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ABSTRACT

Complex System Optimization: A Review of Analytical Target Cascading,
Collaborative Optimization, and Other Formulations

by
James T. Allison

Chair: Panos Papalambros

Design of some modern products requires special techniques to manage complex-

ity. Various industries have specific needs in this regard, and several methodologies

for complex system optimization have been developed in response. A critical re-

view of these sometimes diverse approaches offers the design community enhanced

resources for mapping approaches to present design problems. This thesis covers

several selected single-level and multi-level methodologies for complex system opti-

mization. Two novel and easily replicated engineering design example problems are

introduced, facilitating an illustrative implementation of the said methodologies, and

offering a venue for clear exposition of their distinctions.

Emphasis is given to two particular multi-level methodologies: Analytical Target

Cascading (ATC), and Collaborative Optimization (CO). ATC was developed as a

product development tool, and has ties to the automotive industry. CO is a Mul-

tidisciplinary Design Optimization formulation, evolved from established methods

for Multidisciplinary Analysis. CO sees regular use in aerospace analysis and design



problems. The origin of each methodology colors its nature. Although ATC and

CO emerged from different sources, their mathematical formulations appear to be

similar. These formulations are investigated in detail, and it is shown that each has

a unique solution process. Terminology for each formulation is clearly defined and

compared.

This review is an important contribution toward better understanding of complex

system optimization methodologies. This in turn helps advance industry acceptance

and utilization of these methodologies.
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CHAPTER 1

Introduction

Modern engineering products are becoming increasingly complex, particularly

in industries such as aerospace and automotive. Optimization of complex products

presents unique challenges, including the coordination of frequently competing design

activities. Numerous formal methodologies have been developed for complex system

optimization. This thesis provides background for understanding many of these

methodologies, and offers a critical review of selected single-level and multi-level

formulations.

Methodologies for complex system optimization are commonly developed based

on the needs of a particular industry. The needs of different industries can be diverse,

leading to methodologies with distinctly different objectives and processes. In spite

of these differences, the resulting mathematical formulations can be similar, and in

fact some methodologies can be coaxed into forms that appear to be nearly identical.

However, the processes are still different, and the original intent of a methodology is

inescapable, coloring its nature.

This chapter first discusses optimization of complex systems in a general context,

and then how these ideas pertain to product development. An overview of the thesis

follows.

1
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1.1 Complex Systems Analysis

Design of a product classified as a complex system poses substantive challenges

to both analysis and to design optimization. Specialized techniques have been devel-

oped to meet these challenges. This section provides a general overview of complex

systems, and an introduction to their analysis.

1.1.1 Definition of Complex Systems

A complex system is:

An assembly of interacting members that is difficult to understand as a

whole.

The terms ‘interaction’ and ‘difficult to understand’ merit precise definition. An

interaction between members exists if the state of one member affects how the system

responds to changes in another member. A system is difficult to understand if an

individual cannot understand the details of all members and all interactions between

members. For example, aerospace products originally did not qualify as complex

systems, since a single master designer was capable of completely understanding the

design of an aircraft. Present aerospace products, however, are far too complex for

an individual to understand. Several interacting specialized teams of experts are

required to analyze and design a modern aircraft.

Assessment of whether a system is difficult to understand depends on available

resources for investigation and analysis, which could include experience and intuition,

mathematical models, empirical results, or computer simulations.

A system may qualify as complex due to its large scale (large number of mem-

bers or inputs), or due to strong interactions. This thesis emphasizes systems with
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complex interactions. These interactions are frequently more difficult to understand

than the constituent members, but if well characterized provide opportunity to ex-

ploit synergy between members. When interaction is present, a system is said to be

coupled; that is the members are coupled together via interaction.

Analysis of a complex system involves determining the system response for a

given system design. The system design is completely determined by a set of design

variables and parameters (system inputs). Design or optimization of a complex

system involves determining the values for design variables that produce the best

system response based on some criteria. Design variables can be changed by the

designer, while design parameters are considered fixed during the design process

[32]. System analysis is used as a tool for system design.

1.1.2 Complex System Decomposition

Frequently the analysis of complex systems as an undivided whole is discovered to

be inefficient, if not intractable. An alternative strategy is to partition the system into

smaller subsystems. Considering the subsystems individually and their interactions

may render the system analysis task feasible or more efficient.

Several approaches for system partitioning may be used, and the choice depends

on the system and the analysis environment. Wagner [44] identified four categories

of system partitioning methods: by object, by aspect, sequential, or matrix. Object

decomposition involves dividing a system by physical component or function [35].

For example, an automotive design may be partitioned by object into body, power-

train, and suspension subsystems. Aspect partitioning divides the system by disci-

pline. The same automotive design could be partitioned by aspect into structural,

aerodynamic, and dynamics disciplines. Sequential partitioning is appropriate for
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flow processes. Chemical or manufacturing processes may be partitioned by making

cuts in flow paths. Matrix partitioning is applied to large systems of mathemati-

cal equations. Wagner also explained that in a mathematical programming context,

decomposition is both partitioning and application of the coordination strategy.

This thesis will focus on the first two types of partitioning: object and aspect.

Much work has already been done in the area of system partitioning methodology

[27, 44], i.e. formal approaches to partition systems in the best way possible. In this

thesis an established system partition will be assumed to exist, and emphasis will

instead be on formulation of strategies to fit an already partitioned system.

Several designations have been given to partitioned subsystems (disciplines, mem-

bers, elements, components, subproblems, etc.). The designation used typically de-

pends on the partitioning approach, the nature of the system, and the analysis en-

vironment. To circumvent possible obfuscation, these subsystems will be referred to

as subspaces— a general term independent of problem and partitioning type. The

original system has a system level space, consisting of the system’s input and output

spaces. Subsystems also have their own respective subspaces, consisting of their own

input and output spaces. These subspaces in general include some of the original

system level inputs and outputs, as well as interaction variables that are artifacts of

system partitioning.

System partitioning is also characterized by the structure of its communication

pathways. A non-hierarchical system has no restrictions on the communication path-

ways (Figure 1.1), while a hierarchical system only allows communication between

parent and child subspaces as depicted in Figure 1.2. For example, subspace 2 and

3 are not allowed to exchange information in the hierarchical system example. Nu-

merous systems possess a naturally hierarchic structure, which can be exploited to
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facilitate efficient solution processes. Some formulations for complex system opti-

mization discussed in later chapters take general non-hierarchic systems and repose

them as hierarchic systems using additional system constraints.

Figure 1.1: Illustration of a non-hierarchical system.

Master Problem

Subspace 1 Subspace 2

Subspace 3 Subspace 4

Figure 1.2: Illustration of a hierarchical system.

1.1.3 Subspace Interaction

As explained previously, an interaction between subspaces indicates that the state

of one subspace affects how the system responds to a change in another subspace.

This agrees with the classical Design of Experiments definition of interaction. If the
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system response is the output of function f , and the inputs to subspaces 1 and 2 are

X1 and X2 respectively1, then the interaction between the two subspaces is:

Int(SS1, SS2) = [f(X+
1 , X+

2 )− f(X−
1 , X+

2 )]− [f(X+
1 , X−

2 )− f(X−
1 , X−

2 )]

Sometimes subspace interaction is straightforward, such as when communication

flow is unidirectional (when one subspaces depends on another, but not visa-versa).

Other more involved interactions occur when subspaces depend on each other. A few

classical examples of this include aeroelasticity and combustion (both partitioned by

aspect). In aeroelasticity the system is divided into the structural analysis and

the aerodynamic analysis. In aircraft wing analysis, the structural analysis takes the

pressures generated by aerodynamic effects as inputs and returns the wing deflections

and stresses. The input to the structural analysis (pressure distribution) must be

generated by an aerodynamic analysis. However, the aerodynamic analysis requires

the output of the structural analysis (wing deflections) to accurately predict the

pressure distribution. The structural and aerodynamic analyses are therefore said to

be coupled— they each depend on the other. The other example, combustion, has

even more complex interaction. Combustion requires the analysis of fluid transport,

heat transfer, and chemical reactions. Each of the three disciplines depends upon the

other two, resulting in a total of six couplings. If a system has n distinct subspaces,

then the system has a possible n(n − 1) couplings2. The combustion example is

fully coupled, since all of the possible 3(3− 1) couplings exist. The strength of each

coupling depends on many factors, discussed in §2.2. A strongly coupled system,

even if it only has a few subspaces, may pose substantial analysis difficulty.

An illustrative example with two coupled subspaces is introduced here, and fully

1The superscripts + and − indicate two different levels of the inputs.
2Please observe that these couplings may be scalar, vector, or function valued.
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developed in Section 4.1 for the demonstration of two fundamental complex system

optimization strategies. A turbine blade is used in a gas-turbine engine to convert

the kinetic energy of high-velocity combustion gasses to rotational mechanical work.

Gas turbine engine design has been the subject of complex systems optimization

research. Röhl et. al. demonstrate the use of several different complex system

optimization strategies for the design of turbine engines and related manufacturing

processes [34]. The simplified example problem here considers only the analysis and

design of a single turbine blade. The objective is to minimize the heat loss through

the blade, while meeting mass, stress and temperature constraints. The system

analysis is partitioned by aspect into two subspaces: thermal and structural analysis.

The thermal analysis requires the length of the blade to compute the heat loss and

the temperature distribution, while the structural analysis requires the temperature

distribution to compute the dilated blade length. The coupling of this system is

illustrated in Figure 1.3.

Thermal
Analysis

Structural
Analysis

T(x) (temperature
profile)

L (dilated length)

Figure 1.3: System coupling of the turbine blade example problem.
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1.2 Product Development

Product development is an important application of complex system optimiza-

tion. Needs within industry drive the development of approaches to improve the

design process, and a complex systems approach is sometimes utilized. A better un-

derstanding of these approaches among all involved in the development of complex

products is critical to the improvement of the design process.

1.2.1 Design of Complex Systems

Design is a decision making process: decisions must be made about the appropri-

ate values of design variables to yield the most optimal design. These decisions may

be based informally on intuition, or formally on quantitative performance criteria.

An introduction to formal design optimization is given in Section 2.1. This section

discusses design optimization as it relates to product development.

Product design optimization requires an analysis method and a method for gen-

erating improved designs. The spectrum of available optimization procedures ranges

from iterative trial-and-error to formal algorithms to efficiently guide the design pro-

cess to an optimal solution. An example of the former is prototype generation in a

machine shop without formal preliminary design (design method), and experimental

testing of the prototypes (analysis method). An example of the latter is a complete

computer simulation of an automobile (analysis method) coupled with optimization

software (design method). In either case, a better design is iteratively proposed

based on the performance of previous designs. Trial-and-error approaches are ade-

quate for simple, inexpensive designs. If prototypes are expensive or time-intensive

to construct, it is desirable to use a simulation as the analysis tool. Whether exper-

imentation or simulation is used for analysis, optimization algorithms can speed the
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design process.

Product development has become increasingly complex. Market competitive-

ness requires ever increasing levels of product quality, reliability, and performance;

traditional approaches to product development can be inadequate to meet these de-

mands. Complex products, such as found in the aerospace or automotive industries,

require teams of designers collaborating effectively to successfully generate compet-

itive products. Creative individuals in industry have crafted novel approaches to

product development, and researchers have formalized these approaches and work

to improve their efficiency and robustness. Sharing knowledge of these approaches

across industry boundaries will facilitate even more effective solutions to complex

system optimization.

Several industries have adopted a multi-disciplinary framework to cope with the

demands of designing complex systems, and value designers that thrive in a multi-

disciplinary systems environment [8]. This gives impetus to a more ubiquitous fa-

miliarity with concepts discussed in this thesis. Some universities have included

the study of complex system optimization in their curriculum [29], and ABET has

placed increased emphasis on a multi-disciplinary systems perspective. Education

of students, managers, and executives concerning the potential of complex system

optimization methodologies will foster better acceptance and utilization in industry.

Industries are structured in a variety of ways, and as a result different industries

spawn different approaches. One reason for this is because partitioning structure is a

profound factor in how a problem can be solved. Partitioning might be enforced by

established communication paths or by available analysis tools. Partitioning may also

be dictated by heterogeneous computing environments and geographically separated

design groups.
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Matrix organizations may be aligned either by object or aspect3 [43]. This exist-

ing structure leads to either object or aspect partitioning (respectively) of the design

optimization problem. The task is then to formulate a strategy that fits the exist-

ing structure well and is efficient and effective compared to how the organization

previously coordinated its product development tasks.

1.2.2 Industry Requirements

An important measure of complex system optimization strategy is its usefulness

in industrial application. This section introduces some industrial needs that can be

used to gauge the usefulness of strategies. Industry needs drive the formulation of

these strategies. An effective complex system optimization strategy should:

• Compress design cycle time

• Facilitate transition to a concurrent engineering environment

• Characterize and exploit complex subspace interactions

• Yield substantive product quality and performance gains

• Exhibit flexibility and adaptability

• Advance product knowledge to beginning of the design process, while extending
design freedom toward the end

• Effectively utilize existing resources

Reducing time to market is a critical metric for the success of a product. This can

be realized by parallel utilization of resources, such as design groups and computing

facilities. Sequential approaches can result in unproductive downtime. Paralleliza-

tion also facilitates early consideration of manufacturing, reliability, and life cycle

costs— a step towards a concurrent engineering environment and improved product

3For example, aerospace firms are typically aligned by aspect, and automotive firms are usually
aligned by object.
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quality. Understanding of subspace interactions enables exploitation of synergy be-

tween subspaces and sometimes dramatically improves system performance. Some

products are complex enough that interactions and the system as a whole are im-

possible to understand using traditional knowledge based approaches [29], requiring

the development of more formal strategies. As knowledge is gained about a sys-

tem progressively throughout the design process, detail and complexity of the design

increases. Analysis tools may also change as required by this increase in complex-

ity. Design strategies must be flexible enough to adapt to changes and increase in

complexity as the design process progresses [19].

Better design decisions are made when designers have improved knowledge of the

system at hand, and freedom to act on this knowledge. Figure 1.4, adapted from

[17], chronologically illustrates this objective. A preferred design approach is show

with the dashed lines— indicating improved system knowledge and design freedom.

System Knowledge

Design Freedom
time

Traditional Design Processes
Emerging Design Processes

Figure 1.4: Illustration of maintaining design freedom and advancing system knowl-
edge using emerging optimization strategies.

A short example illustrates how traditional sequential design processes can delay

system knowledge acquisition and stifle design freedom. Consider a hypothetical
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automotive design process, divided into the following sequential design tasks:

StructuralDesign → PowertrainDesign → SuspensionDesign → ErgonomicsDesign

As the design progresses, one design group fixes its design (optimal according

to its own criteria). Subsequent design groups must cope with these decisions by

adjusting their own designs to compensate. Fixing design variables before all design

tasks are considered may be detrimental to both subspace designs and to system

level design objectives. If one of the design groups discovers their design is rendered

infeasible by preceding design decisions, the process must be repeated. Interaction

between the groups is dealt with, but not understood and exploited, passing up po-

tential performance gains. For example, by the time the ergonomics design group

begins work, the envelope of the cockpit has been fixed by the structural design

group. It may be discovered that changing the envelope by just a few centimeters

could dramatically improve the performance of the cockpit design, and that this

small change has little effect on structural performance. Unfortunately this interac-

tion cannot be exploited in a sequential design, since the structural design is fixed

before the cockpit design begins. Parallelization enables consideration of interactions

(advancing system knowledge) when the freedom still exists to act on this knowledge.

Another reason system knowledge must be generated earlier is projects in some in-

dustries (such as aerospace) are farther and fewer between. Designers cannot rely on

recent experience to guide the design process.

Mature industries have well developed design resources, including specialized

analysis and optimization tools, and experienced designers and disciplinary experts.

A desirable attribute of complex system optimization tools is the ability to make full

use of these existing resources. Ideally designers are not removed from the process,
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but are instead provided with insightful system information. This is a move toward

a synergistic relationship between designers and computational tools.

Formal strategies for complex system design can be implemented at a range of

points chronologically within the product development process. For example, Ana-

lytical Target Cascading (Chapters 5 and 7) is intended for use early in the process.

Analytical Target Cascading takes system level targets and propagates them through

the entire system, setting targets for all design groups such that each group can work

independently toward a consistent system design that matches the original system

level targets. Other methods may be employed early in the design process to optimize

conceptual designs to their full potential before judgment between the alternatives

is made. Some formulations are complete design tools, employing formal methods

throughout the entire product development process, and adapting to increasing levels

design detail.

1.2.3 Multidisciplinary Design Optimization

The aerospace industry deals with design of very complex systems, and aerospace

firms are typically aligned by discipline (aspect). Researchers in this industry (and

other institutions) have developed a class formal approaches to complex system de-

sign, referred to as Multidisciplinary Design Optimization (MDO). MDO approaches

have roots in the field of Multidisciplinary Analysis (techniques for analyzing complex

systems partitioned by discipline). MDO may be defined as both a new engineer-

ing discipline concerned with formal methods for the design of complex systems,

and an environment conducive to said formal methods. The AIAA MDO Technical

Committee [17] defines MDO as:

A methodology for the design of complex engineering systems and sub-
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systems that coherently exploits the synergism of mutually interacting

phenomena.

Some are quick to identify that industry has always in some manner utilized

the above approach. This is certainly true; MDO just formalizes the iteration and

coordination between groups, improving efficiency and product quality.

An MDO environment facilitates effective communication between the appropri-

ate groups. This alone is an important research focus. How should data formats be

standardized? How should data be stored and distributed? The goal of an MDO

environment is to have a tight-knit interdisciplinary team [17]. The communica-

tion process should not cause delays in product development. Industry has always at

some level implemented MDO, but the development of more formal strategies enables

industry to produce products with substantially better quality and reduced devel-

opment time. It is not claimed that MDO introduces multidisciplinary coordination

as a new endeavor, but rather offers a formalization of iteration and coordination

between groups, improving efficiency and resulting in superior products.

The literature is rich with detailed explanations of MDO formulations and appli-

cations. Sobieski and Haftka provide a thorough review of developments in the MDO

area [36]. The literature often tends toward specialization, and currently a paucity

of solid overviews exists. A decade previous Balling and Sobieski published an ex-

cellent review of MDO formulations [5], and Balling and Wilkinson demonstrated

several formulations with an analytical test problem [3]. Substantial developments

have been made since these overviews, such as Collaborative Optimization (Chapters

5 and 6). The differences between some formulations are sometimes difficult to iden-

tify, leaving many to wonder about the merits of further pursuit. An opportunity

exists to make the distinction between formulations, and clarify why they are all
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important and what niches of the complex system optimization spectrum they fill.

1.3 Thesis Overview

This chapter introduced the basic concepts of complex system optimization and

how it applies in a product development context. This thesis has two primary ob-

jectives: first, provide a solid background for understanding the basics of MDO and

other strategies for complex system optimization; second, offer a critical review of

selected single-level and multi-level formulations. Emphasis will be placed on clearly

illustrating the differences between two popular strategies: Collaborative Optimiza-

tion (CO) and Analytic Target Cascading (ATC).

