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ABSTRACT 
In decomposition-based design optimization strategies, 

such as Analytical Target Cascading (ATC), it is sometimes 

necessary to use reduced dimensionality representations to 

approximate functions of large dimensionality whose values 

need to be exchanged among subproblems.  The reduced 

representation variables may not be physically meaningful, and 

it can become challenging to constrain them properly and 

define the model validity region.  For example, in coordination 

strategies like ATC, representing vector-valued coupling 

variables with improperly constrained reduced representation 

variables can lead to poor performance or convergence failure.  

This paper examines two approaches for constraining 

effectively the model validity region of reduced representation 

variables based on proper orthogonal decomposition: a penalty 

value-based heuristic and a support vector domain description.  

An ATC application on electric vehicle design helps to 

illustrate the concepts discussed. 

KEYWORDS 
Reduced representation, decomposition, design 

optimization, analytical target cascading, proper orthogonal 

decomposition, support vector machines. 

 

1 INTRODUCTION 
 Complex design problems are often addressed through 

decomposition.  Consider, for example, an electric vehicle (EV) 

powertrain, consisting of a battery, electric traction motors and 

belt drives.  In a design optimization formulation, we can 

partition the design problem into a system-level problem to 

design the battery, belt-drive ratios, and motors for fuel 

economy, performance, and packaging; and a subsystem-level 

problem to design the motors so that their performance curves 

match those desired by the system-level problem.  Therefore, 

partitioning a system requires also coordination of the 

partitioned problems to provide the overall system solution.  

Partitioning and coordination are the two main elements of a 

decomposition-based solution strategy. 

One such strategy is Analytical Target Cascading (ATC) [1, 

2].  In ATC, coupling quantities exchanged between 

subproblems are treated as decision variables.  As the number of 

coupling variables becomes larger, ATC convergence becomes 

more difficult to achieve.  When the coupling variables are 

vector-valued, ATC may converge slowly or not at all due to the 

large number of variables resulting from discretization [3-5].  In 

the EV problem, motor performance curves are represented as 

discretized function outputs to high-fidelity, “blackbox” 

simulations, in the form: 
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Figure 1. POD-APPROXIMATED MOTOR MAP AT FAILED 

DESIGN POINT [5] 
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Here, y is the independent variable, z is the dependent variable, 

q is the number of discretized points and the dimensionality of 

the vector-valued coupling variable (VVCV), and F is an 

interpolation function, such as a lookup table.  Note that Eq. (1) 

implies that zi = f(yi), where f is the blackbox simulation. To use 

ATC effectively, one may choose a reduced representation 

method [4, 5], such as proper orthogonal decomposition (POD), 

to construct low-dimension VVCV approximations that improve 

optimization performance while maintaining accuracy [3-5].  

However, reduced representation variables may not be 

physically meaningful, leading to difficulties in constraining the 

design space appropriately.  This, in turn, can inhibit ATC 

performance as the subsystem optimization algorithm may 

select values incompatible with the underlying analysis models 

[5].   

This paper examines two approaches that can be used to 

constrain the model validity region for reduced representation 

variables, based on a penalty value heuristic and support vector 

domain description (SVDD), respectively.  Section 2 provides a 

brief background on reduced representations in related studies; 

Section 3 describes POD and its implementation for motor 

performance curves; Section 4 gives a brief review of ATC and 

describes the problem formulation associated with the EV 

powertrain; Section 5 discusses the methods for managing the 

POD model validity region; Section 6 highlights the results 

from implementing one of the constraint management 

techniques in ATC; and Section 7 offers some conclusions. 

