systems

of nonlinear equations, which may be solved with iterative meth-
ods such as the Newton-Raphson method and Fixed Point Iter-
ation [12]. Fixed Point Iteration (FPI) is regularly employed as
the analysis tool for the MDF formulation. Due to its intuitive
implementation, MDF is the most frequently utilized MDO strat-
egy [11]. However, it should not be applied without recognition
of its shortcomings. This section reviews the nature of FPI, ex-
plores some issues with its use in MDF, and presents and proves
a new form of convergence proof for FPI.

A simple coupled system with two subspaces is depicted in
Fig. 8. The coupling variablesyi j are written in an implicit func-
tional form. For example, the expressiony21(y12) indicates that
y21 is a dependent variable, andy12 is an independent variable.
(Variables held constant during analysis are omitted here for clar-
ity.) According to the implicit function theorem, new inverse
functions may be found in terms of a new independent variable,
i.e.,y21(y12) may be posed asy12(y21).

y21(y12) = y21 y12(y21) = y12

SS1 SS2

y21

y12

Figure 8. TWO-DIMENSIONAL COUPLED SYSTEM.

This system possesses feedback coupling, sincey12 depends
ony21 andvice versa. To employ FPI for analysis, an initial guess
is made for the input to the subspace executed first. If a guess is
made fory12, SS1 is evaluated to obtain a value fory21, which
is subsequently used in the execution ofSS2 to update the value
of y12. This output will not agree with the initial guess (unless
the guess was made at a fixed point). The resulting value ofy12

can then be used as an updated guess for the input toSS1. If
the system meets certain criteria, this process will converge to a
fixed point. The FPI algorithm for the two-dimensional example
problem is [12]:

(Step 0) choose initial guessy0
12, setk = 0

(Step 1) k = k+1

(Step 2) yk
21 = y21(yk−1

12 )
(Step 3) yk

12 = y12(yk
21)

(Step 4) if |yk
12−yk−1

12 |< ε stop, otherwise go to(Step 1)
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The superscriptk indicates the iteration number, andε is the
maximum inconsistency allowed between subspaces. When the
inconsistency is less thanε, the system is said to be consistent—
the output of the system coupling variables is equal to the guess
for coupling variable values. A point that produces this condi-
tion is called a fixed pointyp, since further iterations will not
change the location of the point. A fixed pointyp is defined by
the relationyp = y(yp).

y
12

y21

y
21

(y
12

)

y12(y21)

y
21

0

Case I
y

12

y21

y21(y12)

y
12

(y
21

)

y
21

0

Case II

Figure 9. OSCILLATORY AND MONOTONIC FPI CONVERGENCE

Figure 9 illustrates the convergence behavior of FPI. Case
I shows oscillatory convergence, and Case II shows monotonic
convergence. The initial guess isy0

12. The fixed point is located
at the intersection of the functions. In the two convergent exam-
ples shown in Figure 9 it is clear that the equivalent relationships
expressed in Eq. (4) hold in the neighborhood of a fixed point
yp.∣∣∣∣∂(y21(y21))

∂y21

∣∣∣∣ >

∣∣∣∣∂(y12(y21))
∂y21

∣∣∣∣⇔ ∣∣∣∣∂(y12(y12))
∂y12

∣∣∣∣ >

∣∣∣∣∂(y21(y12))
∂y12

∣∣∣∣
(4)

Figure 10 illustrates a case where Eq. (4) does not hold. A fixed
point exists, yet the algorithm diverges from this ‘repelling’ fixed
point. If Eq. (4) does hold in the neighborhood of a fixed point
yp, then FPI will converge, andyp is termed an attractive fixed
point. Some systems have multiple fixed points (Fig. 11), and
FPI may not be capable of finding them all. The point FPI con-
verges to depends upon the location of the starting point. Filled
circles indicate attractive fixed points; empty circles indicate re-
pelling fixed points.

If FPI is used as an analysis tool for optimization, it will
never be known if there was a repelling fixed point that would
have led to a better solution. For example, if the objective is to
minimizey12+ y21 from Fig. 11, then the lower left fixed point
is the best solution, and cannot be found using FPI.

The coupled system in Fig. 8 may be written as a single
composite function of the formx = g(x). A well-known proof

y12

y
21

y21(y12)

y
12

(y
21

)

y21
0

Figure 10. DIVERGENT FPI BEHAVIOR

y12

y
21

y21(y12)

y12(y21)

Figure 11. SYSTEM WITH MULTIPLE FIXED POINTS

of FPI convergence conditions for systems of this form is re-
viewed [12], and then it is shown here that these conditions are
equivalent to Eq. (4). So Eq. (4) provides necessary and sufficient
conditions for FPI convergence.