Chapter 2, MDO Preliminaries, introduces a formal approach to systems opti-

mization, and explains fixed point iteration (FPI), a popular approach to analyzing

coupled systems. FPI is simple and intuitive to implement, yet has several short-

comings, including convergence difficulties. Knowledge of FPI enables a detailed

understanding of the most fundamental MDO approach, MDF, and motivates the

development of more sophisticated methods, such as IDF, AAO, and DCF— all of

which are explained in Chapter 3.

Throughout this thesis illustrative examples are employed to establish important

concepts. These examples are fully analytic, and presented in enough detail for

straightforward replication. The turbine blade design problem introduced in this

chapter is fully developed in Chapter 4, and used to illustrate the details of MDF and

IDF implementation. In addition, it facilitates an interesting comparison between

these two approaches.

The two multilevel methodologies of interest in this thesis, CO and ATC, are

explained in Chapter 5. A structural analysis example problem was developed that
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can be manipulated into a non-hierarchic form conducive to the CO formulation, and

into a hierarchic form well suited for ATC. With such an example problem both CO

and ATC can be used in a natural way to solve the same design problem, offering a

unique comparison tool. The example problem is presented in Chapter 6 and solved

using CO, and then reformulated in Chapter 7 and solved using ATC. Chapter 8

summarizes the comparison results, and offers insights into future related work.

Two themes flow through this thesis: exploiting interactions and proper applica-

tion of approaches.

1. Complex systems have interdependent subspaces. A traditional sequential de-

sign process merely copes with the interactions, while modern strategies for

complex system design seek to understand these interactions and exploit their

synergy to generate superior designs.

2. Formulation of an effective approach for complex system optimization is highly

problem dependent. The existing analysis structure and nature of subspace

interactions are critical factors in how well suited particular approaches are

for the design problem. A practitioner has a wide variety of formulations in

his/her toolbox, and each fills a specific niche in the spectrum of complex

system design problems. A thorough understanding of these formulations (not

just the formulations from his/her industry) is crucial to success.



CHAPTER 2

MDO Preliminaries

Before embarking on an explanation of MDO formulations, several important

system analysis and optimization concepts are presented. Formalized design opti-

mization is reviewed, and critical aspects of coupled system analysis are explained.

A solid understanding of these topics is required before strategies for complex system

optimization are discussed, and is particularly important to appreciate the nuances

and distinctions between strategies.

2.1 Systems Optimization

An introduction to the systems optimization paradigm is presented here, and

nomenclature used throughout this thesis is developed.

2.1.1 Nonlinear Programming

The objective of nonlinear programming (NLP) is to find a vector X that mini-

mizes (or maximizes) a function of that vector, and in the general case is subject to

equality and inequality constraints. This applies to product design in that a design

problem can be formalized into a nonlinear programming problem. It is assumed

here that the conceptual design is already established, analysis tools exist, and the

design can be completely described by a set of values contained in the design vector

17
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X. With the appropriate analysis tools, the merit of a particular design may be

quantitatively established.

To illustrate, it might be desired to minimize the cost of a design, subject to

performance constraints. The objective of the design problem is to minimize cost. In

general the objective function is denoted f(X). Any constraints may be expressed in

negative null form. If a constraint specifies that some performance value p(X) must

not drop below a minimum acceptable value pmin, we can express this inequality

constraint as g(X) = pmin − p(X) ≤ 0. If a target value T must be achieved

by a response function T (X), this equality constraint may be written in the form

T − T (X) = 0. These are the negative null forms of the constraints. In general

inequality constraint functions are denoted by g(X), and equality constraint functions

by h(X). If multiple constraints are required, vector valued constraint functions are

employed. A design optimization problem can in general be posed in a canonical

form as a negative null nonlinear programming problem [6, 32]. The standard design

problem is shown in equation 2.1.

min
X

f(X) (2.1)

subject to g(X) ≤ 0

h(X) = 0

The general idea is to vary the values in X (i.e., search the set of available

designs) such that the minimum value of f(X) is obtained without violating any of

the constraints g(X) or h(X). The solution to the problem is the optimal design, and

is denoted X∗. Constraints are said to be active if their removal changes the solution.

This is a formal, quantitative way of posing the design optimization problem. An

intuitive approach applicable to one, two, or perhaps three variable problems is to

plot the objective and constraint functions over the design space, and visually identify
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the optimum design point. This may work fine for a limited number of variables and

easy to evaluate functions, but larger design problems and those with functions that

take significant time to evaluate (prohibiting the generation of plots) require more

efficient approaches.

Several algorithms exist to solve the general nonlinear programming problem in

equation 2.1. When X is continuous, mathematical optimality conditions exist and

can be used both to verify optimality and to drive gradient based algorithms. Ex-

amples of gradient based algorithms are Sequential Quadratic Programming (SQP)

[6, 11, 32, 33] and Generalized Reduced Gradient (GRG) [6, 11, 32] methods. The

well known Karush-Kuhn-Tucker (KKT) conditions (equation 2.2) are first order

necessary conditions for optimality1. Proof of these conditions and delineation of

optimality sufficiency conditions can be found in [6, 32, 41].

∇L = ∇f(X) +∇λTg(X) +∇µTh(X) = 0 (2.2)

g(X) ≤ 0

h(X) = 0

λ 6= 0

µ ≥ 0

If the objective function or the constraint functions are numerically noisy, gradient

information can be inaccurate, causing gradient based algorithms to fail by either

diverging or converging to a false minimum. One solution is to fit a surrogate model

to data derived from the design simulation, and use this smooth response surface in

the optimization. Another approach is to use a gradient-free algorithm. Gradient

free algorithms also have the advantage of allowing discrete variables in the design

vector. Some perform a systematic, deterministic search of the design space, such

1L is the so-called Lagrangian function, the minimization of which satisfies the necessary condi-
tions for the original NLP problem. λ and µ are the Lagrange multipliers, indicative of constraint
sensitivity.
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as DIRECT [22]. Other heuristic algorithms include Simulated Annealing (SA) [25]

and the evolutionary Genetic Algorithm (GA) [7, 21]. While gradient free methods

work when other algorithms do not, they also have the disadvantages of excessive

function evaluation requirements and lack of optimality conditions. Except in special

cases, a solution cannot be proven to be an optimum when a gradient free algorithm

is employed.

Some algorithms are generally robust in that they reliably find the solution, while

others (such as genetic algorithms) require tuning of parameters for each specific

problem in order to be successful. An in-depth understanding of optimization theory

and algorithms is essential to correctly pose and solve an NLP problem. Optimization

software is not a push-button device that automates the design process. Haphazard

application of optimization tools can produce erroneous results [32]. The reader

should refer to one of the many texts on optimization texts if more background in

optimization theory and algorithms is needed. Examples include: [6, 7, 32, 41].

2.1.2 Multi-Objective Optimization

The NLP problem posed in equation 2.1 aims to minimize a scalar objective func-

tion f(X). Often multiple objectives are deemed important to a design, and these

objectives are frequently conflicting. For example, mechanical designs commonly

must minimize weight and compliance simultaneously, obviously conflicting objec-

tives. The task of multi-objective optimization is regularly encountered in systems

optimization, since it is usual for each subspace to have its own objective function. In

automotive design, the system designer must maximize fuel economy, safety, comfort,

road handling, acceleration, and reliability all simultaneously. Also, an important

distinguishing factor between MDO formulations is how the multiple objective func-
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tions are handled. The question then remains— how to minimize a vector valued

function?

Strictly speaking, a vector cannot be minimized. A transformation must be made

to repose the problem as a scalar optimization problem. The most ideal solution is to

have a master function that takes all of the objective functions (and possibly other

quantities) as inputs, and returns a value that truly represents the overall design

objective. For example, this master function could calculate the expected profit of

a product, or perhaps the cost per passenger mile of an aircraft. Unfortunately,

comprehensive and accurate ‘master functions’ are not always available. Some other

approach must be used.

An approximation to a master function can be made with a linear combination

of the objective functions. If all of the objective functions are first scaled properly,

a weight can be given to each objective function, indicating its relative importance.

Normally these weights sum to one.

An alternative to the scalarized objective function above is to select one objective

that is most important, and convert the remaining objectives to constraints, specify-

ing bounds that they cannot violate. These bounding constraints are almost always

active, yet were arbitrarily chosen by the designer, indicating that further study of

the design problem is necessary before final conclusions are made.

In either the scalarized objective function or bounded objectives approach, the

weights or the bounds respectively may be varied to explore the efficient frontier in

the objective function space, also called the set of Pareto optimal designs [7, 32].

At a Pareto optimal design point no objective function can be improved without

degrading the value of another objective. Figure 2.1 illustrates this idea with a two-

objective function example. Both f1 and f2 are to be minimized. At the top left is
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the best possible value of f1, and at the bottom right is the best value of f2. The

intersection of these best possible values is the utopia point, which normally cannot

be achieved. The curve in this plot is the Pareto set (or front); no design to the lower

left of this front is possible. At any point on this front, to improve one objective, the

other must be degraded.

(f1*,f2)

(f1,f2*)
Utopia Point

Improved objective f1

Im
pr
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ed
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bj
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tiv

e 
f 2

Figure 2.1: Objective function space of a two-objective function optimization.

2.1.3 Optimization of Partitioned Systems

The discussion of multi-objective optimization eluded to approaches for simul-

taneously optimizing the designs of several subsystems that together comprise a

system. The ideal system objective function considers the impact each subsystem

has on the entire system, and gives merit to what is truly sought from the system.

Each subsystem needs to be a team player, sacrificing its own objectives if required

to achieve the system optimal design. In other words:

A conglomeration of optimal parts does not comprise an optimal whole.
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Let’s begin this discussion of system optimization by examining the age-old, over-

the-wall sequential design approach. This was first introduced in Section 1.2.2 with a

hypothetical automotive design. It is termed over-the-wall since a design group that

currently has the project works on its design without any real regard to other groups,

and then passes it on when their part is done. This can pose serious problems. For

example, if a final design is passed on to manufacturing without any prior communi-

cation with the manufacturing department, it may be discovered that the company

does not have the facilities to build the product. Such problems have given rise to

the push for parallelization and the study of concurrent engineering. All aspects of

a product should be considered concurrently in order to produce a system optimal

design, i.e. a product that has been optimized with respect to the overall product

objective. If interactions between groups are not considered early on, and groups

optimize their parts sequentially, side effects are generated that must be absorbed

by subsequent groups, endangering overall system performance.

The sequential design strategy has an analogy in the discipline of Design of Ex-

periments. In sequential design one factor in effect is being varied at a time, with all

other factors being held constant. The factor in this sequential design analogy is the

set of design variables a design group has control over. The shortcomings of the se-

quential, or one-factor-at-a-time (OFAT), approach are well known [45]. The OFAT

approach is unlikely to lead to the true system optimum, and in practice requires far

more function evaluations than other approaches. To illustrate, a two factor, single

objective function example is used.

Objective function:

f(x1, x2) = a(x1 − b)2 + c(x2 − d)2 + ex1x2
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The parameters a – e were chosen to be {1, 1, 1, 1, −1}T . Since e 6= 0,

interaction is present in the system. The two factors x1 and x2 must work together

to realize system optimality. What happens if an attempt is made to minimize

f(x1, x2) in a one-shot sequential approach? Suppose a starting point of X0 =

{x1 x2}T = {3 5}T is given. Performing a line search in the x1 direction, the partial

derivative ∂f/∂x1 = 0 yields the point X1 = {3.5 5}T . Moving to the next factor

and performing a line search in the x2 direction, the partial derivative ∂f/∂x2 = 0

yields the point2 X2 = X‡ = {3.5 2.75}T . This final design has a system response

of f(X‡) = −0.3125. This is substantially worse than the true system optimum

X∗ = {2 2}T , f(X∗) = −2.0. The level sets of the objective function, the points

generated by the OFAT procedure, and the true optimum are all illustrated in Figure

2.2.
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(x1-1)2+(x2-1)2-x1 x2

optimum

OFAT solution 

Figure 2.2: Sequence of points generated by the OFAT procedure.

2X‡ denotes the pseudo-optimum found by the OFAT approach.
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If iterations were allowed, the OFAT approach in this case could find the true

optimum. However, many more function evaluations would be required than for

approaches that consider the affect of both approaches simultaneously. Systems op-

timization commands consideration of all system members. The next section explains

one method for analyzing a system as a whole, and much of the rest of this thesis is

devoted to understanding ways to find system optima.

2.1.4 Complex System Analysis Terminology

Basic terminology for partitioned system analysis and optimization is introduced

here. Consider the general coupled system illustrated in Figure 2.3. The system is

partitioned into N subspaces, and all N(N − 1) possible subspace interactions are

shown. In a real system all possible interactions, or couplings, do not necessarily

exist.
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Figure 2.3: Diagram of a general non-hierarchic coupled system.
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From an overall system perspective, the components within the system analysis

box are considered to be a single monolithic entity. A designer, or an optimization

algorithm, provides the system analysis with the design variable vector X. When the

process is complete, the system response functions, such as f , g, and h, are returned.

With these system inputs and outputs defined, the system design problem fits the

standard design problem formulation of equation 2.1.

From the definition of complex systems, it may not be possible to approach

the system analysis as a single task. Partitioning the system into smaller subspaces

ameliorates this problem. A clear notation system facilitates discussion of partitioned

systems.

The system design variable vector is separated into two categories of variables:

local design variables xi and shared design variables xsi. Local variables xi are

unique to subspace i— no other subspace takes them as inputs. Shared variables xsi

are required inputs to subspace i, but are also used as inputs in at least one other

subspace. The local variable vectors xi have no common components, but the shared

variable vectors xsi do. The collection of all local variables is x, and the collection of

all shared variables is xs. The aggregation of local and shared variables for subspace

i is Xi.

X = {xT
i ,xT

s }T i = 1 . . . N

Xi = {xT
i ,xT

si}T ∀ i

Each subspace may depend on outputs from one or more subspaces. The existence

of these dependencies indicates the presence of interaction between subspaces. The

collection of values generated by subspace j and received by subspace i is yij. These

quantities passed between subspaces are called coupling variables, and may be vector

valued. The collection of all coupling variables input to system 1 for example is y1j,



27

where j = 1 . . . N . The collection of all coupling variables is y. Coupling variables are

artifacts of decomposition; they do not exist in the system’s original design problem

statement. The set of coupling variables and the set of design variables have no

common members.

Each subspace may generate a variety of responses other than coupling variables,

such as subspace objective functions and constraint functions: fi, gi, and hi. The

system objective function fs (sometimes shortened to f when the context is clear)

may simply be one of the subspace responses, or in the general case is a function

of several of the subspace responses. The set of all subspace constraints and any

system level constraints is g and h. As with the system objective function, system

constraints may be a function of one or more subspace responses.

2.2 Analysis of Coupled Systems

Fundamental to the understanding of complex system optimization is the analysis

of coupled systems. Some industries have dealt with the complexity of coupled system

analysis for decades. For example, work done by the aerospace industry in this area

is termed Multidisciplinary Analysis (MDA). Coupled systems may be viewed as

simultaneous systems of nonlinear equations. Several methods exist to solve such

systems when they cannot be solved explicitly, including iterative methods such as

the Newton-Raphson method and Fixed Point Iteration [11]. The latter will be

addressed in detail in this section.

Fixed Point Iteration (FPI) is regularly employed in the most basic MDO formu-

lation, MDF, presented in Section 3.1. An exploration of the nature of FPI, including

its limitations, illustrates the appropriate application of MDF, and gives impetus to

the development of more sophisticated MDO strategies. Due to its intuitive imple-
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mentation, MDF is the most frequently utilized MDO strategy [10]. Unfortunately,

it is sometimes applied blindly without recognition of its sometimes significant short-

comings. This section, along with Chapters 3 and 4, develop the ideas pertinent to

proper application of MDF and its associated analysis tool— FPI.

In this section the Fixed Point Iteration algorithm is presented, its convergence

conditions will be proven in the two-dimensional case, and a hypothesis for conver-

gence conditions in the n-dimensional case posed. Several examples will be employed

to illustrate important concepts.

2.2.1 Fixed Point Iteration Algorithm

A simple coupled system with two subspaces is depicted in Figure 2.4. When

the coupling variables3 yij are written in a functional form such as y21(y12), this

indicates that y21 is a dependent variable, and y12 is an independent variable4. The

coupling variables can swap roles depending on what subspace is being considered.

In addition, inverse functions may be found such that functions may be redefined

in terms of a new independent variable, i.e. y21(y12) may be posed as y21(y21). The

need for this notation will become clear shortly.

y21(y12) = y21 y12(y21) = y12

SS1 SS2

y21

y12

Figure 2.4: Two-dimensional coupled system.

This system possesses feedback coupling, since y12 depends on y21 and visa-versa.

3yij indicates a coupling variable that takes an output from SSj and sends it as an input to
SSi.

4Only the variables pertinent to system analysis are shown in Figure 2.4. The coupling vari-
ables may indeed be dependent upon other quantities such as design variables. However, these
additional quantities are held constant during analysis using FPI, and are omitted from the current
presentation for clarity.
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If one of the couplings did not exist, say y12, then the system would have only feed-

forward coupling, and analysis could be completed with a single sequential execution

of SS1 and SS2. However, when feedback coupling exists, analysis is not so straight-

forward. If Fixed Point Iteration is employed, an initial guess is made for the input

to the subspace executed first. In the example in Figure 2.4, a guess could be made

for y12, and then SS1 could be evaluated to obtain a value for y21. This value is

then used in the execution of SS2 to obtain an updated value of y12. This output

will not agree with the initial guess unless the guess was made at a so called fixed

point. The resulting value of y12 can then be used as an updated guess for the input

to SS1. If the system meets certain criteria, it will converge to a fixed point. The

FPI algorithm for the two-dimensional example problem is:

(Step 0) choose initial guess y0
12, set i = 0

(Step 1) i = i + 1

(Step 2) yi
21 = y21(y

i−1
12 )

(Step 3) yi
12 = y12(y

i
21)

(Step 4) if |yi
12 − yi−1

12 | < ε stop, otherwise go to (Step 1)

The superscript i indicates the iteration number, and ε is the maximum inconsis-

tency allowed between subspaces. Note that Step 3 uses the most recently updated

input value, yi
21; if yi−1

21 had been used instead the procedure would be termed Jacobi

Iteration. When the inconsistency is less than ε, the system is said to be consistent.

In other words, the output of the system coupling variables is equal to the guess for

coupling variable values when a system is consistent. A point that produces this con-

dition is called a fixed point yp, since further iterations will not change the location

of the point. A fixed point is also termed an analysis solution. An n dimensional

fixed point is expressed in equation 2.3.
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yp = y(yp) (2.3)

Figure 2.5 exhibits graphically the convergence behavior of FPI. Case I shows

oscillatory convergence, and Case II shows monotonic convergence. The initial guess

is y0
12, intermediate points are indicated with closed circles, and the fixed point is

indicated with an open circle.
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Figure 2.5: Oscillatory and monotonic FPI convergence.

The order of function evaluation and the function derivatives affect both the

convergence rate and the possibility of convergence. In general FPI convergence is

linear (when it occurs). Convergence may be quadratic in certain cases, such as when

y12(y21) has a slope (with respect to y21) near zero. The Newton-Raphson method

has quadratic convergence in general, but is used less frequently in practice because

of the required derivative information.