2 BACKGROUND 
        A previous study broadly defined reduced representations 

as methods to decrease the dimension of VVCVs while 
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Figure 2. POD MODEL VALIDITY REGION FOR TWO 

COMPONENTS [5] 

 

 

maintaining a sufficient level of accuracy [5].  These methods 

include Fourier coefficients [6], weights of various basis 

functions [7, 8], and low-dimension metamodel inputs [9].  In 

general, low-dimension metamodels violate the necessary 

condition of additive-separability in ATC because they typically 

use physically meaningful design variables that may also appear 

elsewhere in the optimization structure [4, 5].  The violation of 

this condition would imply that implementing ATC as an 

optimization strategy is not necessary and that a single all-in-

one formulation would suffice.  Methods using coefficients or 

weights as reduced representation variables work better because 

they use physically meaningless design variables that are 

unlikely to be used elsewhere.  Among these latter methods, 

POD is attractive as it generates a functional form without prior 

user assumptions, makes limited assumptions regarding the 

number of fitting parameters, and uses a relatively small number 

of fitting parameters for the VVCV approximations based on 

data samples [5]. 

A critical issue in implementing POD in this context is that 

the POD coefficients serving as reduced representation 

variables may not be well constrained.  In an earlier study [5], 

using simple bound constraints led to failure of model 

computations and of the overall process, because the model 

validity region was actually nonlinear.  Simulation failure was a 

direct result of poorly approximated VVCVs, which in turn was 

a result of the optimizer selecting POD coefficients outside their 

model validity region.  Figures 1 and 2 illustrate this problem 

from the previous study. The first figure shows the VVCV 

approximations of the electric motor performance curves 

(where the bold lines represent the maximum/minimum torque 

curves and the numbered lines are power loss isocontours), and 

the second figure shows the infeasible design point relative to 

the POD model validity region (where the small dots represent 

sample designs within the POD model validity region).   
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Explicit constraints on reduced representation variables 

with no physical meaning are very difficult to concoct.  A 

penalty value-based heuristic that assigned arbitrarily large 

objective and constraint function values when the simulation 

failed was successful.  A more formal approach along this 

direction would be desirable.   

This paper reexamines the penalty value-based heuristic 

and compares it to another approach, SVDD, in an effort to 

identify a more appropriate method for constraining the model 

validity region of reduced representation variables.  SVDD may 

offer some advantages as it can represent data set boundaries 

that are nonlinear, non-convex, and even disconnected, without 

adding much complexity or computational burden. 

3 PROPER ORTHOGONAL DECOMPOSITION 
POD, also known as Karhunen-Loeve expansion [10, 11] 

and principal component analysis [12], has been used to 

simplify the analysis, design, and optimization of dynamic 

systems.  Specifically, it reduces the state-space representation 

of dynamic systems using the following transformation [13]: 

 

     )()()( ttt rp zzΦz  .             (2) 

 

Here, z(t) is the original state vector of dimension q, zr(t) is the 

reduced state vector of dimension p << q, and Φp is a matrix of 

the p most energetic, orthogonal basis functions  used to 

construct the approximation of the original state vector.  The 

final term z̄ (t) is known as the sample mean vector of 

dimension q and is used to center the data for the 

approximation.  Without any loss of generality, the VVCVs in 

this study can be thought of as state vectors, and therefore the 

transformation in Eq. (2) can be modified as 

 

          zzΦz  rp ,             (3) 

 

where z is the original VVCV of dimension q, zr is the reduced 

representation of p << q, and Φp and z̄  have the same meaning 

as in the state vector context but applied to VVCVs.  The matrix 

Φ containing the full set of orthogonal basis functions is 

constructed with m samples zi = [z1, z2, … , zq]
T
 using either the 

direct method or the method of snapshots [14]. 

The direct method is more efficient when q ≤ m [15] and 

begins by forming the covariance matrix R: 
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Here, Z is a (q x m) matrix containing all the samples of the 

original VVCV and Z̄  is a (q x m) matrix of the sample mean 

vector repeated m times.  Next, Φ is determined through a (q x 

q) eigenvalue problem associated with the covariance matrix, 

 

            ΦΛRΦ  ,             (5) 

 

where  represents the diagonal matrix of eigenvalues.  It is 

assumed that the orthogonal basis functions in Φ are arranged 

based on the magnitude of their associated eigenvalues: 
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Finally, the number of orthogonal basis functions in Φ is 

truncated to form Φp based on the cumulative percentage 

variation (CPV), which is a measure of the relative importance 

of each orthogonal basis function in Φ [16]: 
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In the above, CPVgoal is set arbitrarily based on the desired 

amount of information to be captured, which is usually 99.99% 

[17]. 

