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Chapter 1

Executive Summary

The goal of this project is to tune the parameters of a high-fidelity simula-
tion of a HUMMWV military vehicle using experimental data from an actual
HUMMWV. This model has been developed by RDECOM (at the Detroit Ar-
senal) to assist them in the design of future HUMMWV platforms.

Initial analysis was performed using an unreplicated full-factorial experimen-
tal design and Lenth’s method to evaluate factor significance. Response surface
methods were then used to determine the simulation parameter settings that
resulted in a simulation that most closely matched the experimental data from
the actual HUMMWV.

The model predicts the vertical acceleration of the vehicle center of mass
in response to a vertical impulse displacement applied to all four wheels simul-
taneously. The difference between the simulation predictions and experimental
data is quantified by an algorithm, AVASIM.

Four model parameters were chosen as factors, and a 24 full factorial exper-
iment (without replication) was specified with factor levels at +

− 10% nominal.
The model is deterministic, precluding the use of replicates. Applying Lenth’s
method none of the factors were deemed significant. A response surface method
was employed for further investigation of optimal parameter values, and data
already obtained for the 24 factorial design was used for the required corner
points. Additional center and axial points were obtained as required through-
out the process. A line search revealed a region with curvature, and a second
order model was used to identify a stationary point.

In general the model accuracy response is ill-behaved. It is suggested that the
steepest ascent optimization scheme implemented in this study is not adequate—
more sophisticated approaches are suggested. However, the steepest ascent re-
sults indicate that the accuracy of the model will be greatly improved by setting
the model parameters to the stationary point values.
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Chapter 2

Introduction

The objective of this project is to use experimental data from an actual vehicle
to tune model parameters such that the simulation accurately predicts actual
vehicle response. In addition, it is desired to identify which parameters have a
significant effect on model accuracy.

The system used for this project is the High Mobility Multipurpose Wheeled
Vehicle, or HUMMWV [1]. This vehicle is a mainstay of the Army fleet and is
constantly being redesigned to better suit the needs of the Army. This constant
redesigning requires that the Army have a high-fidelity simulation model of the
vehicle to allow for powerful design techniques to be employed. The simulation
model used for this project, developed by RDECOM (at the Detroit Arsenal),
is a high-fidelity three-dimensional dynamic model of a HUMMWV with full
suspension characteristics. The model is currently configured to parameter val-
ues based on an older model vehicle. The Army wishes to parameterize the
model to reflect the performance of the latest design in order to use the model
in further design studies. In order to do this an actual HUMMWV was set up
on a four-poster shaker table and instrumented to record various data. The
input to the system is a vertical displacement in the shape of an impulse ap-
plied at all four wheels simultaneously. The vertical acceleration of the center
of gravity of the vehicle was chosen as the output based on the test setup and
input applied. The availability of this experimental data will facilitate the task
of finding model parameter values that produce a more accurate simulation.
In order to compare the output from the experimental setup with the output
from the simulation model an algorithm called AVASIM was employed [5, 6, 7].
This algorithm generates a measure of model accuracy which varies from one to
negative infinity, with one representing one hundred percent accuracy and zero
representing a user-defined tolerance on the accuracy of the simulation output.
This dictates a maximum-the-best optimization strategy.

Four parameters of the simulation model were identified and selected for
this study based on discussions with Army personnel. These parameters were
the front and rear spring rates and damping coefficients. Access to only one
experimental data set was available for this project. Due to this fact and the
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deterministic nature of the output from a non-heuristic computational simu-
lation, experimental replicates cannot be made. This prompted a full factorial
experiment with four factors and no replications for the initial stage of this study.
This experimental design was suitable to analyze both the effect of the parame-
ters on model accuracy and the significance of each factor. Lenth’s method for
unreplicated experiments was employed initially to identify important factors
within the simulation model. Unfortunately, this method indicated that none
of the factors or interactions were significant.

After the failure of Lenth’s method to identify important factors, it was
decided to use a response surface methodology to tune the model parameters
with respect to all four factors. The data obtained for the Lenth’s method
analysis were used in addition to new center points to evaluate the parameter
main effects and curvature around the nominal parameter values. After finding
an absence of curvature around the nominal values, a line search was performed
in the direction of steepest ascent. A change in slope was detected, and a
new nominal point was set where that change occurred. A full response surface
analysis including the factorial, center and axial points was then used to identify
a stationary point and possible optimum parameter value settings. The accuracy
at the stationary point was markedly improved over the baseline accuracy.