In the two convergent examples shown in Figure 2.5 it is clear that the equivalent

relationships expressed in equation 2.4 hold in the neighborhood of a fixed point yp.5

What happens to FPI convergence if these conditions do not hold?

5Observe that inverse functions must be computed in order to evaluate the expressions in equa-
tion 2.4.
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∣∣∣∣∂y21(y21)

∂y21

∣∣∣∣ >

∣∣∣∣∂y12(y21)

∂y21

∣∣∣∣ ⇔ ∣∣∣∣∂y12(y12)

∂y12

∣∣∣∣ >

∣∣∣∣∂y21(y12)

∂y12

∣∣∣∣ (2.4)

Figure 2.6 illustrates one such case where equation 2.4 does not hold. A fixed

point exists, yet the algorithm diverges from this fixed point. FPI cannot find the

fixed point, and is termed a repelling fixed point. If equation 2.4 does hold in

the neighborhood of a fixed point yp, then FPI will converge, and yp is termed an

attractive fixed point. If equation 2.4 holds with equality, then two possibilities exist.

First, the functions are parallel and no fixed point exists if the equality holds for the

entire analysis domain. In this case FPI will march off toward infinity6. Second,

the functions are orthogonal and are oriented such that FPI will oscillate infinitely

through a set of points, i.e. the system has oscillatory divergence.

y12

y
21

y21(y12)

y
12

(y
21

)

y21
0

Figure 2.6: Divergent FPI behavior.

Some systems have multiple fixed points, and FPI may not be capable of finding

them all if the system has any repelling fixed points. The point FPI actually con-

verges to depends upon the location of the initial guess (starting point). An example

of a system with multiple fixed points is shown in Figure 2.7.

Closed circles indicate attractive fixed points; open circles indicate repelling fixed

points. A starting point near to one of the attractive fixed points will converge to

6The case may also exist where no fixed point exists even if equation 2.4 holds due to some
degeneracy. This discussion is limited to systems with existent fixed points
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y12

y
21

y21(y12)

y12(y21)

Figure 2.7: System with multiple fixed points. Closed circles are attractive fixed
points; open circles are repelling fixed points.

that point. FPI will never find either of the repelling fixed points. If FPI is used

as an analysis tool for optimization, it will never be known if one of the repelling

fixed points would have led to a better solution. For example, if the objective of the

original design problem was to minimize y12 + y21, then the lower left fixed point is

the obvious best solution. However, FPI cannot find this point, and may result in

either of the top two points being presented as an ‘optimal’ solution. This significant

shortcoming lends additional motivation to more sophisticated formulations that use

optimization algorithms to drive the analysis, rather than FPI. Such formulations

drive the process toward the best analysis solution.

FPI may easily be extended to n dimensions. Additional guesses may be required

at multiple points within the algorithm. An example problem with more than two

subspaces utilizing FPI for analysis will be developed in Chapter 6.

2.2.2 Convergence of Fixed Point Iteration

Informal statements concerning Fixed Point Iteration were given in Section 2.2.1.

This section more rigorously develops FPI convergence conditions. If the system

can be written in the scalar form x = g(x), necessary and sufficient conditions for

convergence can easily be proven. It can also be shown that these conditions are
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equivalent to equation 2.4. In this section well known conditions for the n dimensional

case are presented, and a less strict set of convergence conditions is presented as a

hypothesis.

The coupled system in Figure 2.4 can be written as a single composite function

(equation 2.5).

y12 = y12(y21(y12)) = y12 ◦ y21(y12) (2.5)

Here the only independent variable is y12, and the composite function y12◦y21(y12)

fills the role of g(x) described above. The FPI algorithm reduces to a recursion

formula yi+1
12 = g(yi

12). Assuming a fixed point y12p = g(y12p) exists, we can subtract

the recursion formula from the fixed point equation to obtain:

y12p − yi+1
12 = g(y12p)− g(yi

12)

Appealing to the derivative mean value theorem, ∃ ξ such that:

g′(ξ) =
g(y12p)− g(yi

12)

y12p − yi
12

If g is C1 continuous on the interval [y12p yi
12], then:

y12p − yi+1
12 = g(y12p)− g(yi

12) = g′(ξ)(y12p − yi
12)

The true error εi = y12p − yi
12 decreases if and only if g′(ξ) < 1, since:

εi+1 = g′(ξ)εi

Therefore, if a fixed point y12p exists, the condition that g′(y12) < 1 ∀ points

in the neighborhood of y12p is necessary and sufficient for convergence of FPI if the
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algorithm is given a starting point in the neighborhood of y12p. Using the chain rule,

this condition can be put in terms of the original problem (equation 2.6).

∣∣∣∣ ∂

∂y12

g(y12)

∣∣∣∣ =

∣∣∣∣ ∂

∂y12

y12(y21(y12))

∣∣∣∣ =

∣∣∣∣∂y12(y21)

∂y21

∂y21(y12)

∂y12

∣∣∣∣ < 1 (2.6)

The composite function may alternatively be written with the reverse evaluation

order as g = y21(y12(y21)). In this case the convergence condition takes the form of

equation 2.7.

∣∣∣∣∂y21(y12)

∂y12

∂y12(y21)

∂y21

∣∣∣∣ < 1 (2.7)

The conversion from a two dimensional from to a composite function form can

be viewed graphically (Figure 2.8). The plot on the left is a linear system before

conversion, and the plot on the right is after conversion. The system in this example

is:

y21(y12) =
1

4
y12 −

1

4

y12(y21) = 2 + 2y21

The fixed point may be explicitly found, and is {0.5, 3.0}T . The composite func-

tion is:

g(y21) = y21(y12(y21)) =
1

4
+

1

2
y21

The solution of the fixed point formula y21 = g(y21) is y21 = 0.5 and y12 = 3.0,

the same as the original system.

As expected, the convergence properties are unaffected by the conversion. The

condition in equation 2.4 is satisfied in both cases. In the plot on the right the proven
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y12

y21

y21(y12)

y12(y21)

Before Conversion
y12

y21

y21

g(y21)

After Conversion

3.0

0.5 0.5

Figure 2.8: Illustration of conversion from a two-equation system to composite func-
tion x = g(x) form.

convergence condition |g′(y21)| < 1 is satisfied. Equation 2.4 is as yet unproven, only

informally presented. It can be rigorously shown that |g′(y21)| < 1 and equation 2.4

are equivalent. First observe that:

|g′(y12)| =
∣∣∣∣ ∂

∂y12

g(y12)

∣∣∣∣ =

∣∣∣∣∂y12(y21)

∂y21

∂y21(y12)

∂y12

∣∣∣∣
Then beginning with the first instance of equation 2.4, and using the above ex-

pression, the proof is as follows:

∣∣∣∣∂y21(y21)

∂y21

∣∣∣∣ >

∣∣∣∣∂y12(y21)

∂y21

∣∣∣∣
∣∣∣∣∂y21(y21)/∂y21

∂y12(y21)/∂y21

∣∣∣∣ > 1

∣∣∣∣∣∂y12(y21)

∂y21

(
∂y21(y21)

∂y21

)−1
∣∣∣∣∣ < 1

and since when finding the appropriate inverse function
(

∂y21(y21)
∂y21

)−1

= ∂y21(y12)
∂y12

we see that
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∣∣∣∣∂y21(y12)

∂y12

∂y12(y21)

∂y21

∣∣∣∣ = |g′(y12)| < 1

Therefore, if a fixed point y12p exists, and if the condition given in equation

2.4 holds ∀ points in the neighborhood of y12p, necessary and sufficient conditions

for convergence of FPI are met if the algorithm is given a starting point in the

neighborhood of y12p. The process for proving the second instance of equation 2.4

may be either as above, or simply to show that the two instances are equivalent,

which was stated without proof in §2.2.1. The intuitive observations from Figure 2.5

are indeed correct.

2.2.3 Coupled Systems in n Dimensions

The concepts developed in Sections 2.2.1 and 2.2.2 may be extended to higher

dimension systems. If n subspaces exist, then n(n−1) possible couplings exist. Each

of these couplings may also be vector valued. A convenient representation of such a

system is the Design Structure Matrix (DSM) [15], a type of adjacency matrix. A

DSM is shown in Figure 2.9 for a hypothetical system with four subspaces.

SS1

SS2

SS3

SS4

Figure 2.9: Design Structure Matrix of a hypothetical four-subspace system.

Each square represents a subspace. When in the context of FPI the evaluation

sequence begins at the top left subspace and progresses to the lower right subspace.
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Within the upper right diagonal of the matrix lines emanating from the right side

of subspaces are outputs, and the lines entering the top of a subspace are inputs.

The lines in the upper diagonal represent feedforward couplings. Within the lower

left diagonal lines emanating from the left side of subspaces are outputs, and lines

entering the bottom of subspaces are inputs. The lines in the lower diagonal of

the DSM are feedback couplings. Nodes indicate where a connection is made. For

example, SS3 feeds back to SS1, but not to SS2.

Existence of feedback couplings requires iterations to arrive at an analysis solu-

tion. If no feedback couplings existed, then a single sequence of subspace evaluation

would complete the analysis. For systems with feedback coupling the subspace eval-

uation sequence may be adjusted to minimize the number of feedback couplings (a

discrete optimization problem). This task is more involved than the above descrip-

tion intimates. The DSM representation hides several complexities. Each of the

couplings may be vector valued— it may be more valuable to eliminate a single large

vector feedback coupling than any combination of the others. In addition, the cou-

pling strength (defined shortly) may vary from coupling to coupling, as well as vary

within both the analysis space y and in the design space x (when analysis is used in

an optimization context). Finally, changing the evaluation sequence may alter the

subspace derivative relationships in such a way to render to system non-convergent.

All of these points indicate that determining the merit of a particular sequence is

not as straightforward as counting the number of feedback couplings.

Couplings that cannot be eliminated through reordering the evaluation sequence

may still be temporarily eliminated. Criteria for determining when in the FPI algo-

rithm these suspensions should be made have been developed [15]. In some cases the

additional computational expense of evaluating this suspension criteria outweighs
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computational gains realized through the suspensions. As with many strategies dis-

cussed throughout this thesis, choice of whether to apply them or not is highly

problem dependent.

The notion of coupling strength was used in the above discussion. Coupling

strength may be viewed as how sensitive the output of one subspace is to its input

from other subspaces. For example, in the turbine blade example introduced in

Chapter 1, if the modulus of elasticity (E) is low, then within the structural analysis

subspace the blade will elongate more due to rotation. This exposes more surface

area to hot gasses, resulting in a higher temperature distribution and greater thermal

expansion. The longer blade is then subject to higher inertial forces, impacting the

structural analysis again. In other words, with low E, each iteration of the feedback

loop possesses more change than compared to a system with a high E. Similar

arguments may be made if the thermal expansion α is high. A turbine blade analysis

with a low E or high α will require many iterations to converge. The sensitivity

between the subspaces depends on their relative derivatives, which are also important

to convergence conditions. If the conditions in equation 2.4 are satisfied, but are

near equality, then convergence will occur, but very slowly. Convergence speed of

FPI may be considered another measure of coupling strength. Note that the value

of the derivatives in equation 2.4 in general vary over both the analysis space y and

in the design space x. Characterizing the coupling nature of a system is a complex

task indeed. Coupling strength may also be viewed as the strength of interaction

between subspaces in a regression sense.

A well-known sufficiency condition for n dimensional coupled systems is given in

equation 2.87.

7Functional notation has been omitted for conciseness. Functional dependencies should be clear
from context.
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∣∣∣∣∂y1

∂y1

∣∣∣∣ + . . . +

∣∣∣∣∂y1

∂yn

∣∣∣∣ < 1 (2.8)

...
...∣∣∣∣∂yn

∂y1

∣∣∣∣ + . . . +

∣∣∣∣∂yn

∂yn

∣∣∣∣ < 1

A fixed point in the general case was defined by equation 2.3 (yp = y(yp)). If the

starting point is sufficiently close to yp, then FPI will converge if equation 2.8 holds

∀ points in the neighborhood of yp. Please note that this condition is sufficient and

not necessary. It is not hard to find examples that violate equation 2.8, yet are still

convergent. The example from Figure 2.8 is one such case.

It is interesting to consider the possibility of looser sufficiency conditions that

include more of the set of convergent systems, or perhaps even necessary and suffi-

ciency conditions that include the entire set. By extending the technique utilized to

informally develop equation 2.4, a similar condition for a three-dimensional system

has been generated. By observing the projections of the three system analysis func-

tions, y1, y2, and y3, on to each of the three planes in three-space, intuitively the

conditions presented in equation 2.9 are the three dimensional version of equation

2.4. An abbreviated notation similar to that used in equation 2.8 is adopted for

these conditions, i.e. the functional notation is dropped, and a single subscript is

used to denote what subspace evaluates the function. The appropriate functional

dependencies can be inferred from the projection plane indicated. These conditions

are presented as an hypothesis without proof. It is proposed that FPI in three dimen-

sions will converge if and only if equation 2.9 holds in the neighborhood of an existent

fixed point yp, and the starting point for FPI is sufficiently close to yp. By decom-

posing an n dimensional problem into appropriate projections, these conditions can
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be extended to n dimensions.

∣∣∣∣∂y1

∂y1

∣∣∣∣ >

∣∣∣∣∂y3

∂y1

∣∣∣∣ ⇔
∣∣∣∣∂y3

∂y3

∣∣∣∣ >

∣∣∣∣∂y1

∂y3

∣∣∣∣ (in the y1–y3 plane) (2.9)∣∣∣∣∂y1

∂y1

∣∣∣∣ >

∣∣∣∣∂y2

∂y1

∣∣∣∣ ⇔
∣∣∣∣∂y2

∂y2

∣∣∣∣ >

∣∣∣∣∂y1

∂y2

∣∣∣∣ (in the y1–y2 plane)∣∣∣∣∂y2

∂y2

∣∣∣∣ >

∣∣∣∣∂y1

∂y2

∣∣∣∣ ⇔
∣∣∣∣∂y2

∂y1

∣∣∣∣ >

∣∣∣∣∂y1

∂y1

∣∣∣∣ (in the y2–y3 plane)

The nature of FPI has been explored, and several advantages and shortcomings

have been identified. FPI is frequently the strategy of choice to analyze coupled

systems because it is intuitive to implement, requires no derivative information, and

usually no modification of subspace analysis tools. However, FPI does not always

produce an analysis answer [2, 28], even when one or more analysis solutions (fixed

points) exist. In addition, FPI is sequential in nature, which extends analysis time.

If analysis of coupled systems is being used for optimization, one alternative is to use

the optimization algorithm to drive the analysis procedure (i.e. driving the subspaces

into agreement). With the optimizer in control, solutions may be found that could

not with FPI, and if multiple analysis solutions exist the optimizer is driven to find

the best solution.



CHAPTER 3

Fundamental MDO Strategies

This chapter introduces the fundamental strategies for MDO, and then outlines

a framework that can be used to categorize MDO formulations in general. The first

three formulations are considered single-level approaches because an optimizer is only

employed at one level— the system level. The analysis is distributed via partition-

ing described in Chapters 1 and 2, yet design is not distributed. All decisions are

made by the single system-level optimizer. The three formulations discussed in this

chapter were formally introduced in the seminal publication: Problem Formulation

for Multidisciplinary Optimization [13].

In many cases single-level approaches perform well. However, several reasons exist

for extending MDO to multi-level approaches. The complete design centralization of

single-level approaches may not map well to existing organizational structures. In ad-

dition, this centralization may demand excessive data communication requirements.

Centralization also excludes the utilization of disciplinary experts or specialized op-

timization procedures. Multi-level approaches allows for utilization of local decision

making resources, and can reduce communication requirements. The discussion of

the general MDO framework in this chapter introduces the structure of multi-level

approaches, and Chapter 5 develops in detail two selected multi-level formulations.

41
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3.1 MDF

The most basic of MDO formulations is the Multidisciplinary Feasible (MDF)

approach, also known as Nested Analysis And Design (NAND), Single-NAND-NAND

(SNN), All-in-One, One-at-a-Time, and All-at-Once (AAO). Though all of these

names fit the approach, the number of names for this formulation is a source of

confusion, particularly when it is called AAO (a name reserved for a very different

single-level formulation presented in §3.3).

The MDF architecture (2-subspace example) is depicted in Figure 3.1. A single

system-level optimizer is used, and from the perspective of the optimizer MDF is no

different than a general design problem. A system analyzer coordinates all of the

subspace analyzers. The optimizer supplies the system analyzer with a design x, and

the system analyzer supplies the optimizer with the appropriate response functions,

f , g, and h. MDF maintains the structure of non-hierarchical problems.

Optimizer

Analyzer

X f, g, h

s

}{ 1 2, ,s=X x x x

( )
}{
}{

1 2

1 2

1 2

,

,

,

f f f

=

=

g g g

h h h

SS1

s

1, sx x 1 1 1, ,f g h

SS2

s

System Analyzer

2 , sx x

Subspace
Analyzer

Subspace
Analyzer

2 2 2, ,f g h

y12

y21

Figure 3.1: MDF structure.
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When the system analyzer supplies the response, it has already converged to

a consistent analysis solution. If the subsystems are coupled, the FPI algorithm1

(§2.2.1) is typically used to find an analysis solution at a fixed design point x. In

other words, within each optimization iteration, a complete analysis solution is found.

The analysis is nested within the design (hence the name NAND). The optimizer is

charged with the responsibility to find the optimal design x∗ (the design solution),

while the system analyzer is solely responsible to find the set of consistent coupling

variables yp (i.e. a fixed point, or the analysis solution). In addition, the subspace

analyzers are responsible to find state variables s that satisfy governing equations if

applicable2.

MDF refers to any complex system optimization strategy that performs a com-

plete system analysis at every optimization iteration, regardless of analysis method.

In industries that deal with coupled systems, Fixed Point Iteration is regularly em-

ployed as the analysis tool. However, other analysis tools may be used within an

MDF approach. Section 7.1.2 provides one example of MDF that does not employ

Fixed Point Iteration. If a design team employs whatever means necessary to arrive

at a system analysis solution for every optimization iteration (or in other words for

every design proposed by the optimizer), the team is using an MDF strategy. Sim-

ilarly, if a monolithic computational analysis tool is used to calculate an analysis

solution at every optimization iteration, regardless of whether FPI is employed or

not, MDF is being employed.

The designation MDF stems from the property that at every optimization itera-

tion, the system analysis is consistent. This terminology stems from the older field

1The Fixed Point Iteration algorithm of §2.2.1 is but one of several options for system analysis
2Many analyses find solutions to differential equations, such as elasticity or Navier-Stokes equa-

tions for solid mechanics or fluid analysis respectively. The state variables describe the state of the
system, such as the strain field or velocity field.
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of Multidisciplinary Analysis (MDA). One term used to describe a consistent system

is Multidisciplinary Feasibility [13]. In other words, the multiple disciplines are fea-

sible because all of the coupling variables match. Multidisciplinary feasibility may

be thought of as analysis feasibility. The analysis is feasible at an analysis solution.

This terminology has been a source of confusion. During the course of an MDF

design process, the system may in fact possess multidisciplinary feasibility (system

consistency), but lack design feasibility (i.e. g or h from the original design problem

is violated). To avoid any obfuscation, in this thesis feasibility will refer only to de-

sign feasibility, and the terms system consistency and analysis solution will be used

to refer to the consistent matching of coupling variables (i.e. a fixed point).