The method of snapshots [14] is more efficient when q > m 

[15, 18] and begins by forming the correlation matrix R: 
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The next step is to solve the (m x m) eigenvalue problem 

associated with the correlation matrix, 

 

            VΛRV  ,             (9) 

 

where V represents the matrix of eigenvectors.  The orthogonal 

basis functions are then determined from 
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where Φ is of dimension (q x m).  This captures the essence of 

the method and states that each orthogonal basis function is a 

linear combination of the m sample vectors [14].  Finally, Φp is 

determined according to the same procedures outlined in Eqs. 

(6)-(7) with q replaced by m. 

For the current study, three POD representations were 

designed to approximate VVCVs associated with maximum and 

minimum motor torque curves and power loss maps: 
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Each VVCV associated with the torque curves contained qmax = 

qmin = 41 values, whereas the VVCV associated with the power 

loss map contained qpLoss = 3321 values.  The sample vectors in 

Zmax, Zmin, and ZpLoss that were used to construct Φp,max, Φp,min, 
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Figure 3. ATC INFORMATION FLOW [19] 

 

 

and Φp,pLoss, respectively, were generated through a Latin 

hypercube sample (LHS) design of experiments of m = 2500 

samples each.  Because qmax = qmin << m, the direct method was 

used to develop Φp,max and Φp,min, whereas the method of 

snapshots was used to develop Φp,pLoss since qpLoss >> m.  

Performing POD, it was found that the dimensionality of zr,max, 

zr,min, and zr,pLoss was reduced to pmax = 14, pmin = 13, and ppLoss = 

96.  Consequently, the combined dimensionality of the VVCVs 

was reduced from Q = qmax + qmin + qpLoss = 3403 to Q = pmax + 

pmin + ppLoss = 123. 

4 ANALYTICAL TARGET CASCADING 
ATC [1, 2] is a decomposition-based optimization strategy 

applied to large-scale systems that uses a hierarchical structure 

to enable design targets determined at upper levels to be 

cascaded down to lower levels.  This technique then attempts to 

minimize deviations between design targets and subsystem 

responses to achieve an optimal and consistent system design 

solution. 

4.1 Review and General Problem Formulation 
The system is first decomposed into subproblems 

hierarchically.  In this configuration, the top level is the system 

level and the lower levels are the subsystem levels.  A 

subproblem linked above (below) any given element of interest 

is known as a parent (child).  The general ATC subproblem Pij 

for the ith level and the jth element is defined as [19]: 
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In the above, xij is the vector of local design variables, tij is the 

vector of target linking variables passed from the element’s 

parent at level (i - 1), rij is the vector of response linking 

variables passed to the element’s parent at level (i - 1), cij = tij – 

rij is the vector of consistency constraints between target and 

response linking variables, fij is the local objective function,  is 

the penalty function, gij is the vector of inequality constraints, 

hij is the vector of equality constraints, N is the number of 

levels, and M is the total number of elements.  In general, the 

linking variables in tij and rij consist of both coupling and 

shared variables, but in this study, only coupling variables are 

considered.  Ideally, the consistency constraints on these 

variables should evaluate to zero for an exact system solution; 

however, this may not happen due to non-differentiability at the 

solution and unknown minimal parameter values [19].  

Therefore, the consistency constraints are relaxed and inserted 

into some penalty function (c) that is also minimized in Eq. 

(12).  The coordination strategy used here requires ||c
()

 - 

c
()

||∞ to be within some small tolerance before the algorithm 

is terminated, where  denotes the iteration number. 