The FPI algorithm reduces to a recursion formulayi+1
12 =

g(yi
12). Assuming a fixed pointy12p = g(y12p) exists, we can sub-

tract the recursion formula from the fixed point equation to obtain
y12p−yi+1

12 = g(y12p)−g(yi
12). By the derivative mean value the-

orem, there exists aξ such thatg′(ξ) = g(y12p)−g(yi
12)

y12p−yi
12

. If g is C1

continuous on the interval[y12p yi
12], theny12p−yi+1

12 = g(y12p)−
g(yi

12) = g′(ξ)(y12p− yi
12). The true errorεi = y12p− yi

12 de-
creases if and only ifg′(ξ) < 1, sinceεi+1 = g′(ξ)εi . Therefore,
if a fixed pointy12p exists, the condition that|g′(y12)|< 1 for all
points in the neighborhood ofy12p is necessary and sufficient for
convergence of FPI if the algorithm is given a starting point in
the neighborhood ofy12p. Using the chain rule, this condition
can be put in terms of the original problem.∣∣∣∣∂(g(y12))

∂y12

∣∣∣∣ =
∣∣∣∣∂(y12(y21(y12)))

∂y12

∣∣∣∣ =
∣∣∣∣∂(y12(y21))

∂y21

∂(y21(y12))
∂y12

∣∣∣∣ < 1

(5)
The composite function may alternatively be written with the re-
verse evaluation order asg = y21(y12(y21)). In this case the con-
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vergence condition takes the form of Eq. (6).∣∣∣∣∂(y21(y12))
∂y12

∂(y12(y21))
∂y21

∣∣∣∣ < 1 (6)

Equation (4) is as yet unproven, only informally presented. It
can be shown that|g′(y21)|< 1 and Eq. (4) are equivalent. First
observe that:∣∣g′(y12)

∣∣ =
∣∣∣∣∂(g(y12))

∂y12

∣∣∣∣ =
∣∣∣∣∂(y12(y21))

∂y21

∂(y21(y12))
∂y12

∣∣∣∣ (7)

Then beginning with the first instance of Eq. (4), and using the
above expression, the proof is as follows:∣∣∣ ∂(y21(y21))

∂y21

∣∣∣ >
∣∣∣ ∂(y12(y21))

∂y21

∣∣∣ ⇔∣∣∣ ∂(y21(y21))/∂y21
∂(y12(y21))/∂y21

∣∣∣ > 1 ⇔∣∣∣∣ ∂(y12(y21))
∂y21

(
∂(y21(y21))

∂y21

)−1
∣∣∣∣ < 1 (8)

When the appropriate inverse function is formed,(
∂y21(y21)

∂y21

)−1
= ∂y21(y12)

∂y12
, and so∣∣∣∣∂(y21(y12))

∂y12

∂(y12(y21))
∂y21

∣∣∣∣ =
∣∣g′(y12)

∣∣ < 1 (9)

Therefore, if a fixed pointy12p exists, and if the condition given
in Eq. (4) holds for all points in the neighborhood ofy12p, nec-
essary and sufficient conditions for convergence of FPI are met
if the algorithm is given a starting point in the neighborhood of
y12p. The process for proving the second instance of Eq. (4) may
be either as above, or simply to show that the two instances are
equivalent. The observations from Fig. 9 thus hold generally.

Thus, although FPI is straightforward to implement and en-
ables the use of existing analysis tools, it presents several diffi-
culties. In many cases FPI will not converge to an analysis so-
lution. In addition, if multiple analysis solutions exist, FPI may
not find them all. FPI is a sequential process, and does not allow
for parallelization of tasks. When FPI is used as the analysis tool
for MDF, all of these same issues arise. The optimization prob-
lem may be non-convergent, and when it converges the optimal
solution may not be found.

4 EXAMPLE PROBLEM: TURBINE BLADE DESIGN
The MDF and IDF formulations are demonstrated on the de-

sign of a turbine blade. The turbine blade design problem is fully
analytic and allows for variation of coupling strength. This latter
feature permits the investigation of how these two formulations
respond to increasing levels of coupling strength.

4.1 Design Problem Description
A turbine blade in a gas turbine engine is exposed to high

temperature combustion gasses moving at very high velocity, and
is subject to high forces due to aerodynamic drag force and cen-

tripetal acceleration. Modern alloys, such as Inconel, and ad-
vanced cooling systems are employed to ensure the durability of
turbine blades. A drawing of a single turbine blade is shown in
Fig. 12.