MDF is completely non-hierarchic in nature. There are no restrictions on data

communication between the subspaces. In a purely computational context, this

approach is desirable if the subspaces are weakly coupled (fast analysis convergence),

and if the subspace analyses are not computationally expensive. In an organizational

context, MDF allows the continued use of legacy analysis tools without modification

(only formal communication requirements may need to be instituted) [13]. If the

organization already performs a complete analysis before making a design decision,

MDF is a natural fit.

The MDF formulation is shown in equation 3.1. Little difference exists between

this formulation and the original design problem (equation 2.1). In the MDF for-

mulation system decomposition is denoted by the variable and function partitioning.

The set of constraint equations for the entire system g and h are the union of all

the constraints for the subspaces, and possibly additional system level constraints.

The system objective function may be one of the subspace objective functions, or a

function of several of them.
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min
X={x,xs}

f(X) (3.1)

subject to g(X) =
{
g1

T ,g2
T , . . . ,gs

T
}T ≤ 0

h(X) =
{
h1

T ,h2
T , . . . ,hs

T
}T

= 0

It turns out that MDF is the most widely applied MDO formulation in many

industries, including aerospace [10]. Much work has been done to demonstrate the

usefulness of such a system design approach [15]. Optimizing the system as a whole

generally produces significantly better results than optimizing subspaces individually

without regard to system performance. Improvements in efficiency of MDF have been

realized through such tactics as reordering the analysis sequence to minimize feedback

coupling, and temporarily suspending couplings that are weak at a particular point

in the design and analysis space (§2.2.3).

Some systems may be ordered such that there is no feedback coupling. In this

case no iteration is required for analysis— a single sequential analysis is sufficient.

MDF may be a natural choice for such a design problem, although other approaches

may be beneficial by parallelizing the analysis.

The merits of MDF are notable, however it is important to clearly understand

its limitations as well. The sometimes large iteration loops of MDF can be compu-

tationally expensive, particularly if the system is strongly coupled and the system

analysis requires many iterations to converge. If a gradient-based optimization algo-

rithm is employed, several more analyses must be performed for finite differencing.

MDF is aptly considered a brute force approach [10]. When MDF uses FPI as an

analysis tool, it is afflicted with all of the same problems as FPI. Section 2.2 was

included primarily to illustrate the important shortcomings of FPI as it applies to

its utilization in MDF. A review of these shortcomings is listed below.
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• FPI is frequently non-convergent.

• FPI may not be capable of finding all fixed points.

• FPI is a sequential analysis tool.

MDF can exhibits low robustness as a design strategy. If the analysis does not

converge for even one design point (or finite difference point), the optimizer may fail.

If more than one analysis solution exists, MDF may fail to find the solution that

leads to the optimal design3. Because MDF cannot be parallelized, design cycle time

may be significant. One analysis may be sitting idle for significant periods of time

waiting for required input. In an organization this can be extremely inefficient.

These limitations motivate the development of more sophisticated formulations

that offer better convergence properties, fit a wider variety of organizational struc-

tures, and allow for parallelization of analysis. The rest of this thesis is devoted to

understanding a selection of these additional formulations.

3.2 IDF

To address some of the limitations of the MDF formulation, the Individual Disci-

plinary Feasible approach was developed. IDF is also known as Simultaneous Anal-

ysis And Design (SAND) or Single-SAND-NAND. Like MDF, an analyzer for each

subspace is employed (solving for state variables if required), and a single system-

level optimizer is used. The key difference is that the optimizer coordinates the in-

teractions between the subspaces, rather than relying on the simple iterative scheme

of Fixed Point Iteration, or some other analysis tool. This enables parallelization,

improves convergence properties, and drives the design toward better solutions if

multiple analysis solutions exist.

3In this case MDF may indeed find a design solution that satisfies optimality conditions, but
may not be capable of finding another existent design with better performance.
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The IDF architecture is illustrated in Figure 3.2. The system optimizer gains

additional responsibility for the solution process over the MDF approach. In addition

to deciding the appropriate values for the design variables, the system optimizer

must also control the values for the coupling variables y. Rather than relying on

simple iteration to determine the next coupling variable values, an optimization

algorithm efficiently performs this task instead, improving convergence speed and

probability of convergence. IDF has notably improved robustness over MDF. Note

that the distinction between analysis and design processes is blurred— they are

performed simultaneously (hence the name SAND). The system optimizer provides

all of the inputs required for all subspaces. Since the subspaces no longer must wait

for the conclusion of other analyses before commencing their own analysis, all of the

subspaces may be evaluated in parallel. As with MDF, design decision making is

centralized in the IDF formulation, and analysis is distributed.

Analyzer

Optimizer

Analyzer

s s

x1, xs1, y1j x2, xs2, y2j

f1, g1, h1, yi1 f2, g2, h2, yi2

Figure 3.2: IDF architecture.

In order to ensure the system is consistent, auxiliary equality constraints in the

system optimizer are required. These constraints require that the coupling variables

computed by the subspaces y(X,y) are equal to the coupling variables supplied by
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the optimizer y. This system consistency is only enforced at convergence of the

system design problem. If for some reason the process must be interrupted, the

intermediate design may not be consistent, in addition to the possibility of lacking

design feasibility. In contrast, if an MDF process is interrupted prematurely, the

system will be consistent (but may lack design feasibility).

The auxiliary constraints perform another important function— they break down

any non-hierarchical links in the system so that the problem can be solved in a hier-

archical manner, as exhibited in Figure 3.2. This principle applies in general, i.e., any

arbitrary non-hierarchical system can be reposed as a hierarchical system through

the use of auxiliary constraints [10]. Methods intended for strictly hierarchical sys-

tems may be used to solve non-hierarchical problems when auxiliary constraints are

used to effect this transformation. Though this approach is possible, the transformed

problem may not behave well.

Because the IDF approach does not ensure that multiple disciplines are consistent

(i.e. Multidisciplinary Feasibility) at each optimization iteration, but rather ensures

only that each discipline satisfies its governing equations, it is called the Individual

Disciplinary Feasible approach. The degree of centralization in IDF is higher than in

MDF. The dimension of the optimization problem is increased due to the coupling

variables becoming decision variables, and the data communication requirements are

higher. IDF maps to a design organization with a single project manager, making

all of the design decisions and guiding the analysis groups into agreement.

The formulation of the IDF approach is given in equation 3.3. It is similar to

the MDF formulation, except that now the optimization is performed with respect

to both the design variables X and the coupling variables y, and that the auxiliary

constraints haux(X,y) are included to ensure system consistency.
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min
X={x,xs},y

f(X,y) (3.2)

subject to g(X,y) =
{
g1

T ,g2
T , . . . ,gs

T
}T ≤ 0

h(X,y) =
{
h1

T ,h2
T , . . . ,hs

T
}T

= 0.

haux(X,y) = y(X,y)− y = 0.

In both a computational and an organizational context the parallel nature of IDF

has an advantage over the sequential MDF approach. If parallel analysis tools (mul-

tiple analysis groups or parallel processors) are available, IDF can offer a significant

compression of the design process. If a high level of centralization is acceptable, then

IDF may be an ideal design strategy.

3.3 AAO

The last of the three fundamental single-level MDO approaches covered in this

thesis is the All-At-Once strategy (AAO). It is also referred to as Single-SAND-

SAND, and sometimes just SAND. Occasionally the term AAO is erroneously used

to refer to the MDF approach; it is important to make the distinction between the

two formulations.

AAO is a highly centralized approach. Instead of utilizing analyzers to complete

the analysis for each subspace, evaluators are used that compute only the residuals

of the governing equations. The system optimizer is now saddled with three sets

of decision variables: the original design variables X, the coupling variables y, and

the state variables s. AAO centralizes both design and analysis, but still distributes

evaluation of governing equations. This high degree of centralization offers impressive

efficiency in some situations, yet is sometimes difficult to map to many organizational

structures due to its centralization and specialized structure. Figure 3.3 illustrates
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how MDF and AAO may be viewed as opposite extrema with respect to the number

of decision variables the system optimizer explicitly controls. IDF is an intermediate

occupant of this spectrum.

Many Explicit Variables Few Explicit Variables

AAO IDF MDF

Figure 3.3: Classification of single-level formulations based on number of explicitly
controlled decision variables.

The AAO architecture is illustrated in Figure 3.4. The state variable vector

is divided into the state variables for each subspace (s =
{
s1

T , s2
T , . . .

}T
), and

the residuals4 for each subspace wi are reported to the optimizer along with other

pertinent values.

The formulation of the AAO approach is given in equation 3.3. It is similar to

the IDF formulation, but includes an additional auxiliary constraint to ensure zero

residuals at problem convergence. The optimization is performed with respect to

the design variables X, the coupling variables y, and the state variables s. This

approach is truly All-At-Once, since design, system analysis, and subspace analysis

are all performed simultaneously.

4Residuals quantify how well the state variables satisfy the governing equations. Zero residuals
indicate exact satisfaction.
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Evaluator

Optimizer

Evaluator

x1, xs1, y1j, s1 x2, xs2, y2j, s2

f1, g1, h1,
yi1, w1

f2, g2, h2,
yi2, w2

Figure 3.4: AAO structure.

min
X={x,xs},y,s

f(X,y) (3.3)

subject to g(X,y, s) =
{
g1

T ,g2
T , . . . ,gs

T
}T ≤ 0

h(X,y, s) =
{
h1

T ,h2
T , . . . ,hs

T
}T

= 0.

haux(X,y, s) =


y(X,y, s)− y

w(X,y, s)


= 0.

In [13] the three foregoing formulations are described in more detail, and are com-

pared with respect to important performance indices. Selection of the appropriate

formulation is facilitated by an understanding of the strengths and weaknesses of

each. Table 3.1 is adapted from [13], and outlines several important characteristics

of each formulation.

3.4 General MDO Framework

A general framework has been developed that is capable of characterizing most

MDO formulations (Balling and Sobieszczanski-Sobieski [5]). This notation system

has been widely used in the MDO community to concisely describe the structure of
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Table 3.1: Comparison of single-level MDO formulation characteristics.

AAO IDF MDF

BUse of legacy None Full Full, requires

analysis tools coupling

BSatisfaction of Only at At each opt. At each opt.

governing eqns. convergence iteration iteration

BSystem consistency Only at Only at At each opt.

convergence convergence iteration

BOptimizer decision X = {x,xs},y, s X = {x,xs},y X = {x,xs}

variables

BExpected speed Fast Medium Slow

BRobustness Unknown High Medium

an MDO formulation. A discussion of this notation leads nicely into the description

of multi-level formulations, and more general hybrid formulations.

The terms used in this notation system are defined as follows:

SO System Optimizer

SA System Analyzer

Oi Subspace i optimizer

Ai Subspace i analyzer

Ei Subspace i evaluator

System optimizers and analyzers were introduced previously, but a subspace op-

timizer is a new concept. Subspace optimizers are the distinguishing feature of

multi-level formulations, and are discussed in Section 3.4.2. Subspace analyzers de-

termine the state variable values required satisfy governing equations for a subspace,

and return response functions for a given design, while subspace evaluators merely

evaluate the governing equations and return the pertinent residuals.
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The type of execution is depicted by the following symbols:

[ ] Nested execution

|| Parallel execution

→ Sequential execution

This notation is helpful in describing the structure of an MDO formulation, how-

ever it is far from a complete description. Two formulations with identical notation

under the above system may operate and perform very differently. Important distin-

guishing characteristics, such as how formulations handle system objective functions

and subspace constraints, are not captured by this notation system.

A standardized naming scheme was also developed by Balling, expressing the for-

mulation using a three-term name. The first term refers to whether the formulation

has single or multiple optimization levels. The second term distinguishes whether

SAND or NAND is used at the system level, and the third term makes the same

distinction for the subspace level. Although the notation system introduced above

applies to MDO formulations in general, the naming scheme is more limited. Exam-

ples given in the following sections will elucidate the notation system and naming

scheme.

3.4.1 Single-Level Strategies

The three primary single-level formulations were described in detail previously, so

only a brief illustration of how Balling’s notation system and naming scheme applies

to each will be given.

MDF

First consider the MDF formulation. It employs a single system level optimizer,

a system analyzer, and subspace analyzers. In a two-subspace example the notation

system would indicate MDF by:
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SO[SA[A1 → A2]]

The state variable determination is nested within each subspace analysis, and

the subspace analyses are nested within the system analyzer. The appropriate name

under Balling’s convention is Single-NAND-NAND.

IDF

The IDF formulation again uses a single system level optimizer, and subspace

analyzers. However, no system analyzer is used. A two-subspace IDF formulation in

Balling’s notation is depicted by:

SO[A1||A2]

The state variable determination is nested within each subspace analysis, and

the subspace analyses are executed simultaneously by the system optimizer. The

appropriate name is Single-SAND-NAND.

AAO

The AAO formulation utilizes a single system level optimizer, and subspace eval-

uators. A two-subspace AAO formulation in Balling’s notation is depicted by:

SO[E1||E2]

The state variable determination is made by the system optimizer, and the sub-

space analyses are executed simultaneously by the system optimizer. The appropriate

name is Single-SAND-SAND.
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3.4.2 Multi-Level Strategies

In the single-level formulations above all design decisions, no matter how small,

are made by a single system-level optimizer. This degree of design centralization may

be overwhelming as the number of subspaces and interactions grow large. Distribut-

ing some of the decision-making authority throughout the system is an approach to

alleviate problems associated with design centralization.

Some mature analysis tools are equipped with efficient optimization algorithms.

It makes sense to utilize these integrated optimizers to make local decisions, rather

than separating the analysis and forcing it to work with a system optimizer. Many

design teams are led by a project manager (system level), but also by several group

leaders or disciplinary experts. A single-level formulation bypasses the expertise of

these individuals. Allowing experts or group leaders to make local decisions makes

better use of existing resources. Local decision making is represented by subspace

optimizers in multi-level architectures, providing the subspace autonomy that is fre-

quently required to map a formulation to an existing organizational structure [4].

Multi-level formulations can reduce communication requirements, since local design

variables no longer must be passed to the system optimizer. The system optimizer

is limited to coordinating the subspace interactions and guiding the entire process

to a system-optimal design.

Several variations of multi-level strategies have been developed. One class of these

formulations is the Disciplinary Constraint Feasible (DCF) architecture (Figure 3.5).

An optimizer is associated with each subspace, and is charged with ensuring any local

design constraints are satisfied, and minimizing any applicable objective functions

(which may be modified from the original design problem) with respect to subspace

level variables. The system optimizer is responsible to ensure system consistency,
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and minimize the system objective function, with respect to system level variables.

The term DCF arises from the fact that each subspace optimizer is required to

return a local design that is a consistent system that satisfies local ‘discipline’ design

constraints. What variables are considered system and subspace level depends on

the specific formulation. Details of how data is communicated in a DCF formulation

is deferred until later sections. Collaborative Optimization is one example of a DCF

architecture [10, 9], and is presented in detail in Chapters 5 and 6. Other examples

of multilevel strategies in use are Concurrent Subspace Optimization (CSSO) [37, 42]

and Bi-Level Integrated System Synthesis (BLISS) [39, 40].

Analyzer

System Optimizer

Analyzer

s s

Subspace
Optimizer

Subspace
Optimizer

Figure 3.5: DCF structure.

Using Balling’s naming scheme, a DCF formulation is termed a Multi-SAND-

NAND approach. Using his notation system, the architecture shown in Figure 3.5

can be represented by:

SO[O1[A1]||O2[A2]]

It may be desirable to extend a multi-level formulation beyond two levels. Figure

3.6 illustrates one such structure. Methodologies such as Analytical Target Cascading
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(ATC) exploit the hierarchical structure some systems possess5. A system optimizer

fills the same roll as in the DCF architectures, but the intermediate subspace op-

timizers now are charged with coordinating any subspaces that are directly below

them in the system hierarchy in addition to their own analysis. Please note that ATC

is not an MDO formulation— it was developed as a product development tool rather

than a design tool stemming from Multidisciplinary Analysis. ATC is described in

detail in Chapters 5 and 7. This section serves as only an introduction to multi-level

structures.

System
Optimizer

Subspace Optimizer Subspace Optimizer

Analyzer

s

Analyzer

s

Subspace
Optimizer

Analyzer

s

Subspace
Optimizer

Analyzer

s

Subspace
Optimizer

Analyzer

s

Subspace
Optimizer

Analyzer

s

Figure 3.6: Multilevel optimization structure.

The multilevel optimization structure depicted in Figure 3.6 may be represented

in Balling’s notation as:

SO[O1[A1||O3[A3]||O4[A4]]||O2[A2||O5[A5]||O6[A6]]]

5Figure 3.6 does not depict ATC per se, but only a general hierarchical optimization structure.



58

3.4.3 Hybrid Strategies

Often a problem structure does not fit one of the standard formulations well. For

example, one subspace may have its own optimizer, while the other subspaces do

not. It may be tempting to force an existing problem structure to fit a particular

MDO formulation because of familiarity with the formulation or for other reasons.

This approach certainly can work, but may add several new variables and auxiliary

constraints in the process. For some problems this may work fine with little penalty

from the increased problem dimension. However, a grossly inefficient strategy may

also result. In addition, breaking existing communication channels and forcing new

channels in an organizational context may seriously disrupt a design team.

A viable alternative is to develop a hybrid formulation that is a more natural fit

to the original design problem, preserving more of the existing structure and design

tools. Although hybrid formulations are not discussed in detail in this thesis, they

fall in line with the recurring theme of selecting an approach that best fits the design

problem. Figure 3.7 illustrates one possible hybrid structure, whose representation

in Balling’s notation is:

SO[O1[A1]||A2]

This chapter presented three fundamental Multidisciplinary Design Optimization

Formulations— MDF, IDF, and AAO, and discussed the nature of each. All exhibit

centralized decision making to some degree, and distributed analysis or evaluation.

Multi-level formulations were introduced as a method for providing distributed deci-

sion making, improving how well MDO formulations map to existing design organi-

zations. A general framework for describing MDO formulations was introduced. The



59

following chapter provides an in-depth comparison of two single-level formulations

(MDF and IDF) by way of an engineering design problem.

Analyzer

System Optimizer

Analyzer

s s

Subspace
Optimizer

Figure 3.7: An example of a hybrid MDO architecture.



CHAPTER 4

Single Level Comparison: MDF vs. IDF

This chapter explores in detail two Multidisciplinary Design Optimizations pre-

sented in the previous chapter (MDF and IDF) by way of an engineering design

example problem. MDF is the most basic formulation, requiring a complete analysis

solution for every optimization iteration. IDF enables design and analysis to be per-

formed simultaneously. Both MDF and IDF formulations are fully developed for the

example problem, and how each formulation responds to increased coupling strength

is explored.

4.1 Test Problem: Turbine Blade Design

The test problem chosen to perform a comparison between MDF and IDF is the

turbine blade design problem introduced in Chapter 1. In this section the analysis

model is fully developed for use in the comparison.

4.1.1 Test Problem Requirements

Before the turbine blade design problem was selected and developed, a set of re-

quirements was identified. A suitable MDO test problem should possess the following

characteristics:

• Inter-disciplinary coupling.

60
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• Controllable coupling strength.