For this study, an augmented-Lagrangian (AL) penalty 

function was chosen, which resulted in the following general 

ATC-AL subproblem formulation for the ith level and jth 

element [19]: 
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Here, the vectors v and w are weights corresponding to the 

linear and quadratic terms in the AL penalty function, 

respectively.  These decomposed problems are solved in an 

inner loop strategy where the weights remain constant.  After 

inner loop convergence, termination conditions are evaluated in 

the outer loop, and if another inner loop execution is required 

the penalty weights are updated according to the following 

scheme: 
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The information flow for the general ATC-AL subproblem is 

illustrated in Fig. 3. 

4.2 Problem-Specific Formulation 
The formulation for the EV powertrain system [5, 20] 

consists of a two-level hierarchical decomposition based on Eq. 

(13).  The vehicle system and the motor subsystem described in 

Section 1 are the top-level and bottom-level subproblems, 

respectively.  In this study, the vehicle system objective is to 

maximize gasoline-equivalent fuel economy while minimizing 

the AL penalty function, whereas the motor subsystem objective 

is to minimize the AL penalty function exclusively.  Although 

both subproblems are subject to decision variable bound 

constraints, only the top-level contains additional constraints 

based on packaging, performance, motor feasibility, power 

consumption, and battery capacity. 
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Applying Eq. (13) directly, the vehicle subproblem P11, 

excluding decision variable bound constraints, is: 
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In the above, g1 and g2 are battery packaging constraints, g3 is a 

performance (0-60 mph time) constraint, g4 and g5 are motor 

feasibility constraints, g6 is a vehicle range constraint, g7 is a 

power violation constraint, and g8 is a battery capacity 

constraint [20].  The vectors zcomb and zcomb,r refer to the original 

vector of combined VVCVs and the combined vector of 

reduced representation variables, respectively.  Additionally, the 

vectors t22 and r22 include two scalar-valued coupling variables 

Jr and max.  Finally, the superscripts T and R denote target and 

response versions of the same coupling variable, respectively. 

Similarly, the motor subproblem P22, excluding decision 

variable bound constraints, is stated as: 
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Table 1 provides definitions for the input/output quantities to 

the objective function and constraint functions for both 

subproblems. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. DEFINITION OF INPUT/OUTPUT QUANTITIES 

TO OBJECTIVE/CONSTRAINT FUNCTIONS 

 
Quantity Definition 

BI Battery electrode thickness scale 

BW Battery cell width scale 

BL Number of cell windings 

xb Battery compartment clearance (m) 

pr Belt drive ratio 

Jr Rotor moment of inertia (kg-m2) 

max Maximum motor speed 

mpge Gasoline-equivalent fuel economy (mpg) 

bw Battery width (m) 

bl Battery length (m) 

t60 0-60 mph time (s) 

V Torque violation constraint (N-m) 

V Speed violation constraint (rad/s) 

R Vehicle range (mi) 

PV Power violation constraint (W) 

Cb Battery capacity (A-h) 

ls Motor stack length (m) 

rm Rotor radius (m) 

Rr Rotor resistance () 

nc Number of turns per stator coil 

 

5 CONSTRAINT MANAGEMENT METHODS FOR POD 

MODEL VALIDITY REGION 
As mentioned in Section 2, the approximations of the motor 

performance curves via POD are valid only within the sampling 

domain of the original representations.  This is true not only for 

POD, but for the majority of data approximation applications; 

that is, approximations to data can be reasonably interpolated, 

but rarely, if ever, successfully extrapolated.  In the context of 

design optimization, one can ensure that such data 

extrapolation, and hence ill-behaved analysis and optimization, 

do not occur, by introducing appropriate constraints on the 

approximation models.  In some cases, simply identifying the 

maximum and minimum attainable values for the parameters in 

these models is sufficient; in general, however, one cannot 

assume that the parameter space is a hypercube, constrained by 

simple upper and lower bounds.  Rather, the parameter space 

can, in many cases, be highly-nonlinear, resulting in a general 

hypersurface.  The fact that these parameters often lack physical 

meaning further compounds the difficulty, since it is often 

impossible to construct constraints manually that effectively 

define the validity domain of high-dimensional, non-convex, 

abstract quantities.  This is evident in the current ATC problem, 

where the parameters are POD coefficients serving as reduced 

representation variables.  In this section, two approaches, a 

penalty value-based heuristic and SVDD, are introduced as a 

means to constrain the POD model validity region effectively. 