Figure 12. DIAGRAM OF A SINGLE GAS-TURBINE BLADE

Several phenomena were modeled in order to provide suf-
ficient fidelity and to capture the design tradeoffs and coupling
behavior:

1. Thermal expansion of the turbine blade in the axial direc-
tion.

2. Stress and elongation due to centripetal acceleration.
3. Aerodynamic drag force and the resulting bending stresses.
4. Dependence of thermal conductivity (k), elastic modulus

(E), and rupture stress (σr ) on temperature.

The blade’s temperature profile depends upon its dilated length.
Elongation due to thermal expansion or centripetal forces ex-
poses more surface area to hot combustion gasses, affecting the
heat transfer through the blade and the associated temperature
profile. The model also captures the dependence of elastic mod-
ulus and thermal conductivity on temperature. Higher temper-
atures (caused by changes in length) result in lower stiffness,
causing greater elongation. In summary, temperature depends
on length, and length depends on temperature (Fig. 13).

One possible design objective is to maximize the thermal
efficiency. Our simplified model cannot accurately predict this,
but it can predict the massmof the blade, and the heat transferq
through the blade. Both of these metrics should be minimized in
order to maximize thermal efficiency.

4.2 Analysis Model
The turbine blade is modeled as a simple rectangular fin

(Fig. 14). The design variables are the blade widthw and thick-
nesst. The blade has an initial undeformed length ofL0, and is
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Figure 13. ANALYSIS COUPLING PRESENT IN THE TURBINE BLADE

DESIGN PROBLEM

subjected to combustion gas temperatureTg and velocityvg. The
blade is affixed to a rotor with angular velocityω, resulting in
a centripetal accelerationfac. The axial positionx is measured
from the attachment point of the blade to the rotor. Four failure
modes are considered: melting, interference between the blade
and the turbine housing due to elongation, and structural failure
due to bending stressσb or axial stressσa. Several simplifying
assumptions were made: constant coefficient of thermal expan-
sionα, no internal blade cooling, constant inertial forcefac over
the blade, and no lateral contraction. The dependence of thermal
conductivity (k), elastic modulus (E), and rupture stress (σr ) on
temperature is modeled with curve fits based on empirical data.

w

t

L0

x

vg, Tg

fac

Figure 14. TURBINE BLADE MODEL SCHEMATIC

The complete turbine blade optimization problem is formu-
lated as a multi-objective optimization problem (Eq. 10).

min
x=[w,t]

{q,m} (10)

subject to g1(x) = Tmax−Tmelt≤ 0

g2(x) = δtotal−δallow ≤ 0

g3(x,x) = σa(x)−σr(T(x))≤ 0

g4(x,x) = σb(x)−σr(T(x))≤ 0

and 0≤ x≤ L0 +δtotal

whereTmax is the maximum temperature in the blade,Tmelt is
the melting temperature,δtotal is the blade elongation,δallow

is the initial clearance between the blade and housing, and
σa(x), σb(x), andσr(T(x)) are the axial, bending, and rupture
stresses along the blade. The analysis from each discipline
(structural and thermal) follows.

Structural Analysis The structural objective function is
the massm of the blade (ρ is the blade density).

m= wtL0ρ (11)

The total elongationδtotal requires computation of both ther-
mal expansionδth, and elongation due to axial accelerationδax.
The thermal expansion is dependent upon the change in temper-
ature from the initial temperatureT0.

dδth = α(T(x)−T0)dx (12)

δth =
∫ L0

0
T(x)dx−

∫ L0

0
αT0dx

δth =
∫ L0

0
T(x)dx−αT0L0

The last step is due to the constant thermal expansionα as-
sumption. The temperature profile must be known in order to
evaluateδth (supplied by the thermal analysis). The elongation
due to centripetal acceleration is dependent on the rotor speedω
and radiusr. First the axial load as a function of axial position
is calculated. The portion of the blade outboard of a position x
pulls with loadPa(x). The tangential velocity of the bladev= ωr
is assumed to be constant over the blade length, and is valid if
L0 � r.

Pa(x) =
∫ L0+δtotal

x

v2

r
ρAcdx (13)

=
v2

r
ρwt(L0 +δtotal−x)

= ω2rρwt(L0 +δtotal−x)

The axial deflectionδax is found using the axial load, and then
summed with the thermal expansionδth to get the total elonga-
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tion δtotal.