• Fully analytic model.

• Design tradeoffs.

• Physical significance.

• Manageable complexity.

Both MDF and IDF are strategies for solving design problems possessing inter-

disciplinary coupling, so this coupling is a required test problem characteristic for

the comparison. A test problem with adjustable coupling strength facilitates the

exploration of MDF and IDF performance variation with respect to system coupling

strength.

Many MDO problems in practice involve computationally intensive computer

simulations, such as finite element analysis (FEA), or computational fluid dynamics

(CFD). MDO problems with such simulations pose special challenges, including sig-

nificant computation time, response noise, and lack of derivative information. A fully

analytic test problem enables the exploration of MDO formulations without these

challenges. In addition, offering a detailed analytic model enables the reader to more

easily replicate the results (typically not possible with complex system simulations).

The existence of design tradeoffs is also an important test problem property. A

frequently encountered tradeoff is performance and cost, i.e. one component may

be improved at the expense of degrading the other. Optimization problems without

such tradeoffs are often trivial and sometimes unbounded. A well-designed example

problem should possess some type of design tradeoff.

A purely abstract test problem would easily meet the above requirements, yet

would lack physical significance. A connection to a real system aids in developing

intuition for how the MDO formulations work, as well as demonstrating the practical
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value of MDO. An easy to understand physical system with straightforward coupling

behavior will meet our purposes well.

Scores of decomposable problems meet the above requirements, but may fail to be

easily understood by an individual outside of a particular industry or discipline. An

easily understood problem with manageable complexity will facilitate demonstration

of MDO formulations to newcomers of this engineering discipline. Another source of

problem complexity is the number of system interactions. A a problem is decomposed

into n subspaces has n(n−1) possible couplings. Restricting the number of disciplines

to two or three will enable the reader to more easily follow and track the problem

development and solution. Dozens of couplings would obfuscate the intuition of an

introductory problem by burdening the reader with excessive details.

4.1.2 Turbine Blade Design Problem Description

Several physical systems were considered, and the design of a turbine blade used in

a gas-turbine engine best met the requirements listed above. Simplifying assumptions

were made to arrive at a fully analytic model, yet design performance trends and

interactions were adequately captured in the model. A simplified diagram of a gas

turbine engine is shown in Figure 4.1, and a drawing of a single turbine blade is

shown in Figure 4.2.

Figure 4.1: Diagram of a gas-turbine engine.
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Figure 4.2: Diagram of a single gas-turbine blade.

A turbine blade in a gas turbine engine is exposed to high temperature combustion

gasses moving at very high velocity. The blade is subject to high forces generated

by aerodynamic drag force and centripetal acceleration. The blade must maintain

structural integrity under these extreme conditions. In practice, modern alloys, such

as Inconel, and advanced cooling systems are employed to ensure the durability of

turbine blades. When a complete gas turbine system is modeled for design purposes,

one possible objective is to maximize the thermal efficiency. Our simplified model

cannot accurately predict this efficiency, but it can predict the mass m of the blade,

and the heat transfer q through the blade. Intuitively both of these metrics should be

minimized in order to maximize thermal efficiency. Without a complete model it is

difficult to say how to balance the minimization of heat transfer and mass in order to

best improve efficiency. This may be addressed with techniques for multi-objective

optimization, discussed in Section 2.1.

Several phenomena were modeled in order to provide sufficient fidelity and to
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capture the design tradeoffs and coupling behavior:

• Thermal expansion of the turbine blade in the axial direction.

• Stress and elongation due to centripetal acceleration.

• Aerodynamic drag force and the resulting bending stresses.

• Dependence of thermal conductivity (k), elastic modulus (E), and rupture
stress (σr) on temperature.

It will be shown in the development of the mathematical model that the tempera-

ture profile of the blade is dependent upon the dilated length of the blade. Intuitively,

if the blade elongates due to thermal expansion or centripetal forces, a larger surface

area is exposed to the hot combustion gasses, affecting the heat transfer through the

blade and the associated temperature profile. The model includes the dependence

of the material’s modulus of elasticity and thermal conductivity on temperature.

Higher temperatures (caused by more exposed surface area) result in lower stiffness,

causing greater elongation. In summary, temperature depends on length, and length

depends on temperature (Figure 4.3).

Thermal
Analysis

Structural
Analysis

T(x) (temperature
profile)

L (dilated length)

Figure 4.3: Analysis coupling present in the turbine blade design problem.
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4.1.3 Mathematical Development

The mathematical model is decomposed by aspect into two subspaces— thermal

and structural. The turbine blade is modeled as a simple rectangular fin in both

disciplines, and is depicted in Figure 4.4. The design variables are the blade width w

and thickness t. The blade has an initial undeformed length of L0, and is subjected

to combustion gas temperature Tg and velocity vg. The blade is affixed to a rotor

with angular velocity ω, resulting in a centripetal acceleration fac. x is the axial

position measured from the attachment point of the blade to the rotor.

w

t

L0

x

vg, Tg

fac

Figure 4.4: Turbine blade model schematic.

Four failure modes are considered. First is melting of the Inconel alloy used in

the turbine blade. Second is interference between the blade and the turbine housing

resulting from excessive elongation. The final two failure modes are structural failure

from either the bending stress σb or axial stress σa exceeding the rupture stress σr

at any point on the blade.

Several simplifying assumptions were made. The coefficient of thermal expansion

α remains constant with temperature in this model, and it is assumed that no internal

blade cooling is supplied. The inertial force fac is taken to be constant over the blade,

since the blade length is much smaller than the rotor radius. Lateral contraction due
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to the Poisson effect is neglected. Finally, the dependence of thermal conductivity

(k), elastic modulus (E), and rupture stress (σr) on temperature is modeled with

curve fits based on empirical data.

The complete turbine blade optimization problem is formulated as a multi-objective

optimization problem shown below (equation 4.1):

min
X={w,t}

{q, m} (4.1)

subject to g1(X) = Tmax − Tmelt ≤ 0

g2(X) = δtotal − δallow ≤ 0

g3(X, x) = σa(x)− σr(T (x)) ≤ 0

g4(X, x) = σb(x)− σr(T (x)) ≤ 0

{x|0 ≤ x ≤ L0 + δtotal}

where Tmax is the maximum temperature in the blade, Tmelt is the melting tem-

perature (solidus) of the blade alloy, δtotal is the blade elongation due to all ef-

fects modeled, δallow is the clearance between the blade and housing when cold, and

σa(x), σb(x), and σr(T (x)) are the axial, bending, and rupture stresses along the

blade. In practice the bending stress is far lower than the axial stress, so the sim-

plification of considering the axial and bending stresses individually, rather than the

combined out of plane stress, is validated. The mathematical development of each

of the two disciplines follows.

Structural Analysis

The calculation of each of the functions used in equation 4.1 pertinent to struc-

tural analysis is outlined here. The structural objective function is the mass m of

the turbine blade, determined with equation 4.2.

m = wtL0ρ (4.2)
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The density of the turbine blade material is ρ. The next calculation is the total

elongation δtotal. This requires the computation of both the thermal expansion δth,

and the elongation due to axial acceleration δax. The thermal expansion is dependent

upon the change in temperature from the initial temperature T0, and is derived as

follows:

dδth = α(T (x)− T0)dx

δth =

∫ L0

0

T (x)dx−
∫ L0

0

αT0dx

δth =

∫ L0

0

T (x)dx− αT0L0

The last step is made because the coefficient of thermal expansion α is assumed

constant with temperature. The temperature profile must be known in order to

evaluate δth. At the beginning of a system analysis T (x) is unknown because it is

the output of the thermal analysis, and an initial guess must be made in order to

begin the iterative Fixed Point Iteration analysis process (explained in §2.2), or a

value supplied by the system optimizer if IDF is used.

The elongation due to centripetal acceleration is dependent on the angular ve-

locity of the rotor ω and the radius of the rotor r. First the axial load as a function

of axial position is calculated. The portion of the blade outboard of a position x

pulls with load Pa(x). The tangential velocity of the blade v = ωr is assumed to be

constant over the blade length, and is valid if L0 � r.

Pa(x) =

∫ L0+δtotal

x

v2

r
ρAcdx

=
v2

r
ρwt(L0 + δtotal − x)

= ω2rρwt(L0 + δtotal − x)

The axial deflection δax is found using the axial load, and then summed with the
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thermal expansion δth to find the total elongation δtotal (equation 4.3).

δax =

∫ L0+δtotal

0

Pa(x)dx

AcE(T (x))

= ω2rρ

∫ L0+δtotal

0

(L0 + δtotal − x)

E(T (x))
dx

δtotal =

∫ L0

0

T (x)dx− αT0L0 (4.3)

+ω2rρ

∫ L0+δtotal

0

(L0 + δtotal − x)

E(T (x))
dx

The integrations above require the value of the blade length after elongation

L = L0 + δtotal, which is unknown before the integrations are performed. This is

another coupling with the turbine blade length determination.

Now that the total deflection is known, the next responses to consider are the

axial and bending stresses. The axial stress is a function of axial position, and is

calculated with the relation σa = Pa/Ac, where P is the axial load and Ac = wt is

the cross sectional area as before.

σa(x) = ω2rρ(L− x) (4.4)

The calculation of the bending stress is less trivial. First the aerodynamic drag

force must be found.

Paero =
1

2
AfCDρv2

Af is the frontal area, or wL, CD is the drag coefficient, ρ is the combustion

gas density, and v is the combustion gas velocity (assumed to be perpendicular to

the blade). The velocity v is assumed to be constant, as is the combustion gas

temperature and density. Therefore the only variables in the calculation of Paero are
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w and L. For convenience the constant K = 1
2
CDρv2 is defined, and the aerodynamic

drag force is expressed as:

Paero = KwL

Considering a position x on the blade, the total aerodynamic drag force acting

on the blade outboard of that position is:

Paero(x) = Kw(L− x)

and the bending moment at point x is:

M(x) = Kw
(L− x)2

2

Finally, using the beam stress formula σb = Mc/I and the moment of inertia

I = wt3/12 for a rectangular beam, we arrive at the bending stress present in the

blade at position x (equation 4.5).

σb(x) =
3K(L− x)2

4t2
(4.5)

Thermal Analysis

A simple, one-dimensional heat transfer model was used to determine the tem-

perature profile and heat transfer through the turbine blade. The model was derived

beginning with the steady-state heat equation:

d2T

dx2
+

(
1

Ac

dAc

dx

)
−

(
1

Ac

h

k

dAc

dx

)
(T − T∞) = 0

The two boundary conditions used were a constant temperature base (where the

blade attaches to the rotor), and an adiabatic tip condition. The combustion gas
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temperature T∞ was assumed constant. The dependence of thermal conductivity k

on temperature is modeled with a curve fit (explained later in this section). It was

assumed that k was constant over the entire blade length and depends only on the

average blade temperature. The average convection coefficient h was approximated

using empirical correlations involving the average Nusselt number Nu and the Prandtl

number Pr.

Nu =
hw

kg

= CRem
DPr1/3

The conduction coefficient kg refers to the combustion gas, ReD = vw/ν is the

appropriate Reynold’s number, and m is an empirical exponent of 0.731. C is the heat

capacity of the combustion gas. Solving for h, and substituting in appropriate values

for the other parameters with SI units (@T∞ = 900◦C), the following expression

results:

h(v, w) = 9.196v.731w−.269

The average convection coefficient h is function of only the blade width w and the

combustion gas velocity v. Solving the heat equation with the appropriate boundary

conditions, the following expressions for the temperature profile and the heat transfer

through the blade into the rotor at the point of attachment result:

T (x) =
cosh(m(L− x))

cosh(mL)
(Tb − T∞) + T∞ (4.6)

q = wt(Tb − T∞) tanh(mL)

√
2h(w + t)wtk (4.7)

where:

m =
√

2h(t + w)/ktw
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Curve Fits

Several curve fits based on empirical data were employed in order to capture

temperature dependence. All three parameters approximated have been explained

previously, and the curve fits are summarized here.

The rupture stress σr was approximated using an s-curve function (equation 4.8).

The rupture stress maintains a high value over most of the temperature range, but

drops off steeply as the solidus temperature for Inconel X-750 is approached. Figure

4.5 illustrates this behavior.

σr(T ) =
1300

1 + e.011(T−675)
(4.8)
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Figure 4.5: Curve fit for the rupture stress temperature dependence.

The conductivity of the blade k was modeled using a linear curve fit (equation

4.9). The dependence on average temperature T was captured from empirical data.
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k(T ) = 6.8024 + 0.0172T (4.9)

The final curve fit was a fourth-order polynomial fit to the modulus of elasticity

for the blade material (equation 4.10). Figure 4.6 shows the significant dependence

that the modulus has on temperature. As shown in equation 4.3, this temperature

dependence is utilized over the length of the blade to determine deflection.

E(T ) = 209.8− 0.0487T − .0002T 2 + 6 · 10−7T 3 − 6 · 10−10T 4 (4.10)
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Figure 4.6: Curve fit for the elastic modulus temperature dependence.

4.1.4 Analysis Summary

The turbine blade analysis model is now fully developed, and is summarized

in this section. Figure 4.7 illustrates the analysis problem structure, posed as a

coupled, two-subspace system. The system has two shared design variables, and no

local design variables, thus the entire design vector is X = {w, t}T . Please note the
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difference between the design vector X and the position x, which is used to indicate

that some of the responses are functions of position.

q(w,t,L)
T(x,w,t,L)

SS1: Thermal Analysis

m(w,t)
L(w,t,T(x))
total(w,t,T(x))
b(w,t,T(x),x)
a(w,t,T(x),x)
r(w,t,T(x),x)

SS2: Structural Analysis

y21=T(x)

y12=L

X1=w,t X2=w,t

Figure 4.7: Diagram summarizing the turbine blade analysis.

The responses of the thermal analysis (SS1) are the heat loss q and the tem-

perature distribution T (x), both of which depend on the design vector (X) and the

input from the structural analysis (coupling variable y21), the dilated length L. The

responses of the structural analysis (SS2) are the mass m, dilated length L, total

deflection δtotal, and the bending, axial, and rupture stresses σb, σa, and σr. These

responses in general depend upon the design vector (X) and the input from the

thermal analysis (coupling variable y12), the temperature distribution T (x).

Figure 4.7 is similar to Figure 4.3 in that they both illustrate the nature of the

interdisciplinary coupling (Figure 4.7 provides more detail). To employ Fixed Point

Iteration (section 2.2) for analysis of a turbine blade design, the design vector (X) is

held fixed, and an initial guess is made for one of the coupling variables (such as the

temperature distribution). The sequential subspace evaluation is iterated until the

change in coupling variable value is less than some small value ε at each iteration.
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Table 4.1 shows the analysis results for a particular design. Function valued responses

such as temperature distribution and stress distribution are displayed in Figure 4.8.

Table 4.1: Turbine blade analysis results.

parameters values variables values responses values

ρ 8510 kg/m3 w 0.08 m q 0.2046 W

L0 0.05 m t 0.005 m m 0.1702 kg

α 12.6 · 10−6 m/K L 0.507 m

rb 0.5 m δ 0.007 m

ω 2100rad/s

δmax 0.05 m

ρg 3.522 kg/m3

Cd 2.0

v 100 m/s

Tb 300 ◦C

Tg 900 ◦C

ε 1.0 · 10−8

Note that the bending stress is insignificant compared to the axial stress, and

at no point along the blade does any stress value exceed the rupture stress. The

temperature is also feasible (and will never be infeasible since the gas temperature

is lower than the alloy’s melting temperature).

Now that the analysis has been completed, it can be used for the next step—

optimization.

4.2 Turbine Blade Design with MDF

The turbine blade design was optimized first using the MDF approach (§3.1). The

FPI analysis procedure described in the previous section was used to find an analysis
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Figure 4.8: Temperature and stress response of the turbine blade analysis.

solution (consistent set of coupling variables) at every optimization iteration during

the MDF process. The optimizer controlled only the design variables, X = {w, t}T .

Since the design problem has two objective functions (m and q), one (m) was treated

as a constraint function, and the other (q) was treated as the objective function. The

MDF formulation follows.

min
X={w,t}

q

subject to g1(X) = Tmax − Tmelt ≤ 0

g2(X) = δtotal − δallow ≤ 0

g3(X, x) = σa(x)− σr(T (x)) ≤ 0

g4(X, x) = σb(x)− σr(T (x)) ≤ 0

g5(X, x) = m−mmax ≤ 0

{x|0 ≤ x ≤ L0 + δtotal}

The mass was constrained to not exceed 0.04 kg. The parameter values from Table

4.1 were used, and the optimal design was found to be {w∗, t∗}T = {0.0131, 0.0075}T .
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4.3 Turbine Blade Design with IDF

The turbine blade design was then optimized using the slightly more sophisticated

approach, IDF (§3.2). The primary difference in this demonstration is the optimizer

not only controls the design variables, X = {w, t}T , but also provides input values for

the coupling variables, L and T (x). In addition, two equality constraints were added

to the optimization to ensure that the values supplied for the coupling variables

matched the outputs from the subspaces that calculated the coupling variables. A

result is intermediate designs are not usually consistent systems. Only at convergence

will all constraints be met. The IDF formulation is shown below.

min
X={w,t},T (x),L

q

subject to g1(X) = Tmax − Tmelt ≤ 0

g2(X) = δtotal − δallow ≤ 0

g3(X, x) = σa(x)− σr(T (x)) ≤ 0

g4(X, x) = σb(x)− σr(T (x)) ≤ 0

g5(X, x) = m−mmax ≤ 0

g6(X, x) = T (x)− T (X, x) = 0

g7(X, x) = L− L(X) = 0

{x|0 ≤ x ≤ L0 + δtotal}

The parameter values from Table 4.1 were again used. The optimal design found us-

ing IDF was basically identical to the MDF results: {w∗, t∗}T = {0.0128, 0.0074}T .

When applied to this simple example, both MDF and IDF are successful in find-

ing the optimum system design. One may wonder why go through the additional

complexity of IDF. Important reasons for choosing IDF such as opportunity for par-

allelization were discussed previously, and the next section explores another reason—

the effect of coupling strength on solution performance.
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4.4 Effects of Coupling Strength

The effect that E and α have on coupling strength was already discussed qual-

itatively. Here a quantitative approach is used to illustrate the effect of coupling

strength on both the MDF and IDF approaches. This is an excellent means to com-

pare the suitability of these two approaches for various design problems based on the

system coupling strength.

Twenty different turbine blade design optimizations were performed for both

MDF and IDF. Each design had a different multiplier for the modulus of elasticity

E. Smaller multipliers resulted in a more flexible blade, and a more strongly coupled

system. The computation time was recorded for each optimization. The same in-

vestigation could have been performed with multipliers greater than one for α. The

results of this experiment are displayed in Figure 4.9.
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Figure 4.9: Comparison of MDF and IDF solution time as a function of coupling
strength.
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The plot elucidates the robustness of IDF with respect to coupling strength, and

the sensitivity of MDF to the same factor. Weakly coupled systems are more effi-

ciently solved with MDF, while strongly coupled systems require excessive iterations

for the inner analysis loops for MDF. The computation time required for the IDF

approach is virtually constant for all levels of coupling strength investigated here.