5.1 Penalty Value-based Heuristic 
The premise behind this approach is to constrain the model 

validity region indirectly by assigning large penalty values to 

objective function and constraint function outputs that depend 

on the reduced representation variables.  This would, in turn, 

force the optimizer to select reduced representation variables 
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Figure 4. PENALTY VALUE-BASED HEURISTIC: 

MATLAB
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 TRY-CATCH STATEMENT 

 

 

that lie within the parameter space or model validity region.  A 

key assumption for the successful implementation of this 

approach is that non-gradient-based optimizers be used instead 

of gradient-based optimizers.  This is because penalizing 

quantities with large values, such as the objective function, in 

gradient-based optimizers can result in ill-conditioned 

optimization problems due to large gradients.  The EV problem 

in Section 4.2 is solved using the non-gradient-based optimizer 

NOMADm [21]. 

One possibility for the execution of this heuristic is to 

program some type of conditional statement that attempts to 

compute all quantities that are functions of the reduced 

representation variables and, if it cannot perform the 

computation, returns penalty values for the appropriate 

quantities and continues solving the optimization problem.  A 

reasonable approach would be to use a “try-catch” statement 

when programming in the MATLAB
®
 environment [22].  In this 

technique, MATLAB attempts to run the block of code between 

the keywords “try” and “catch”, and in most cases will return 

the results between these keywords.  However, if the block of 

code between “try” and “catch” fails and produces an error, 

then MATLAB can run an alternative block of code between the 

keywords “catch” and “end” [22].  

 Therefore, in the context of the penalty value-based 

heuristic, one can attempt to compute all quantities that are 

functions of the reduced representation variables between “try” 

and “catch” and, if the computations cannot be performed, 

assign penalty values to the said quantities between “catch” and 

“end”.  Figure 4 shows an excerpt from the MATLAB code for 

the EV study, where the program attempts to run the 0-60 mph 

powertrain simulation and, upon failing, returns infinite values 

as appropriate for mpge, t60, R, and PV. 

5.2 Support Vector Domain Description 
SVDD [23-26] is a classification method that uses a 

machine learning algorithm to approximate the boundary of a 

set of data points and to identify whether new data points lie 

inside the boundary description.  In particular, SVDD can be 

used to represent data set boundaries that are nonlinear, non-

convex, and even disconnected without adding much 

complexity or computational burden.  It is also distinct from 

other machine learning algorithms in that it requires only one 

class of data for classification as it aims to identify the 

minimum radius hypersphere enclosing the class.  This feature 

is advantageous for classification problems in which a second 

class of data is unknown or difficult to generate, as is the case 

for reduced representation variables. 

We assume that the data space can be effectively 

characterized by a hypersphere, and so we pose the following 

primal optimization problem [23-26]: 
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Here, Rhyp denotes the hypersphere radius,  denotes a 

hypersphere radius slack variable, Cp denotes the slack variable 

penalty constant, zr denotes a data sample (which is a p-

dimensional vector of reduced representation variables in this 

application), and a denotes the hypersphere center.  The second 

term in the objective function of Eq. (17) relaxes the 

optimization problem and permits the inclusion of outliers.  In 

practice, this optimization problem is never solved for reasons 

given in [27]; instead, its dual is formulated by constructing the 

Lagrangian 
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with nonnegative Lagrange multipliers Bi and i and applying 

the Karush-Kuhn-Tucker (KKT) conditions to obtain the 

following constraints [25]: 
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The new Wolfe dual optimization problem is then stated as 

follows [25]: 
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try 

    % If sim works, set err msg to zero 

    sim(‘pt_060’,[],options) 

    pt060err = 0; 

    varargout{1} = pt060err; 

catch 

    % Set sim outputs to penalty vals 

    mpge = -inf; 

    t60 = inf; 

    R = -inf; 