δax =
∫ L0+δtotal

0

Pa(x)dx
AcE(T(x))

(14)

= ω2rρ
∫ L0+δtotal

0

(L0 +δtotal−x)
E(T(x))

dx

δtotal =
∫ L0

0
T(x)dx−αT0L0 (15)

+ω2rρ
∫ L0+δtotal

0

(L0 +δtotal−x)
E(T(x))

dx

Observe that the value of the blade length after elongationL =
L0+δtotal is required. An iterative solution procedure is required
since this is unknown a priori.

The axial stress is a function of axial position, and is calcu-
lated with the relationσa = Pa/Ac, whereP is the axial load and
Ac = wt is the cross sectional area as before.

σa(x) = ω2rρ(L−x) (16)

The calculation of the bending stress is less trivial. The aerody-
namic load is calculated usingPaero = 1

2AfCDρv2, whereAf =
wL is the frontal area,CD is the drag coefficient,ρ is the combus-
tion gas density, andv is the combustion gas velocity (assumed
to be perpendicular to the blade). The velocityv is constant, as
is the combustion gas temperature and density. Therefore, the
only variables in the calculation ofPaero arew andL. For conve-
nience the constantK = 1

2CDρv2 is defined, and the aerodynamic
drag force is expressed asPaero = KwL. Considering a position
x on the blade, the total aerodynamic drag force acting on the
blade outboard of that position isPaero(x) = Kw(L−x), and the

bending moment at pointx is M(x) = Kw(L−x)2

2 . Finally, using
elementary beam theory, we arrive at the bending stress present
in the blade at positionx.

σb(x) =
3K(L−x)2

4t2 (17)

Thermal Analysis The thermal model was derived be-
ginning with the steady-state heat equation using constant base
temperature and an adiabatic tip boundary condition.

d2T
dx2 +

(
1
Ac

dAc

dx

)
−

(
1
Ac

h
k

dAc

dx

)
(T−T∞) = 0 (18)

The combustion gas temperatureT∞ is assumed constant,
and the temperature dependence of thermal conductivityk on
the average blade temperature is modeled with a curve fit. The
average convection coefficienth was approximated using empir-
ical correlations involving the average Nusselt numberNu and
the Prandtl numberPr: Nu = hw

kg
= CRemDPr1/3. The combus-

tion gas conduction coefficient iskg, ReD = vw/ν is the appro-
priate Reynold’s number,m is an empirical exponent of 0.731,
andC is the heat capacity of the combustion gas. Solving forh,

and substituting values for the other parameters with SI units (at
T∞ = 900◦C), we find:h(v,w) = 9.196v.731w−.269. The tempera-
ture profile and the heat transfer through the blade into the rotor
at the point of attachment are found through solution of the heat
equation with the appropriate boundary conditions.

T(x) =
cosh(m(L−x))

cosh(mL)
(Tb−T∞)+T∞ (19)

q = wt(Tb−T∞) tanh(mL)
√

2h(w+ t)wtk (20)

wherem=
√

2h(t +w)/ktw.

Curve Fits Surrogate models based on empirical data
[13] were employed in order to capture temperature dependence.
The rupture stressσr for Inconel X-750 was approximated using
ans-curvefunction.

σr(T) =
1300

1+e0.011(T−675) (21)

The conductivity of the bladek was modeled using a linear
curve fit. The dependence on average temperatureT was cap-
tured from empirical data.

k(T) = 6.8024+0.0172T (22)

The final curve fit was a fourth-order polynomial fit to the
modulus of elasticity for the blade material.

E(T) = 209.8−0.0487T− .0002T2 +6·10−7T3−6·10−10T4

(23)

4.3 Analysis Summary
Figure 15 illustrates the analysis problem structure, posed as

a coupled, two-subspace system. The system has two shared de-
sign variables, and no local design variables. The entire design
vector isx = [w, t]. The responses of the thermal analysis (SS1)

q(w,t,L)
T(x,w,t,L)

SS1: Thermal Analysis

m(w,t)
L(w,t,T(x))
total(w,t,T(x))
b(w,t,T(x),x)
a(w,t,T(x),x)
r(w,t,T(x),x)

SS2: Structural Analysis

y21=T(x)

y12=L

x1=w,t x2=w,t

Figure 15. DIAGRAM SUMMARIZING THE TURBINE BLADE ANALY-

SIS

are the heat lossq and the temperature distributionT(x), both of
which depend on the design vectorx and the input from the struc-
tural analysis (coupling variabley21), the dilated lengthL. The
responses of the structural analysis (SS2) are the massm, dilated

9 Copyright c© 2005 by ASME



lengthL, total deflectionδtotal, and the bending, axial, and rup-
ture stressesσb, σa, andσr . These responses in general depend
upon the design vectorx and the input from the thermal analysis
(coupling variabley12), the temperature distributionT(x). Table
1 shows the analysis results (using FPI) for a particular design.
Function valued responses such as temperature distribution and
stress distribution are displayed in Fig. 16.