Also, the computation time for IDF did not reflect any parallel processing. If parallel

processing had been used the IDF computation time would be a little more than 50%

of the values shown in Figure 4.9.

The turbine blade design problem explored throughout this chapter was an effec-

tive means to illustrate the details of both the MDF and IDF formulations. The test

problem possessed intuitive feedback coupling, and had the means to easily modify

the system’s coupling strength. IDF was shown to be a more efficient choice for

strongly coupled problems. However, IDF does have shortcomings. In an organiza-

tional context such a centralized approach is less than desirable. Typically design

groups are lead by group leaders or disciplinary experts, and frequently mature areas

of design have developed optimization procedures. IDF cannot utilize these resources

since all decisions are made at the top level. Multilevel methods are required to do

so. The remainder of the thesis introduces and compares a few selected multilevel

methods.



CHAPTER 5

Formulation of Selected Multilevel Strategies

The previous two chapters introduced several motivating factors for the devel-

opment of multilevel optimization strategies (i.e., strategies that employ subspace

optimizers). Some of the more important factors include distributing design author-

ity throughout an organization and utilizing existing design and optimization tools.

This chapter presents the formulation of two selected multilevel strategies: Collab-

orative Optimization (CO), and Analytic Target Cascading (ATC). CO is an MDO

approach, inspired by Multidisciplinary Analysis needs, and is frequently used for

aerospace applications. ATC is a product development tool intended for use at the

beginning of a design process, and has ties to the automotive industry.

An emphasis of this thesis is to clarify the distinctions between the CO process

and the ATC process. The formulations are presented with such a comparison in

mind. Although CO and ATC were developed based on very different needs, their

mathematical formulations are remarkably similar. Through some manipulation CO

can be made to appear very similar to ATC, and visa-versa. However, the solution

process is very different for each, and the requirements each methodology is based

upon colors their respective natures. For example, CO is a Multidisciplinary Design

Optimization (MDO) method, inspired by the work done in Multidisciplinary Anal-

79
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ysis (MDA). The result is that CO formulation implicitly emphasizes analysis. In

addition, because systems that CO is intended for are typically partitioned by aspect

(discipline), the bi-level architecture of CO is considered adequate since disciplines

are all considered to be members of the same level. In contrast, ATC is not an MDO

method, but rather originated from product development needs in industries that

are organizationally structured in a hierarchical manner with more than two levels.

A formulation that allows multiple levels is therefore required.

A source of confusion regarding CO and ATC is the terminology for each method-

ology. Effort is given here to solidify the meaning of the terminology for each strategy

and to clarify the differences. For example, both strategies use ‘targets’, yet the tar-

gets are composed of different quantities and are treated differently in CO and ATC.

Also, CO (as with other MDO formulations) categorize some quantities as coupling

variables, and ATC has a category called linking variables. These terms sound sim-

ilar, but are demonstrated in this chapter to refer to different things.

Chapter 6 and 7 demonstrate the CO and ATC design processes, respectively,

using an example problem that can be formulated as a coupled system (for CO

demonstration) or as a hierarchical system (for ATC demonstration).

Both CO and ATC have been the subject of continued research, and several

refinements for each strategy have been presented in the literature [1, 12, 14, 16]. As

this thesis is an initial comparison, only the basic formulation of each strategy will be

presented, facilitating a clear comparison of the fundamental processes. Comparisons

involving more sophisticated formulations is left for future work.
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5.1 Collaborative Optimization

Collaborative Optimization was developed in response to industry needs not met

by then current MDO formulations. For example, strategies such as IDF and AAO

(Chapter 3) are highly centralized, requiring that a single system optimizer (or

project leader), make all design decisions no matter how small. This section develops

the basic formulation of Collaborative Optimization, defined as a bi-level hierarchic

disciplinary constraint feasible approach1. Much of the material here was originally

presented in [9] and [10].

5.1.1 Collaborative Optimization Overview

To improve the practical value and industry utilization of MDO strategies, several

issues needed to be addressed, including:

• Subspace autonomy.

• High initial investments in restructuring design organizations.

• Flexibility to changes made during the design process.

Existing design organizations commonly have specialized design resources, such

as specialized optimization procedures (such as found in control, structures, and

aerodynamic disciplines) or experienced design experts. Centralized strategies such

as IDF or AAO bypass these resources and pass all decision making to a central sys-

tem optimizer. This not only stifles design group productivity, but often results in

heavy data communication requirements. Centralized strategies do not map well to

complex organizations with distributed decision making authority. The analysis inte-

gration required to implement a centralized strategy can be a substantial challenge,

and may need to be repeated if the design process changes.

1See §3.4.2 for an introduction to disciplinary constraint feasible (DCF) formulations.
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Collaborative optimization addresses these issues by employing subspace opti-

mizers and a unique treatment of system level and subspace level design problems.

Subspace optimizers allow the inclusion of legacy design tools and disciplinary ex-

perts, promote subspace autonomy (local design freedom), and reduce system com-

munication requirements. Subspaces aim at meeting targets for shared and coupling

variables set by the system optimizer, while maintaining subspace design feasibility.

The system optimizer performs inter-subspace and system-subspace negotiation via

these targets, i.e., the system optimizer manages these targets to guide the subspaces

into agreement and toward the system level objective.

System level targets are the only inbound communication a subspace receives.

Subspaces do not need to communicate with each other. A subspace optimizer’s

function is to meet its targets and satisfy its constraints. For example, if a higher

fidelity subspace analysis is brought onboard partway through the design, CO can

cope with this change since all the subspace has to do is meet its targets. In this

way CO can cope with the progressively increasing complexity throughout the design

process.

As with most MDO formulations, CO may be applied to general non-hierarchic,

arbitrarily coupled systems. Auxiliary constraints that require matching of system

targets decouple the subspaces, and allow general systems to fit the hierarchic struc-

ture of CO. This property provides industry with a new class of solution architectures

that may provide a more natural fit to many existing hierarchic organizational struc-

tures. However, if an organization has more than two levels in its hierarchy (such

as with many organizations partitioned by object), it must be restructured to match

the CO architecture. Other strategies that allow for more levels may be preferable

in this case.
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5.1.2 Collaborative Optimization Formulation

To introduce the CO formulation, a schematic of a system with N subspaces is

presented in Figure 5.1. Several details are omitted in the schematic for clarity of

the structure, but will be introduced shortly. The figure illustrates the hierarchic

communication channels between the system optimizer and the subspaces.

System Optimizer

min fs
       s.t. f* = 0

SS1 Analyzer

SS1 Optimizer

min f1
            s.t. g1 < 0

            h1 = 0

.  .  .

SSN Analyzer

SSN Optimizer

min fN
            s.t. gN < 0

            hN = 0
— —

z1̂ f1
* zNˆ fN

*

Figure 5.1: Simplified Collaborative Optimization architecture.

The system optimizer seeks to minimize the system objective function fs, subject

to the auxiliary constraints that require the optimal values of the subspace objective

functions (f∗ = f ∗
1 , f∗

1 . . . f ∗
N) to all be zero. The system optimization is performed

with respect to the system targets ẑ. The optimizer for subspace i receives the system

targets pertinent to subspace i, and seeks to minimize the discrepancy between the

targets ẑi and the corresponding quantities generated by the ith subspace zi, subject

to the subspace’s local design constraints gi and hi. The discrepancy between the

system targets and their corresponding subspace quantities is captured by the ith
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subspace objective function, fi.

With the general CO architecture known, the relevant terminology can be for-

mally introduced. As first described in section 2.1.4, the design variables of the

original design problem X are separated into local and shared variables according to

the system partitioning.

X = {xT
i ,xT

s }T i = 1 . . . N

The original design variable vector may be separated into quantities that are de-

sign variables for a particular subspace, called subspace design variables (mathbfXi).

Subspace design variables mathbfXi contain design variables that are local to sub-

space i (xi), and shared variables that are required inputs to subspace i (xsi). Sub-

space design variables do not include any coupling variables, since subspace design

variables are members of the original design vector, and coupling variables are arti-

facts of decomposition and are never part of the original design vector.

Xi = {xT
i ,xT

si}T ∀ i

The system objective function fs(ẑ) is a scalar function of the system targets. It

might be computed directly by one of the subspaces, or could be a function of some

combination of subspace responses and design variables.

The system targets ẑ are the decision variables of the system-level optimiza-

tion, and are parameters in the subspace optimizations. These targets manage the

subspace interactions, that is they guide all shared and coupling variables. Each sub-

space is passed a set of locally pertinent targets ẑi, that are a part of the complete

system target vector ẑ. The ẑi in general do have common components, although

the special case exists where the local targets do not have common components. The

collection of all local targets comprises the complete system target vector ẑ.
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A target in the vector ẑi exists for every shared variable xsi used in subspace

i and for every input coupling variable yij and output coupling variable yji
2. The

values in zi are those generated by subspace i, each of which corresponds to a target

in ẑi. Note that the local design variables xi are not members of zi. This contributes

to subspace autonomy, and a reduced number of system level auxiliary constraints

(compared to AAO or IDF).

zi = {xT
si,y

T
ij,y

T
ji}T

The subspace objective functions fi quantify the deviation of the zi values calcu-

lated by subspace i from the corresponding targets ẑi, typically through the square

of the Euclidean norm. The subspace objective functions fi are functions of the

subspace design variables and the subspace coupling variables. The vector of local

targets ẑi is considered a fixed parameter in subspace optimizations. The optimal

value of the subspace objective function f ∗
i is passed to the system level problem and

used in the system-level auxiliary equality constraints.

fi(Xi,yij,yji) = ||zi − ẑi||22

Design constraints from the original design problem are partitioned into subspace

constraints (gi(Xi,yij), hi(Xi,yij)) that are functions only of subspace design vari-

ables and subspace input coupling variables, and into system level constraints that

require design variables from multiple subspaces and perhaps subspace responses as

inputs (gs(ẑ), hs(ẑ)). The latter are treated as functions of system targets, since

they are to be met solely by the selection of system target values. Other inputs

to these functions, such as subspace responses, are functions of targets in the CO

formulation from the system perspective.

2The definition of shared and coupling variables is provided in section 2.1.4.
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Now that the terminology has been established, the detailed formulation of the

system and subspace problems can be presented.

System Level Formulation

min
ẑ

fs(ẑ) (5.1)

subject to f∗(ẑ) = 0

gs(ẑ) ≤ 0

hs(ẑ) = 0

Subspace Formulation

min
Xi,yij

fi(Xi,yij) = ||zi − ẑi||22 (5.2)

subject to gi(Xi,yij) ≤ 0

hi(Xi,yij) = 0

At convergence the system is consistent, and has attained system optimality. Sub-

spaces require no communication from other subspaces, only system targets passed

down from the system optimizer. Note that in some cases subspaces communicate

quantities to the system level other than f ∗
i , such as when required to compute sys-

tem level functions fs, gs, or hs. These system level functions are still only functions

of the system targets when viewed from the system perspective, since the system

supplies only these targets and receives all necessary information to calculate these

functions.

Note that as with other multi-level MDO formulations, the optimization is nested.

That is, at every iteration of the system-level optimizer, each subspace optimizer

must perform a complete optimization. This can lead to a large number of function

evaluations, but since CO is a bi-level formulation the nesting is normally manage-

able.
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5.2 Analytical Target Cascading

Many design problems and organizations possess a purely hierarchical problem

structure with feedforward communication. Design problems with this structure may

be solved with a multi-level strategy called Analytical Target Cascading (ATC). ATC

is the result of efforts to formalize activities early in the product development process,

particularly for the automotive industry. This section introduces the ATC process

and its mathematical formulation. The dissertation by Kim [23] formally presented

the ATC methodology, and [24] provides an excellent summary of ATC.

5.2.1 Analytical Target Cascading Overview

Management of a company producing complex products may set top-level per-

formance targets for a product based on marketing or other criteria. Attempting

to generate a product design that meets these targets while abiding by engineering

constraints may be difficult or impossible if the design problem is viewed as a single

monolithic task. Some design problems allow partitioning into a purely hierarchic

structure, as illustrated in Figure 5.2. The nomenclature used in this figure will be

explained shortly. With this type of partitioning, appropriate targets may be set for

each of the smaller design tasks such that if met, the system as a whole will be a

consistent, feasible design that meets the top-level system targets.

Once appropriate targets are known for each subspace, the individual design

tasks can be executed in parallel and autonomously. Communication requirements

between subspaces are removed, speeding up the design process. The interaction

between subspaces is considered when the targets are set. Once the targets are set,

the design groups can proceed with detailed analysis and design.

Analytical Target Cascading is the process of determining the correct targets for
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each subspace for a specified set of system-level targets. Simulations used in the ATC

process must be detailed enough to capture salient interactions, yet computationally

inexpensive to allow ATC to be performed quickly enough to be useful as an early

product development tool. If such models do not exist, surrogate models of high-

fidelity simulations can be generated, or response surfaces made from experimental

data.
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Figure 5.2: General hierarchic partitioning structure.

Implementation of ATC in a product development process is summarized below.

1. Specify top-level targets.

2. Propagate targets through the system.

(a) Develop low-fidelity analysis models.

(b) Partition the system.

(c) Formulate the target cascading problem.

(d) Solve the target cascading problem with a coordination strategy.

3. Perform subspace detail design to meet targets.
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4. Verify system consistency and system level target matching.

If subspace targets cannot be met then the process is repeated beginning at step

2 with updated information obtained from the previous design attempt. If the top-

level targets cannot be met, management is presented with the design that best

matches the targets, and is charged with the decision to accept the design or update

the targets and repeat the entire process.

Before the ATC process is explained, the nomenclature and structure presented

in Figure 5.2 is defined. A parent subspace takes as inputs its local decision vari-

ables, linking variables, and child problem responses. It then returns its own set of

responses. In a hierarchical analysis structure child problems cannot require inputs

from parent problems, and links that skip levels are not permitted. This structure

provides only for feedforward coupling, since feedback would require a parent to send

a response to a child. The original design variables and coupling variables are cate-

gorized differently in the ATC process. It is important that these new categories are

defined carefully to prevent continued confusion between ATC and MDO strategies.

Recall the following definitions of MDO quantities:

x Local design variables : Design variables that are each inputs to only one subspace.

xs Shared design variables : Design variables that are each inputs to more than one

subspace.

y Coupling variables : Quantities that are passed from one subspace to another that

are not original design variables, but rather artifacts of decomposition.

With these in mind the terms specific to ATC are defined. The † symbol is used

to distinguish the ATC terms when a symbol already used for MDO nomenclature

is employed.
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y† Linking variables : Quantities that are input to more than one subspace. These

could be either shared variables (original design variables) or coupling variables

(not original design variables).

x† Local decision variables : Variables that a particular subspace determines the

value of. May or may not be original design variables.

R Responses : Values generated by subspaces required as inputs to respective parent

subspaces. May or may not be coupling variables.

T Targets : Values set by parent subspaces to be matched by the corresponding

quantities from child subspaces. Targets may exist for either responses or

linking variables.

The first subscript of the terms shown in Figure 5.2 (e.g. Rij) indicates the level

i of the pertinent subspace. The set Ei contains all subspaces at the ith level, and

the second subscript j indicates what element of Ei the pertinent subspace is (the

within-level element numbers). Every subspace j within level i has a set of child

problems, defined as Cij.

The mapping between MDO and ATC nomenclature is clarified by the Venn

diagram in Figure 5.3. What in the MDO context was called coupling variables may

be either linking variables or responses in an ATC context. Shared variables from

MDO are always linking variables in an ATC formulation. These distinctions will be

made more clear in the presentation of the ATC formulation and in the illustrative

example of Chapter 7.

ATC targets (T correspond to slightly different quantities than do CO targets. In

CO, targets (z) are restricted to shared and coupling variables. ATC targets may be

set for responses that are neither shared nor coupling variables. ATC targets are used
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Linking Variables Responses

Coupling Variables

Shared Variables

Figure 5.3: Venn diagram of ATC/CO nomenclature mapping.

to ensure system consistency (similar to CO targets) by ensuring shared and coupling

variables match. Targets for lower level problems are also set in order to ensure that

the higher level problem is capable of meeting its own targets. Linking variables or

responses that must match are coordinated by a common parent subspace.

One possible coordination strategy between subspaces consists of nested loops.

The top level problem is solved first, sending targets its corresponding child problems.

After the child problems are solved, the required responses are sent to the parent

problem, which is then solved again. Note that each child problem may have in

turn associated child problems, requiring inner coordination loops. The process is

repeated until the top level problem converges. This strategy has demonstrated

convergence properties [23, 30], however may require many optimization executions.

This motivates the requirement for low-fidelity analysis models. This is a key process

difference between CO and ATC. ATC has a nested coordination strategy, while

CO has nested optimizations. A nested coordination strategy means that while

parent problems are usually executed multiple times, these problems are provided a

static set of responses from child problems and a static set of targets from higher

level problems. Each optimization problem can be executed autonomously, without

waiting for results of lower optimization problems at every optimization iterations
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(as is the case with CO). In summary, CO requires a single execution of the top level

problem while ATC requires many, and CO has nested optimization while ATC has

nested coordination.

5.2.2 Analytical Target Cascading Formulation

The mathematical formulation of top level, intermediate, and bottom level prob-

lems are delineated here. To simplify notation, the subscripts sup, s, and ss indicate

the supersystem, system, and subsystem levels. Each problem is identified by a

problem label Pi,j, where i and j indicate the level and within-level element num-

bers respectively3. The intermediate level problem is the most general since it both

receives targets from above and responses from below.

Top Level Problem
Psup

min
x†

sup={xsup,y†
s,Rs,εR,εy}

||Rsup −Tsup||+ εR + εy (5.3)

subject to
∑

k∈Csup

||Rs,k −RL
s,k|| ≤ εR∑

k∈Csup

||y†
s,k − y†L

s,k|| ≤ εy

gsup(xsup, Rs) ≤ 0

hsup(xsup, Rs) ≤ 0

Intermediate Level Problem
Ps,j

min
x†

s,j={xs,j ,y†
s,j ,y†

ss,Rss,εR,εy}
||Rs,j −RU

s,j||+ ||ys,j − yU
s,j||+ εR + εy (5.4)

subject to
∑

k∈Cs,j

||Rss,k −RL
ss,k|| ≤ εR∑

k∈Cs,j

||y†
ss,k − y†L

ss,k|| ≤ εy

gs,j(xs,j, y†
s,j, Rs,j) ≤ 0

hs,j(xs,j, y†
s,j, Rs,j) ≤ 0

3The second subscript is not necessary for the top level problem since only one element exists
at the top level.
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Bottom Level Problem
Pss,j

min
x†

ss,j={xss,j ,y†
ss,j}

||Rss,j −RU
ss,j||+ ||yss,j − yU

ss,j|| (5.5)

subject to gs,j(xs,j, y†
s,j, Rs,j) ≤ 0

hs,j(xs,j, y†
s,j, Rs,j) ≤ 0

The top level problem controls its local design variables, shared variables from

lower problems, desired responses from its child problems, and the allowable compat-

ibility deviations (εR and εy) with the objective of minimizing the difference between

its responses and the top level targets, and minimizing the allowable compatibility

deviations. Local design constraints must be satisfied, as well as the response and

linking variable compatibility constraints. It is these compatibility constraints that

guide the lower level problem into agreement with respect to responses matching

targets and linking variables being equal. The desired response values and linking

variable values from child problems (Rs,k, y†
s,k) are decision variables for the top

level problem. The values of Rs,k and y†
s,k that solve the top level problem are passed

to child problems as targets, and are treated as parameters in the child problems.