Chapter 3 provides an overview of the AVASIM algorithm used to evaluate
model accuracy, and introduces the design of experiment and response surface
methods employed in this study. Chapter 4 presents the results of the investi-
gation, and Chapter 5 summarizes the interpretation of the results and suggests
opportunities for future work.
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Chapter 3

Simulation and Analysis
Methods

This chapter provides some detail on the AVASIM algorithm used to evaluate
model accuracy, and provides an overview of the data analysis methods em-
ployed in this study.

3.1 AVASIM Overview

The AVASIM algorithm evaluates model accuracy by calculating an Overall
Performance Index for a model. To calculate the Overall Performance Index for
a specific input and system configuration using AVASIM an output of interest
must be first identified. The comparison is made between the model under inves-
tigation and the truth. In this project the truth is obtained from experimental
data on a real system. However, in other cases it might acquired from a full
model. The full model is a more complicated model with enough complexity to
provide the most accurate predictions of the systems behavior. For the output
of interest, target points can be selected based on the use of the model (Figure
3.1). For example, in a model with a response similar to an ideal second order
system, the engineer is usually interested in the overshoot, rise time, steady
state value, etc. As many of these points as desired can be defined as targets,
in both amplitude and time. For each target point tolerances are then defined.

These tolerances can be either absolute or relative (percentage, etc.) toler-
ances. Based on intuition and experience relative tolerances are the preferred
type of tolerance. Absolute tolerances can be used if the numerical value of
a target point is at or near zero (resulting in very large negative performance
indices for relatively small errors), or there exists some other problem-specific
reason to do so. After target points and tolerances are chosen a performance
index at each point is evaluated. This is done using the following formulas:
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Figure 3.1: Sample Input to AVASIM.

Relative Tolerances:

Jp,i = 1 − |yi,full − yi,red|
yi,full · tolri

, i = 1 . . . n

Absolute Tolerances:

Jp,i = 1 − |yi,full − yi,red|
tolai

, i = 1 . . . n

It is important to note that a Target Performance Index of 1 at any point
corresponds to 100% accuracy. It is also of importance to note that a Target
Performance Index of 0 corresponds to the response of the reduced model being
at the tolerance for that particular target point. If there are no target points
defined, as is the case for this project, this step can be skipped.

Once each Target Point Performance Index has been calculated a Response
Performance Index is generated. This is done through the creation of a threshold
model. This is simply amplitude scaled and time shifted version of the full model
of the form:

ythr = a · yfull(t + b)

The scaling factors a and b are chosen to be as large as possible while in-
suring that the tolerances at all target points are met. If no target points have
been defined then a percentage tolerance can be defined directly for a and b.
This leads to a maximum perturbed model that still has acceptable accuracy.
Once this metamodel output has been generated, the residual sums between the
reduced and the full model and the threshold and the full model are calculated
using the following formulas:

RSred =
∫ T

0

|yfull(t) − yred(t)|dt
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RSthr =
∫ T

0

|yfull(t) − ythr(t)|dt

After these values are obtained the Response Performance Index in obtained
in a fashion similar to the Target Performance Indices using the following for-
mula:

Jr = 1 − RSred

RSthr

Finally, the Overall Performance Index for the reduced model for a specific
input and system configuration is calculated as an average of the Target Point
and Response Performance Indices using the following formula:

PI =
1
2

[(
1
n

n∑
i=1

Jp,i

)
+ Jr

]
If there are no target points defined then this value is equal to the Response

Performance Index. Once this value has been calculated there have been two
proposed methods of assessing model validity called the liberal and conservative
criterion. The conservative criterion states that all the individual Target Point
Performance Indices (Jp,i) and the Response Performance Index (Jr) must be
positive in order for the model to have sufficient accuracy and therefore be valid.
The liberal criteria states that it is only necessary for the Overall Performance
Index (PI) to be positive (meaning that some Target Point or Response Indices
can be negative, or have insufficient accuracy) for the model to be valid. When
there are no target points defined these criterion are equal.