    PV = inf; 

    return 

end 
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Figure 5. PARTIAL SVDD FOR MAX-TORQUE POD 

MODEL VALIDITY REGION 

 

 

In the above, the i’s were eliminated using the bound 

constraints on Bi.  The dual solutions are categorized according 

to three conditions: Bi = 0, 0 < Bi < Cp, and Bi = Cp.  The first 

condition (Bi = 0) is satisfied by the majority of the dual 

variables for large m [25] and implies that the associated data 

sample zr,i lies within the hypersphere.  The second condition (0 

< Bi < Cp) implies that the associated data sample zr,i lies at the 

boundary of hypersphere and is essential to its description; 

these vectors are termed support vectors [23-26].  The third 

condition (Bi = Cp) implies that the associated data sample zr,i 

lies outside the hypersphere and is an outlier. 

Using the dual variables and  Eq. (20), the squared distance 

R
2

dist from a to any arbitrary data point y is calculated as 
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     (23) 

 

where the indices i and j run over the support vectors and their 

associated Lagrange multipliers.  With this definition, Rhyp can 

be calculated by setting y = zr,i for any data sample that is a 

support vector, and in turn this information can be used to 

determine whether an arbitrary data point lies inside the 

boundary description: 

 

          
22 )( hypdist RR y            (24) 

 

Such a condition can be added to the ATC problem formulation 

in Eq. (15) to constrain the POD model directly. 

A key limitation in the SVDD formulation is that it assumes 

a hypersphere data space.  Since this is rarely the case, one must 

usually map the data into some higher-dimensional “feature 

space” through a nonlinear transformation where the 
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Figure 6. PARTIAL SVDD FOR MIN-TORQUE POD MODEL 

VALIDITY REGION 

 

 

hypersphere assumption is more appropriate [25].  Because 

these nonlinear transformations can be difficult to develop 

explicitly, Mercer kernel functions [2z] are used to represent the 

dot product between any two nonlinear transformations.  

Although several kernel functions exist, the most preferred in 

the literature is the Gaussian kernel function [28] 
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where q0 is the kernel width parameter.  Equation (25) can then 

be substituted for the dot product terms in Eqs. (22)-(23), 

yielding the following dual optimization problem and squared 

distance formulations: 
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Two parameters, q0 and Cp, in Eqs. (26)-(27) must be tuned 

to construct an appropriate SVDD.  In practice, modifications to 

Cp have minimal impact on the solution [24, 25], leaving only 

q0 to be tuned.  For p ≤ 3, this tuning can be done visually by 

assessing contour plots for over-fitting characteristics.  For 

higher dimensions of p, a more formal approach is to assess 

over-fitting characteristics by using a leave-one-out method [27] 
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Figure 7. PARTIAL SVDD FOR POWER LOSS POD MODEL 

VALIDITY REGION 

 

 

or by testing a small, independent validation data set with the 

condition in Eq. (24) [24].  The latter method is used in the EV 

study since m is too large to perform the leave-one-out method 

efficiently and a validation set is readily available.  Note that 

none of these approaches addresses under-fitting error, which in 

general violates the original assumptions for SVDD because it 

requires a significant number of test data points outside the 

domain. 

In the EV study, three SVDDs were constructed to 

approximate the POD model validity regions associated with 

the motor torque curves and power loss map, leading to the 

following additional constraints in Eq. (15): 
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  (28)-(30) 

 

The sample vectors used to design the SVDDs were identical to 

those used in the first POD study, with the exception that they 

were appropriately mapped into the POD space.  Figures 5-7 

illustrate portions of the SVDDs for two dimensions of the POD 

model validity regions associated with the torque curves and 

power loss map. 