The intermediate level problem is similar, but also aims at matching its linking

variables to the linking variable targets set by its parent problem (which is not nec-

essarily the top level problem). The linking variables pertinent to this intermediate

problem y†
s,j, not just those for child problems, are included in the set of decision

variables x†
s,j. The bottom level problem has no child problems, and therefore has no

compatibility constraints to meet. It only must meet local design constraints while

matching targets from its parent problem. Because of this, bottom level problems

have the most design freedom. Many possible solutions can exist that both match

targets exactly while satisfying local design constraints. At higher levels in the hier-

archy design freedom is progressively reduced, until it is a minimum at the top level.
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Staying feasible and meeting targets can be a struggle for the top level problem.

As noted earlier, the top level optimization is performed multiple times (as op-

posed to Collaborative Optimization’s single top level execution). What is used as

stopping criteria? One successful strategy is to iterate the top problem until the sum

of the allowable compatibility deviations (tolerances) εR and εy converge asymp-

totically, and the relative change of this sum falls below a prescribed value. This

recognizes that ATC may not be capable of exactly meeting the system level targets

since the top level target deviations are not included in this criterion, and provides

a way for the process to terminate if no compatible design exists that will meet the

system level targets. If the tolerances are not sufficiently close to zero at conver-

gence, new targets must be set and the process repeated since the solution was not a

compatible design. In CO the compatibility constraints must be satisfied with strict

equalities, rather than within some tolerance. This can lead to convergence issues in

some problems solved with CO.



CHAPTER 6

Collaborative Optimization Example

The Collaborative Optimization architecture for complex system optimization

was presented in Chapter 5. This chapter introduces a new example design problem,

and then uses Collaborative Optimization to solve the design problem.

6.1 Statically Indeterminate Structural Analysis Test Prob-
lem

In order to demonstrate the Collaborative Optimization and Analytical Target

Cascading methodologies in detail, a second test problem1 was developed— a stati-

cally indeterminate structural analysis (SISA) of a beam and rod system. The SISA

problem shares several attributes with the turbine blade design problem, such as

being a fully analytic model, having physical significance, and possessing tradeoffs.

However, it differs in that it is expandable to an arbitrarily large number of subspaces,

and can be manipulated algebraically into a tightly coupled formulation suitable for

utilization of MDO strategies (including CO), or into a purely hierarchical formu-

lation suitable for ATC. With this test problem both CO and ATC can be used to

solve the same design problem (in a manner natural for both CO and ATC), enabling

a clear illustration of the similarities and differences between the two strategies.

1The first test problem in this thesis (design of a turbine blade) was developed in Section 4.1.
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This section develops the analytical model for the SISA test problem, and then

illustrates how it can be posed as a coupled system. Fixed Point Iteration (Section

2.2) is employed to demonstrate system analysis, and the MDF optimization strategy

(Section 3.1) is used to solve the design problem to establish a baseline approach.

The SISA problem is posed as a hierarchical problem in Section 7.1.1 for use in

illustrating Analytical Target Cascading.

6.1.1 SISA Problem Description

Figure 6.1 exhibits the physical setup of the SISA problem. A number of can-

tilevered beams (nb) are attached to a vertical wall. Each of the beams have a solid

circular cross section of unique diameter di, where i is the beam number. All beams

are of a uniform length L. The rods interconnecting the beams also have solid circu-

lar cross sections of diameter drj, where j is the rod number. All rods are of unique

length lrj, and are attached to the beams with pin joints. There are nr = nb−1 rods

in the system. A downward force F1 is applied at the pin joint of beam 1.

A physical application of such a configuration is an anchoring system. Imagine

several steel posts set in a concrete foundation. Multiple posts are used in order

to distribute the load more evenly over the foundation, preventing damage to the

concrete.

The system is statically indeterminate because the number of unknown forces

and moments is greater than the number of available equilibrium equations. Some

type of compatibility constraints must be employed to enable solution of the system.

Several assumptions are made for the analysis of this system, including:

• The system remains linear.

• Body forces (gravity) are neglected.

• Shear stress in the beams is neglected.
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beam 1

beam 2

beam 3

beam nb

.

.

.

F1

rod 1

rod 2

rod nb-1

Ø dnb

Ø d3

Ø d2

Ø d1

Ø dr(nb-1)

Ø dr2

Ø dr1

L

lr1

lr2

lr(nb-1)

.

.

.

Figure 6.1: Schematic of the statically indeterminate structural analysis test prob-
lem.

• Buckling is not considered (rods in tension only).

• Stress concentrations are neglected.

• Homogeneous material properties.

The design problem is posed as a mass allocation problem. The system mass

must remain below a prescribed limit, and the objective is to distribute the mass

such that the deflection of the end of beam 1 under a given force F1 is minimized

subject to stress constraints. As is, an optimization will allocates all available mass

to a single beam. Which beam receives the mass depends on the starting design.
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If the initial design specifies equal beam diameters, beam 1 receives all the mass,

and the other beam diameters will be driven to zero (or lower bounds if used). This

is the most efficient design, and the global optimum. If the initial design specifies

one of the beams to be larger than the others, that beam will receive all available

mass. Intuitively, if a beam is already large, adding mass to it is more effective than

distributing it elsewhere since rigidity increases in a quartic manner with diameter

(quadratically with mass). A system of n beams has n local minima; which minimum

is found depends on the starting point.

A monotonic design problem such as this does not make for a very interesting

example. To resolve this issue consider the physical application. A reason for using

more than one rod in an anchoring system is to distribute the load over more of the

foundation to prevent failure of the foundation material. Addition of a maximum

transmitted force constraint2 models this requirement.

Table 6.1 summarizes what model quantities are considered design variables and

design parameters. The next section describes one possible partitioning of the SISA

design problem, and the separation of local and shared variables is made with respect

to this partitioning.

Table 6.1: SISA test problem variables and parameters.

local design variables xi: di i = 1 . . . nb

shared design variables xsi: drj j = 1 . . . nr

design parameters p: L, lrj, E, ρ, σallow, mallow, F tallow j = 1 . . . nr

Ftallow is the allowable transmitted force, ρ is the material density, σallow is the

allowable stress, and E is the modulus of elasticity. The design optimization problem

2This is mathematically equivalent to a maximum transmitted moment constraint since M = FL
and L is constant.
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in negative-null form is presented in equation 6.1. Recall that the collection of all

design variables X is the union of the shared variables xs and the local variables x.

min
X={x,xs}

f(X) = δ1(X) (6.1)

subject to g1i(X) = σbi(X)− σallow ≤ 0 i = 1 . . . nb

g2j(X) = σaj(X)− σallow ≤ 0 j = 1 . . . nr

g3(X) =

nb∑
i=1

mbi +
nr∑
i=1

mrj −mallow ≤ 0

g4i(X) = Fti − Ftallow ≤ 0 i = 1 . . . nb

The responses of interest in the analysis include the deflection of each beam end

(δi), the extension of each rod (δrj), the bending stress in each beam (σbi), the axial

stress in each rod (σaj), the transmitted force at each beam (Fti), and the beam and

rod masses (mbi & mri). From fundamental solid mechanics theory the following

relations were used in the development of this model:

σb =
Mc

I

I =
π

64
d4

σa =
P

Ac

δb =
PL3

3EI

δr =
PL

EAc

M is the bending moment in a beam at the point of wall attachment, I is the

area moment of inertia, P is the load, and Ac is the cross-sectional area. To be more

precise with the load quantities, Fi is designated as the downward force exerted at

the end of beam i, and Fj is the axial load present in rod j (which is equal to the force

applied to the beam above rod j, Fj+1). The responses of interest may be generalized

and grouped into three categories— intermediate or bottom beam, arbitrary rod, and

top beam.
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Intermediate or Bottom Beam

δi =
64L3(Fi − Fi+1)

3πEd4
i

(6.2a)

σbi =
32L(Fi − Fi+1)

πd3
i

(6.2b)

mbi =
π

4
d2

i Lρ (6.2c)

Arbitrary Rod

δrj =
4Fj+1lrj

πEd2
rj

(6.3a)

σaj =
4Fj+1

πd2
rj

(6.3b)

mrj =
π

4
d2

rjlrjρ (6.3c)

Top Beam

δnb
=

64L3Fnb

3πEd4
nb

(6.4a)

σbnb
=

32LFnb

πd3
nb

(6.4b)

mbnb
=

π

4
d2

nb
Lρ (6.4c)

Note that the transmitted force Fti for each beam is Fi − Fi+1 (Fi for the top

beam). Compatibility conditions require that the deflection of the end of beam i

(measured to a fixed frame) is equal to the deflection of the beam above (i + 1) plus

the extension of the connecting rod (j = i).

δi = δi+1 + δri (6.5)
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6.1.2 MDO Specific Formulation

One possible solution strategy is to view the SISA problem as a coupled sys-

tem. The resulting formulation is well suited for solution by MDO methods. The

deflection of a beam is dependent upon the deflection of the surrounding beams,

introducing coupling into the system. A beam and the rod connected to it from

above is considered a subspace. The top beam is of course a subspace by itself. A

three-beam case was chosen for developing the MDO specific formulation in order

to ensure an intermediate beam was employed, while maintaining simplicity. The

three-beam case may easily be extended to any number of beams.

Figure 6.2 illustrates the decomposition of the three beam case into three sub-

spaces, and shows the functional relationships and subspace communication paths.

This moderately coupled example has four of a possible 3(3 − 1) = 6 possible sub-

space interactions. The rest of this section develops the details of the functional

relationships found in this decomposition.

1( 2, d1, dr1)
b1( 2, d1, dr1)
a1( 2, d1, dr1)

mb1(d1)
mr1(dr1)
Ft1( 2, d1, dr1)

2( 1, 3, d2, dr1, dr2)
b2( 1, 3, d2, dr1, dr2)
a2( 1, 3, d2, dr1, dr2)

mb2(d2)
mr2(dr2)
Ft2( 1, 3, d2, dr1, dr2)

3( 2, d3, dr2)
b3( 2, d3, dr2)

mb3(d3)
Ft3( 2, d3, dr2)

SS1 (beam 1, rod 1) SS2 (beam 2, rod 2) SS3 (beam 3)

1

2

2

3

Figure 6.2: MDO decomposition of the three-beam SISA problem.

Using the MDO nomenclature developed earlier, the design and coupling variables

are identified for each subspace in Table 6.2.

The total design vector is therefore:
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Table 6.2: Design and coupling variables for each subspace in the SISA test problem.

SS1 SS2 SS3

y21 = δ1 y21 = δ1 y32 = δ2

y12 = δ2 y23 = δ3 y23 = δ3

x1 = d1 y12 = δ2 x31 = d3

xs1 = dr1 y32 = δ2 xs2 = dr2

x2 = d2

xs1 = dr1

xs2 = dr2

X =


x

xs


where:

x = {d1 d2 d3}T

xs = {dr1 dr2}T

The development of all functional relationships depicted in Figure 6.2 follows.

Subspace 1

Objective: given the inputs δ2, d1, and dr1, and parameters p, find the responses

δ1, σb1, σa1, mb1, and mr1. From equations 6.3a and 6.5 we know:

δ1 = δ2 + δr1 = δ2 +
4F2lr1
πEd2

r1

Using equation 6.2a:

δ1 =
64L3(F1 − F2)

3πEd4
1

= δ2 +
4F2lr1
πEd2

r1
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If we define the two constants for convenience, C1a = 64L3

3πEd4
1

and C1b = 4lr1

πEd2
r1

, the

force F2 may be solved for, and then the displacement δ1:

F2 =
−δ2 + C1aF1

C1b + C1a
(6.6a)

δ1 = C1a (F1 − F2) (6.6b)

With a value for F2, the other responses follow from equations 6.2b, 6.3b, 6.2c,

and 6.3c respectively:

σb1 =
32L(F1 − F2)

πd3
1

(6.6c)

σa1 =
4F2

πd2
r1

(6.6d)

mb1 =
π

4
d2

1Lρ (6.6e)

mr1 =
π

4
dr1lr1ρ (6.6f)

Subspace 2

Objective: given the inputs δ1, δ3, d2, dr1, and dr2, and parameters p, find the

responses δ2, σb2, σa2, mb2, and mr2 . From equations 6.3a and 6.5 we know:

δ2 = δ1 − δr1 = δ1 −
4F2lr1
πEd2

r1

Using equation 6.2a:

δ2 =
64L3(F2 − F3)

3πEd4
2

= δ1 −
4F2lr1
πEd2

r1

If we define the three constants for convenience, C2a = 64L3

3πEd4
2
, C2b = 4lr1

πEd2
r1

, and

C2c = 4lr2

πEd2
r2

, and use compatibility again (equation 6.5), the following two equations

for the displacement δ2 result:
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δ2 = C2a(F2 − F3) = δ1 − F2C2b

δ2 = C2a(F2 − F3) = δ3 + F3C2c

If these equations are solved simultaneously for F2 and F3, δ2 may then be found:

F2 =
δ1 − δ3 − C2cF3

C2b

(6.7a)

F3 =
δ1 − δ3 − δ3C2b

C2a

C2c + C2b + C2cC2b

C2a

(6.7b)

δ2 = C2a

(
δ1 − δ3 − C2cF3

C2b

− F3

)
(6.7c)

With values for F2 and F3, the other responses follow from equations 6.2b, 6.3b,

6.2c, and 6.3c respectively:

σb2 =
32L(F2 − F3)

πd3
2

(6.7d)

σa2 =
4F3

πd2
r2

(6.7e)

mb2 =
π

4
d2

2Lρ (6.7f)

mr2 =
π

4
dr2lr2ρ (6.7g)

Subspace 3

Objective: given the inputs δ2, d3, and dr2, and parameters p, find the responses

δ3, σb3, and mb3. From equations 6.3a and 6.5 we know:

δ3 = δ2 − δr2 = δ2 −
4F3lr2
πEd2

r2

Using equation 6.4a:
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δ3 =
64L3F3

3πEd4
3

= δ2 −
4F3lr2
πEd2

r2

If we define the two constants for convenience, C3a = 64L3

3πEd4
3

and C2c = 4lr2

πEd2
r2

, the

force F3 may be solved for, and then the displacement δ3:

F3 =
δ2

C3a + C3b

(6.8a)

δ3 = C3a

(
δ2

C3a + C3b

)
(6.8b)

With a value for F2, the other responses follow from equations 6.2b, 6.3b, 6.2c,

and 6.3c respectively:

σb3 =
32LF3

πd3
3

(6.8c)

mb3 =
π

4
d2

3Lρ (6.8d)

6.1.3 Analysis and MDF Results

The analysis of the three-beam SISA problem was performed using Fixed Point

Iteration (Section 2.2), and then this procedure was employed in a MDF formulation

to solve the design problem stated in equation 6.1. The Fixed Point Iteration analysis

is detailed below. The superscript k indicates the iteration number of a coupling

variable yk, and the difference between coupling variable values between iterations is

∆y = yk+1− yk. In this problem the coupling variables are δ1, δ2, and δ3. The norm

||∆δi|| is the Euclidean norm of the difference vector {∆δ1 ∆δ2 ∆δ3}T .

Iteration 0 :

guess δ0
2, δ0

3.

Iterate until ||∆δi|| < ε
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Iteration 1 :

δ1
1 = δ1(δ

0
2)

δ1
2 = δ2(δ

1
1, δ

0
3)

δ1
3 = δ3(δ

1
2)

Iteration 2 :

δ2
1 = δ1(δ

1
2)

δ2
2 = δ2(δ

2
1, δ

1
3)

δ2
3 = δ3(δ

2
2)

...

As per the discussion in Section 2.2.1, the superscript i indicates the iteration

number, and ε is the maximum inconsistency allowed between subspaces. A stopping

criteria of ε = 1 · 10−6 was used3. The FPI algorithm required 94 iterations for con-

vergence, indicating strong coupling behavior. With design variable and parameter

values given in Table 6.3, the resulting deflection δ1 was 5.60 millimeters.

Table 6.3: SISA design variable and parameter values for FPI analysis.

design variable value units parameter value units

d1 0.05 meters F1 1000 Newtons

d2 0.05 meters L 1.000 meters

d3 0.05 meters lr1 1.000 meters

dr1 0.005 meters lr2 1.000 meters

dr2 0.005 meters E 70 GPa

ρ 2700 kg/meter3

3Although this value for ε may appear small, it is reasonably sized given the magnitude of the
δi values.
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To begin the optimization, stress, mass and transmitted force limits were set as

σallow = 127 MPa, mallow = 7 kg, and Ftallow = 400 N . The MDF formulation of the

problem is identical to the original design problem, given in equation 6.1. Using the

parameter values and the starting design point from Table 6.3, the optimal design

was found to be:

X∗ = {d1 d2 d3 dr1 dr2}T = {.035 .035 .029 .005 .003 }T

The minimum deflection at beam 1 was δ∗1 = 27.0 millimeters. Beams 1 and

2 could not be made any larger without violating the transmitted force constraint.

The mass constraint was also active, but none of the stress constraints were active.

If the transmitted force limit is set to a value more than half of the applied force

F1, the resulting optimal design allocates zero mass to the third beam. In general,

additional beams are required only if the existing beams cannot distribute the force

well enough to prevent failure of the foundation. If the applied force F1 is less than

the transmitted force limit, then only one beam is required. The mass of any other

beams in the system will be zero.

6.2 CO Formulation

Here the SISA problem is structured to fit the Collaborative Optimization archi-

tecture. Please refer to Section 5.1 for the details of the general CO formulation.

The partitioning of the SISA problem presented in section 6.1.2 was preserved for

the CO implementation, as were all parameter values utilized in the MDF solution

of Section 6.1.3.

To communicate the general structure of the CO implementation, a simplified di-

agram of the structure is provided in Figure 6.3. The constraint indexing is consistent

with equation 6.1.
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System Optimizer

min fs = 1
                   s.t. fj

* = 0  j = 1,2,3,4
                          gs=g3=mt-mallow < 0

Subspace 1 Optimizer

         min f1 = ||z1-z1||2
2

s.t. g11 < 0
      g21 < 0
      g41 < 0

Subspace 2 Optimizer

         min f2 = ||z2-z2||2
2

s.t. g12 < 0
      g22 < 0
      g42 < 0

Subspace 3 Optimizer

         min f3 = ||z3-z3||2
2

s.t. g13 < 0
g43 < 0

z1

fs
f1

*

m1

z2

f2
*

m2
z3

f3
*

m3

–
–

–
–

–

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

–

–

–

–

Figure 6.3: Simplified diagram of the three-beam SISA CO formulation.

Each subspace is provided the required system targets ẑi by the system optimizer.