The response of model accuracy evaluation tools is notoriously ill-behaved.
The response surface is typically highly non-linear, sometimes discontinuous,
multimodal, and usually numerically noisy. These properties pose substantial
challenges with regard to finding an unconstrained optimum, discussed in the
next section.

3.2 Problem Development

The nominal vehicle parameters are set to:

x0 = (A,B,C, D)T = (0.770, 0.617, 94.020, 98.277)T

where A = front spring rate, B = rear spring rate, C = front damping rate,
and D = rear damping rate. The factorial levels were set to +

− 10% of these
nominal values. AVASIM was used to evaluate model accuracy at all 24 factorial
points. Since no replicates were available, Lenth’s method (individual error rate
approach) was selected to check factor significance. With Lenth’s method the
pseudo standard error (PSE) can be used to estimate the standard error [8].
The full factorial experiment also provides insight into the response of the model
accuracy evaluation.

Response surface methods provide a generally efficient method for perform-
ing unconstrained optimization. The well known steepest ascent method [2, 8]
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uses the principal that the gradient of a function points in the direction of steep-
est ascent. A line search in this direction is performed until a maximum in the
gradient direction is found. The gradient at that new point is calculated, and
used as an updated line search direction. This process can be repeated until the
gradient is determined to be the zero vector, at which point necessary conditions
for optimality are satisfied (this point is called a stationary point xs). It can be
shown that the search directions for adjacent iterates are orthogonal. If the re-
sponse function is highly elliptic the steepest ascent method can converge very
slowly. Alternate methods such Newton’s method or Quasi-Newton methods
such as BFGS update are more efficient in this case.

Instead of iterating until the gradient is zero, a second order model can be
fit to the data around the current point. This of course only makes sense if
curvature is present in the region, which can be checked by either comparing
the average value of factorial corner points to the average of center points, or
calculating the p-value of the aggregate quadratic term. If curvature is present,
a second order model is then fit to the data (requiring additional axial points).
The stationary point of this second order model is then used to estimate the
location of stationary point1. If a second order model approximates the response
well, this is a reasonable approach. Care should be exercised if the stationary
point is determined to be far outside the range of sampled data.

1This is the essence of Newton’s method for unconstrained optimization, except that a
second order model is iteratively fit to every new estimate for the stationary point.

7



Chapter 4

Results

The model accuracy response corresponding to the 24 full factorial points de-
scribed in §3.2 are displayed in Table 4.1.

Table 4.1: 24 full factorial experiment results.

A B C D P I

− − − − −14.037

− − − + −12.761

− − + − −13.223

− − + + −12.693

− + − − −12.671

− + − + −12.772

− + + − −11.666

− + + + −11.829

+ − − − −15.036

+ − − + −12.453

+ − + − −13.531

+ − + + −12.951

+ + − − −14.225

+ + − + −12.808

+ + + − −13.156

+ + + + −12.446

This data was used to calculate the main effects and interactions, and the
PSE required for Lenth’s method. The cutoff value for significance was found to
be IER5%,15 = 2.16, and the pseudo standard error was PSE = 0.457. Table
4.2 displays all of the effects and t test values for each effect. It was discovered
that none of the factorial effects were significant according to Lenth’s method.

The data gathered from the original 24 experiment was used to begin the
response surface process for finding the optimum model parameter settings.
Seven center points, generated by small (within 1%) perturbations around the
nominal values, were used to perform a curvature check. MINITAB was used
to fit a first order model (with an additional aggregate quadratic term) to the
data, and the p-value for the aggregate quadratic term was found to be 0.971,
indicating an exceedingly small presence of any curvature. It was decided to
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Table 4.2: Lenth’s method calculations.
effect |y| t

A 0.619 1.354

B 0.639 1.397

C 0.658 1.439

D 0.854 1.867

AB 0.305 0.667

AC 0.049 0.107

AD 0.468 1.024

BC 0.186 0.407

BD 0.389 0.849

CD 0.440 0.961

ABC 0.080 0.175

ABD 0.129 0.282

ACD 0.238 0.520

BCD 0.248 0.541

ABCD 0.077 0.168

perform a line search in the steepest ascent direction. The scaled coefficients of
the linear model provide the search direction:

∆ = (−0.725, 0.748, 0.771, 1.000)T

Because steps of 2∆ would quickly bring the parameter values out of the feasible
range, higher resolution 1∆ step sizes were used. The line search produced the
following sequence of PI values:

{−12.0407, −11.1058, −11.0782, −10.8952, −11.0702, −11.0899, −11.4695}

A change of slope can be observed around the 4∆ response, and the investi-
gation was directed to that point. The nominal values were updated to the 4∆
parameter values. Another 24 experiment was designed, centered at the new
nominal values. The factorial points were set to +

− 10% of the updated nominal
values, and seven zero points were specified using small perturbations of the
nominal values. Again MINITAB was used to fit a first order model (with an
additional aggregate quadratic term) to the data. The p-value for the aggregate
quadratic term in this case was found to be 0.004, indicating a strong presence
of curvature. Since a stationary point may be near, a second order model (equa-
tion 4.1) was fit after eight axial points were specified and evaluated (using a
value of α = 2.0).

PI = β0 + xT b + xT Bx (4.1)

The values of β0, b, and B were found to be:

β0 = −11.0199

b = (−0.1266,−0.4241, 0.2548,−0.0009)T
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B =


−0.0128 −0.0047 −0.0082 0.0094

−0.0047 −0.0953 −0.0278 0.0261

−0.0082 −0.0278 −0.0369 −0.0217

0.0094 0.0261 −0.0217 −0.0010


Setting the gradient of the second order model to zero, the stationary point

was determined to be:

x∗ = (0.4127,−0.2484,−0.4515, 6.8110)T

The values of PI at the stationary point x∗ calculated with the second order
model and the simulation were respectively:

PI(x∗) = −11.0541 (using second order model)

PI(x∗) = −11.4523 (using simulation)

The second order model was only roughly accurate in this case. To determine
the nature of the stationary point the eigenvectors of the B matrix were found:

λB = (−0.1098,−0.0444,−0.0150, 0.0233)T

The B matrix is therefore indefinite, indicating a saddlepoint. However, note
from the b vector that the effect from factor D is not very significant. If the
factor D is ignored, the resulting 3×3 B matrix is negative definite, indicating a
local maximum. Setting D to its nominal value and running the simulation again
with the other factors at stationary point values, we find that PI = −11.1459,
which is in fact better than the simulation response at the stationary point.

The accuracy of the model at the baseline parameter values and at the
stationary point can be depicted graphically. Figure 4.1 illustrates how the
dynamic time response predicted by the model using baseline parameter values
roughly agrees with the experimental data. Figure 4.2 shows that the model
with the stationary point parameter values predicts a dynamic time response
that more closely follows the experimental data.
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Figure 4.1: Dynamic time response: experimental response vs. predicted re-
sponse with initial model parameter settings.
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Figure 4.2: Dynamic time response: experimental response vs. predicted re-
sponse with stationary point parameter settings.
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Chapter 5

Conclusion

The AVASIM algorithm was used to quantify the accuracy of a computer simu-
lation of a HUMMWV Army vehicle with respect to actual experimental data.
The objective of this study was to find parameter values that maximized this
accuracy. A 24 experimental design without replication was used for initial
analysis. This indicated a lack of curvature in the region around the baseline
constraints, requiring a line search to find a region with curvature so that a
stationary point and optimum parameter set could be found. A steepest ascent
response surface method was employed, and a stationary point with marked
improvement over the baseline performance.

The functional nature of PI merits some discussion. As mentioned earlier,
it is known to be highly non-linear, sometimes discontinuous, and somewhat
noisy. This makes response surface methods difficult to implement. Second
order models do not fit the response well. This was demonstrated by the dis-
crepancy between the second order response and the simulation response at the
same parameter value settings presented in Chapter 4.

Other optimization approaches are better suited for this task. One sug-
gested approach is to use a gradient-free algorithm, such as DIRECT1 [3] to
find a region in the model parameter space likely to have the global optimum,
followed up with a more sophisticated gradient-based algorithm, such as Se-
quential Quadratic Programming [4]. This approach is likely to find the global
optimum more efficiently.

1A method of systematic search over the design space, acronym for DIvided RECTangles.
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