Table 1. TURBINE BLADE ANALYSIS RESULTS.

parameters variables responses

ρ 8510kg/m3 w 0.08m q 0.2046W

L0 0.05m t 0.005m m 0.1702kg

α 12.6·10−6 m/K L 0.507m

rb 0.5 m δ 0.007m

ω 2100rad/s

δmax 0.05m

ρg 3.522kg/m3

Cd 2.0

v 100m/s

Tb 300◦C

Tg 900◦C

ε 1.0·10−8
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Figure 16. TEMPERATURE AND STRESS RESPONSE OF THE TUR-

BINE BLADE ANALYSIS

5 SINGLE LEVEL COMPARISON: MDF VS. IDF
The turbine blade design was optimized with MDF (using

FPI) and the IDF approaches. Since the problem has two objec-
tive functions (mandq), one (m) was treated as a constraint, and
the other (q) was treated as the objective function. A parametric
study on coupling strength was then performed, demonstrating
the sensitivity of MDF and IDF to this factor.

5.1 MDF Implementation
The MDF formulation is:

min
x=[w,t]

q

subject to g1(x) = Tmax−Tmelt≤ 0

g2(x) = δtotal−δallow ≤ 0

g3(x,x) = σa(x)−σr(T(x))≤ 0

g4(x,x) = σb(x)−σr(T(x))≤ 0

g5(x,x) = m−mmax≤ 0

0≤ x≤ L0 +δtotal

The mass was constrained not to exceed 0.04kg. The parameter
values from Table 1 were used, and the optimal design was found
to be[w∗, t∗] = [0.0131, 0.0075].

5.2 IDF Implementation
The IDF formulation is:

min
x=[w,t],T(x),L

q

subject to g1(x) = Tmax−Tmelt≤ 0

g2(x) = δtotal−δallow ≤ 0

g3(x,x) = σa(x)−σr(T(x))≤ 0

g4(x,x) = σb(x)−σr(T(x))≤ 0

g5(x,x) = m−mmax≤ 0

g6(x,x) = T(x)−T(x,x) = 0

g7(x,x) = L−L(x) = 0

0≤ x≤ L0 +δtotal

Once again, the parameter values from Table 1 were used. The
optimal design found using IDF was almost identical to the MDF
results:[w∗, t∗] = [0.0128, 0.0074].

5.3 Parametric Study on Coupling Strength
In this parametric study the computation time required for

both MDF and IDF solutions were recorded over a range of
coupling strength levels. The coupling strength of the turbine
problem may be varied by adjusting the modulus of elasticity
E. A more compliant blade (smallE) results in increased blade
elongation and exposed surface area, increasing the impact that
the structural analysis results have on the thermal analysis. A
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small value forE results in a strongly coupled system, whereas a
perfectly rigid blade (infiniteE) would result in completely de-
coupled structural and thermal analyses. TheE(T) curve from
Eq. (23) was multiplied by a small scalar to explore the effects of
increased coupling strength. Figure 17 illustrates the dependence
of MDF and IDF computation time on this modulus multiplier,
and hence the dependence on coupling strength. The plot elu-
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Figure 17. COMPARISON OF MDF AND IDF SOLUTION TIME AS A

FUNCTION OF COUPLING STRENGTH.

cidates the robustness of IDF with respect to coupling strength,
and the sensitivity of MDF to the same factor. Weakly coupled
systems are more efficiently solved with MDF, while strongly
coupled systems require excessive iterations for the inner anal-
ysis loops of MDF. The computation time required for the IDF
approach is virtually constant for all levels of coupling strength
investigated here.

6 CONCLUSIONS
Fundamental formulations of single-level MDO problems

were critically reviewed. MDF and IDF were implemented in the
solution of a newly developed, fully analytic, turbine blade prob-
lem. The problem illustrated the nature of feedback coupling
in an MDO system, and elucidated the nature of MDF and IDF
when applied to a coupled problem. IDF was shown to be a more
efficient choice for strongly coupled problems. Still, both MDF
and IDF are centralized approaches, reducing their desirability
as tools for larger design organizations or as model structures for
distributed decision making.
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