6  IMPLEMENTATION  
The ATC problem formulation, shown in Eqs. (15)-(16), 

was solved initially by implementing the penalty value-based 

heuristic discussed in Section 5.1. NOMADm [21], a 

derivative-free optimization software package based on mesh-

adaptive search algorithms, was used. In the P11 subproblem, 

the settings for this MATLAB-based optimizer were modified 

such that only a Latin hypercube search was performed and only 

4,000 function evaluations were permitted.  This was necessary 

Table 2. OPTIMAL DECISION VECTOR FOR VEHICLE 

SUBPROBLEM 

 
Vehicle Subproblem, P11 

Variable BI BW BL xb pr Jr
T max

T 

Value 1.04 1.08 16.30 0.43 2.12 0.42 676 

 

Table 3. OPTIMAL DECISION VECTOR FOR MOTOR 

SUBPROBLEM 

 
Motor Subproblem, P22 

Variable ls
R rm

R nc
R Rr

R 

Value 0.15 0.12 17.17 0.20 

 

Table 4. OPTIMAL CONSISTENCY CONSTRAINT 

VECTOR AND PENALTY WEIGHTS 

 
Consistency Constraint copt vopt wopt 

cz,max 5.38 9.83 x 1010 1.92 x 105 

cz,min 3.11 5.60 x 1010 1.92 x 105 

cz,pLoss 1.09 2.06 x 1010 1.92 x 105 

cJr 0.02 2.77 x 108 1.92 x 105 

cmax 1.31 2.44 x 1010 1.92 x 105 

 

 

to alleviate computational issues associated with memory 

availability.  However, in the P22 subproblem, the default 

settings were appropriate.  Finally, the tolerance on ||c
()

c
()

||∞ 

for outer loop convergence was set to 10
-2

. 

The optimization results using the penalty value-based 

heuristic for constraint management are shown in Tables 2-4.  

The algorithm converged after 15 ATC iterations and resulted in 

a system solution that was reasonably consistent between both 

subproblems.  The only constraint activity in the subproblems 

was the upper bound on Rr in the motor subproblem.  The 

optimal values of the reduced representation variables are not 

listed here as they are not physically meaningful; however, the 

optimal motor performance curves computed by these reduced 

representation variables are shown in Figure 8.  Under these 

design conditions, the EV could achieve a gasoline-equivalent 

fuel economy of approximately 201 mpg. 

An optimization problem implementing SVDD for 

constraint management can be formulated using Eqs. (15)-(16) 

and Eqs. (28)-(30).  Computational results associated with this 

formulation are left for future work. 

7 CONCLUSIONS 
Although no complete comparison can be made as of yet 

between the penalty value-based heuristic and SVDD as 

constraint management methods, there is a number of 

advantages and limitations that can be highlighted in both 

approaches.  The penalty value-based heuristic is fairly simple 

to implement and only requires the user to make a decision 

regarding the penalty value.  However, this approach is limited 

to slower, non-gradient-based optimizers, as large penalty 

values for the objective function could lead to ill-conditioned 

optimization problems due to large gradients.  Furthermore, the 

optimization runtime may be prolonged by the fact that the 
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optimizer can spend significant amounts of time outside the 

model validity region because the reduced representation 

variables are not constrained properly.   

SVDD offers an approach to overcome these limitations 

using hyperspherical boundary definitions to develop conditions 

that can be used to directly constrain the reduced representation 

variables.  With this method, almost any type of domain, 

including nonlinear, non-convex, and disconnected ones, can be 

defined without adding much complexity and computational 

burden in most situations.  Nevertheless, as the number of data 

samples used in SVDD increase, the computational expense can 

rise dramatically because of the corresponding increase in the 

number of decision variables (Bi’s) in the dual optimization 

problem of Eq. (22).  This is compounded by the fact that 

another optimization routine must be performed simultaneously 

that identifies the proper q0 for the domain description.  We see 

this situation in the current study, where the combined runtime 

for developing three SVDD models containing 2500 samples 

each was approximately 60 hours on a 3 GHz, 4 GB RAM, 

Intel
®
 Core

TM
 2 Duo CPU.  Therefore, in order for SVDD to be 

a competitive alternative to the penalty value-based heuristic 

when using non-gradient-based optimizers, the ATC 

optimization run time would have to be significantly lower than 

that of the penalty value-based heuristic. This point is 

unresolved and left for future work. 
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