These targets are design variables at the system level, and parameters at the subspace

level. Each subspace returns to the system optimizer the minimum possible deviation

from the system targets (f ∗
i ), the mass of all components in the subspace (mi), and in

the case of subspace 1 the system objective function fs = δ1. The subspace masses are

required to evaluate the system-wide total mass constraint, gs = g3. Each subspace

is responsible to satisfy its own local bending and axial stress constraints (g1i and

g2i respectively), and the maximum transmitted force constraint (g4i).
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As explained previously, the system targets ẑ in the CO formulation consist of

all shared and coupling variables. At convergence these targets must be matched

by the corresponding quantities generated by the subspaces, z. The hat designation

indicates that a quantity is a target set by the system optimizer. The actual xi, xsi,

and yij vectors were defined for the SISA problem in Table 6.2. The system targets

are defined as:

ẑ = {xs1, xs2, y12, y21, y23, y32}T

ẑ1 = {xs1, y12, y21}T

ẑ2 = {xs1, xs2, y12, y21, y23 y32}T

ẑ3 = {xs2, y23, y32}T

The CO formulation of the SISA design problem is presented in equations 6.9–

6.12. The system optimization is performed with respect to the system targets, and

the subspace optimization is performed with respect to all inputs to the subspace

analyses. In a normal sequential design process, the input coupling variables yij are

fixed parameters. However, in the CO formulation they become decision variables.

System Optimizer

min
ẑ

fs(ẑ) (6.9)

subject to f∗(ẑ) = 0

gs(ẑ) =
∑3

i=1 mi −mallow ≤ 0

Subspace 1 Optimizer

min
X1,y1j

f1(X1,y1j) = ||z1 − ẑ1||22 (6.10)

subject to g11(X1,y1j) ≤ 0

g21(X1,y1j) ≤ 0

g41(X1,y1j) ≤ 0
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Subspace 2 Optimizer

min
X2,y2j

f2(X2,y2j) = ||z2 − ẑ2||22 (6.11)

subject to g12(X2,y2j) ≤ 0

g22(X2,y2j) ≤ 0

g42(X2,y2j) ≤ 0

Subspace 3 Optimizer

min
X3,y3j

f3(X3,y3j) = ||z3 − ẑ3||22 (6.12)

subject to g13(X3,y3j) ≤ 0

g43(X3,y3j) ≤ 0

6.3 CO Results

Using the same design parameters as were used in the MDF solution, a design

solution was obtained using the CO formulation described previously. The CO solu-

tion did have difficulty converging, and exhibited sensitivity to the starting design.

The first attempt utilized the starting point from Table 6.3, and failed to converge.

Other points approximately as far from the optimal solution also failed to converge.

As with other implementations in this thesis the system functions were scaled such

that they were of the same magnitude. Scaling alone was not adequate to produce

convergence— adjustment of the SQP algorithm parameters was required, and the

starting design point had to be selected carefully. The successful starting point

was X = {0.03, 0.03, 0.03, 0.005, 0.003}T . Table 6.4 displays the design variable and

deflection results of the CO solution implementation.

The resulting design and system responses were nearly identical to the MDF

results. However, MDF converged in 20 iterations, and CO required 36 system it-

erations to converge. Each system iteration requires convergence of each subspace
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Table 6.4: Results of the SISA CO solution implementation.

design variable value response value

d1 0.0346 δ1 0.0270

d2 0.0348 δ2 0.0266

d3 0.0290 δ3 0.0262

dr1 0.0050 mtotal 6.956

dr2 0.0030

optimization, which turned out to be much more expensive than the FPI iterations

employed in MDF. One potential difficulty in CO convergence is the difficult at-

tainment of the system level auxiliary equality constraint (a similar constraint is

present in IDF and AAO). Other convergence issues with CO have been identified

and refinements proposed [1, 14, 24].

This thesis does not endeavor to examine the convergence properties of either

ATC or CO, nor does it aim to make any statements concerning what formulation

might be better. This thesis does endeavor to explore the distinctions between the

solution process of the two strategies. This test problem obviously possessed prop-

erties unfavorable to implementation of CO (without formulation refinements). CO

generally performs well solving tightly coupled problems, and the test problem is only

a moderately coupled problem4. Perhaps some of the formulation updates presented

in [14] could remedy these convergence problems. Although CO implementation was

difficult, the use of the SISA problem was successful since it facilitated a clear illus-

tration of the CO solution process. The difficult convergence of this single example

should not be used to gauge the usefulness of CO, which has been demonstrated

effectiveness for numerous other design problems.

4The SISA problem has 4 of 6 possible couplings, and the strength of these couplings was
demonstrated to be moderately strong in the FPI solution— which required 94 iterations.



CHAPTER 7

Analytical Target Cascading Example

The Statically Indeterminate Structural Analysis (SISA) test problem was devel-

oped in Chapter 6, and was used to demonstrate the implementation of Collaborative

Optimization. In this chapter the same test problem is reformulated into a configura-

tion more well suited for the Analytical Target Cascading (ATC) methodology. This

facilitates clear illustration of the distinction between the CO and ATC processes for

solving the same design problem.

7.1 Reformulation of SISA Problem for ATC

The ATC methodology is particularly suitable for problems with feedforward cou-

pling, and a unidirectional hierarchical communication structure. The SISA problem

was first presented as a non-hierarchic problem with both feedback and feedforward

coupling. Rather than using auxiliary constraints to force the problem into a hierar-

chic form, the original design problem is manipulated algebraically into the desired

form. This section presents two possible hierarchic partitioning strategies, outlines

the ATC formulation for both partitioning strategies, and summarizes pertinent anal-

ysis and design results.

112
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7.1.1 ATC Specific Formulation

The functional relationships required for analysis of the SISA problem were given

in equations 6.2 – 6.5. The relations pertinent to deflection analysis for the three-

beam case are presented for convenience in equation 7.1 below. Note that the form

of some of these relations has been modified slightly. Relations required for stress

and mass analysis are omitted for clarity since they are ancillary calculations made

once the deflections and forces are known.

δ3 =
64L3F3

3πEd4
3

(7.1a)

δ2 =
64L3(F2 − F3)

3πEd4
2

(7.1b)

δ1 =
64L3(F1 − F2)

3πEd4
1

(7.1c)

δr2 =
4F3lr2
πEd2

r2

(7.1d)

δr1 =
4F2lr1
πEd2

r1

(7.1e)

δ2 = δ3 + δr2 (7.1f)

δ1 = δ2 + δr1 (7.1g)

One analysis approach is to order the above relationships into a composite func-

tion such that a known parameter value can be expressed as a function of a single

unknown input. This input is then varied until the resulting parameter value matches

the known value. The analysis effectively becomes a root finding problem. If the

input value is F3 and the output of the composite function is F̂1, then the analysis

can be stated as:

F̂1(F3)− F1 = 0 (7.2)
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F̂1 is the estimate of the known parameter F1 = 1000 N , given a guess for the

value of F3. The value of F3 that satisfies equation 7.2 solves the analysis problem.

One possible ordering of the relations in equation 7.1 is shown in Figure 7.1. This

flowchart illustrates the functional relationships with arrows and what relations from

equation 7.1 are required with encircled letters.

F3
3

r2a d
2

f

F2
b

r1
e

1 F1
g c

ˆ

Figure 7.1: Proposed hierarchical analysis sequence of the SISA test problem.

Two different partitioning schemes for this analysis sequence are proposed. The

first is a three-level problem, each level having one element. The second is a two

level problem, the top level with one element and the lower level with two elements.

Both are presented in order to illustrate several important features of ATC. The

three-level problem enables the use of an intermediate subspace. Both partitioning

schemes together illustrate a wide variety of possible variable handling within the

ATC framework.

Partition One

The first partition is sequential in nature, and is illustrated in Figures 7.2 and 7.3.

The large boxes in Figure 7.2 represent each of the three subspaces, and are drawn

around items that are executed in that subspace. Lines that cross subspace bound-

aries indicate the required data communication. Figure 7.3 illustrates the partition

in the traditional block diagram view. Note that the analysis data is communicated

from the bottom up— no feedback is required. In the block diagram coupling vari-

ables are input to subspaces via vertical arrows, and design variables are input via
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horizontal arrows. During analysis the design variables are of course held constant.

It is clear from Figure 7.3 that this partition has no shared variables. Note that

in this structure F3 is neither a response nor a linking variable; it falls outside the

Venn diagram of Figure 5.3. F3 is also not a coupling variable in this partitioning

scheme— all that can be said about F3 is that it is a decision variable for subspace 3

that is an artifact of decomposition. Most applications of ATC have not dealt with

such a quantity. The resulting formulation is a new contribution that may lead to

application of ATC to a broader range of problems.

F3
3

r2a d
2

f

F2
b

r1
e

1 F1
g c

ˆ

subspace 3 subspace 2 subspace 1

Figure 7.2: First SISA analysis sequence partition.

Subspace 1

Subspace 2

Subspace 3

F3

d3, dr2

d2, dr1

d1

F3, 2

F2, 2

F1̂

Figure 7.3: First SISA analysis partition diagram.
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Partition Two

The second partition illustrates a method for posing the problem as bi-level.

This partitioning scheme is illustrated in Figures 7.4 and 7.5, following the same

conventions as in the partition one figures. Here F3 is a linking variable since it is

input to both SS2 and SS3. However, it is not a shared variable since it is not an

original design variable, and it is not a coupling variable since it is not passed from

one subspace to another. Rather, it is a fabricated decision variable— an artifact of

this particular decomposition. The coupling variable δ2 is neither a response nor a

linking variable. The Venn diagram of Figure 5.3 clarifies these categorizations.

F3
3

r2a d
2

f

F2
b

r1
e

1 F1
g c

ˆ

subspace 3 subspace 2 subspace 1

Figure 7.4: Second SISA analysis sequence partition.

Subspace 1

Subspace 2 Subspace 3

F3

d3, dr2d2

d1, dr1

F3, 2

F2

F1

2

Figure 7.5: Second SISA analysis partition diagram.
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7.1.2 Analysis and Baseline Design Results

To establish a baseline analysis and design procedure, equation 7.2 was used to

analyze the SISA problem using the design variable and parameter values given in

Table 6.3. This root-finding analysis procedure was used in an MDF optimization

procedure, where a complete analysis solution is performed at every optimization

iteration.

The root finding analysis resulted in the exact same results as the FPI analysis

performed in §6.1.3: δ1 = 5.60 millimeters. The MDF optimization was used to

solve the NLP problem of equation 6.1, and resulted in the same results as the MDF

and CO approaches implemented in Chapter 6. The parameters of Table 6.3 were

used, and stress, mass and transmitted force limits were set to σallow = 127 MPa,

mallow = 7 kg, and Ftallow = 400 N . The optimization required twenty iterations to

converge, requiring only 5.68 seconds1. The optimal design was determined to be:

X∗ = {d1 d2 d3 dr1 dr2} = {.035 .035 .029 .005 .003 }

The minimum beam one deflection was δ∗1 = 27.0 millimeters. As with the

previous solution strategies in Chapter 6, the mass and transmitted force constraints

were active, and none of the stress constraints were active. The resulting design

agrees exactly with the MDF and CO approach solutions.

7.2 ATC Formulation

The ATC formulations for both partitioning schemes introduced in the previous

section are presented here. This facilitates a more in-depth discussion of the ATC

structure, and how design and coupling variables are handled in the ATC formulation.

1This indicates that the root-finding approach is the most efficient solution approach for the
SISA problem presented thus far.
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Partition One

This three level partition illustrates a general ATC formulation in that it possesses

an intermediate level that must both coordinate a subspace below and meet targets

from above. Subspace 1 is the top level problem, subspace 2 the intermediate level,

and subspace 3 the bottom level. Superscripts indicate what subspace the values are

computed in.

SS1

min
d1,F2,δ2,εR

(δ1 − 0)2 + (F1 − TF1)
2 + εR (7.3)

subject to (F2 − F SS2
2 )2 + (δ2 − δSS2

2 )2 ≤ εR

g11(X) = σb1(X)− σallow ≤ 0

g3(X) =
3∑

i=1

mbi +
2∑

i=1

mrj −mallow ≤ 0

g41(X) = Ft1 − Ftallow ≤ 0

SS2

min
d2,dr1,F3,δ2,εR

(F2 − F SS1
2 )2 + (δ2 − δSS1

2 )2 + εR (7.4)

subject to (F3 − F SS3
3 )2 + (δ2 − δSS3

2 )2 ≤ εR

g12(X) = σb2(X)− σallow ≤ 0

g21(X) = σa1(X)− σallow ≤ 0

g42(X) = Ft2 − Ftallow ≤ 0

SS3

min
d3,dr2,F3

(F3 − F SS2
3 )2 + (δ2 − δSS2

2 )2 (7.5)

subject to g13(X) = σb3(X)− σallow ≤ 0

g22(X) = σa2(X)− σallow ≤ 0

g43(X) = Ft3 − Ftallow ≤ 0
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In subspace one the decision variables consist of a local design variable (d1), two

targets for the intermediate problem (F2 and δ2), and the response compatibility

tolerance (εR). No linking variables exist, so εy is not required. The target for the

original system objective function δ1 is zero since it is desired to minimize it rather

than match a target. The target value for the calculated value of F1 is TF1 , a known

system parameter (the applied force to beam 1).

The subspace two optimization is performed with respect to two local design

variables (d2 and dr1), two targets for the bottom problem (F3 and δ2), and the

response compatibility tolerance (εR). The subspace three optimization is performed

with respect to two local design variables (d3 and dr2), and the uncategorized decision

variable (F3).

Partition Two

The two-level partition lacks an intermediate subspace, but illustrates how a

parent problem coordinates two child problems. This formulation also results in

a shared variable, allowing the demonstration of a linking variable compatibility

constraint and the corresponding tolerance εy. Subspace 1 is the top-level problem

and subspaces 2 and 3 are the bottom level problems.

SS1

min
d1,dr1,F2,F3,δ2,εR,εy

(δ1 − 0)2 + (F1 − TF1)
2 + εR + εy (7.6)

subject to (F2 − F SS2
2 )2 + (δ2 − δSS3

2 )2 ≤ εR

(F3 − F SS2
3 )2 + (F3 − F SS3

3 )2 ≤ εy

g11(X) = σb1(X)− σallow ≤ 0

g21(X) = σa1(X)− σallow ≤ 0

g3(X) =
3∑

i=1

mbi +
2∑

i=1

mrj −mallow ≤ 0

g41(X) = Ft1 − Ftallow ≤ 0
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SS2

min
d2,F3

(F2 − F SS1
2 )2 + (F3 − F SS1

3 )2 (7.7)

subject to g12(X) = σb2(X)− σallow ≤ 0

g42(X) = Ft2 − Ftallow ≤ 0

SS3

min
d3,dr2,F3

(F3 − F SS1
3 )2 + (δ2 − δSS1

2 )2 (7.8)

subject to g13(X) = σb3(X)− σallow ≤ 0

g22(X) = σa2(X)− σallow ≤ 0

g43(X) = Ft3 − Ftallow ≤ 0

The subspace 1 optimization is performed with respect to two local variables (d1

anddr1), two targets for bottom level responses (F2 and δ2), a linking variable target

(F3), and both the response and linking variable compatibility tolerances (εR and

εy). The subspace 2 optimization is performed with respect to a local design variable

(d2), and a linking variable (F3). The subspace 3 optimization is performed with

respect to two local design variables (d3 and dr2), and a linking variable (F3).

This formulation has a curious property regarding the δ2 term. It is set as a target

by the top-level problem, and matched by the subspace 3 response. However, it is

also required as an input for the subspace 2 analysis. δ2 is neither a decision variable

nor a target, yet its value changes throughout the ATC process. The solution to this

issue is to pass the current δ2 target value from the top level problem to subspace 2

and treat it as a design parameter.

7.3 ATC results

The ATC process was used to solve the SISA test problem using the second par-

titioning strategy and the same design parameter values used for the other SISA
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problem solutions (Sections 6.1.3, 6.3, and 7.1.2). The compatibility constraint tol-

erances both went to zero (indicating a consistent system), and the ATC process

converged to essentially the same solution as the other solution methods. The stop-

ping criterion was set to a relatively large value here to reduce run time, so the level

of precision in the results is slightly reduced. The minimum beam 1 deflection was

found to be δ1 = 27.1 millimeters, and the optimal design was determined to be:

X∗ = {d1 d2 d3 dr1 dr2} = {.035 .033 .031 .003 .002 }

The SISA test problem was effective at illustrating two different applications of

the ATC methodology. Reformulation of the test problem into a hierarchic struc-

ture allowed a more natural implementation of ATC than would the formulation

from Chapter 6. The two different hierarchic partitioning schemes facilitated illus-

tration of most of the major quantity types present in the ATC methodology. A final

comparison between the CO and ATC methods in provided in Chapter 8.



CHAPTER 8

Conclusion

This thesis introduced the topic of complex system optimization, showed how

it relates to product development, and provided an overview of necessary prelim-

inary topics. Strategies for complex system optimization are motivated by needs

of industries concerned with the design of complex products. A critical review of

three important single-level formulations and two selected multi-level formulations

was presented. This review illustrated how some of the said industry needs, such

as reduced design time and improved product performance, are addressed by the

formulations considered in the review. Two new engineering design examples were

fully developed and used to demonstrate four of the five covered formulations. This

chapter summarizes the findings from the critical review, and poses open questions

and suggestions for future work.

8.1 Single-Level MDO Formulations

Single-level formulations employ a single optimizer at the top level of a system.

Three single-level formulations were reviewed: Multidisciplinary Feasible (MDF),

Individual Disciplinary Feasible (IDF), and All-at-Once (AAO). In single-level for-

mulations, the system optimizer makes all design decisions; single-level strategies
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are said to have centralized design. However, in each case investigated, the sys-

tem analysis is partitioned into smaller analysis subspaces— these formulations have

distributed analysis.

The most basic and most commonly used formulation is MDF. The MDF formu-

lation differs little from the standard design problem. A complete system analysis is

performed for every optimization iteration— from the optimizer’s perspective MDF

is no different from a standard optimization problem. MDF requires the use of some

type of system analysis tool. Fixed Point Iteration is used regularly as a system

analysis tool. It was shown that this algorithm can have convergence difficulties,

which affect the performance of the MDF process. Using an optimization algorithm

to aid the analysis process can help alleviate these problems.

In the IDF formulation the system optimizer assists the analysis process by pro-

viding estimates for coupling variables during the system optimization. IDF performs

analysis and design simultaneously. The dimension of the system design problem is

increased, but the subspace analysis can be executed in parallel (reducing design cycle

time). The AAO formulation shifts even more responsibility to the system optimizer

by requiring it to provide estimates for the state variable values. AAO performs

analysis, design, and evaluation of governing equations simultaneously. The dimen-

sion of the system design problem is further increased, but AAO can still provide a

highly efficient solution method.

The design of a turbine blade for a gas-turbine engine was used to illustrate

the MDF and IDF formulations. The analysis of the turbine blade was posed as a

coupled system and partitioned into thermal and structural analyses. Both MDF

and IDF were successful at solving this design problem. The turbine blade analysis

was equipped with means to vary coupling strength. It was shown that while the
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MDF approach required substantially greater computation time for strongly coupled

problems, the computation time required by IDF did not increase.

All single-level formulations have centralized decision making. This does not map

well to some existing organizations composed of design teams led by disciplinary

experts, or to organizations with existing specialized optimization tools. Multi-level

formulations address this issue by employing subspace optimizers, providing means

for distributed analysis and design.

8.2 ATC and CO Comparison

Two multi-level formulations were covered in detail: Analytical Target Cascad-

ing (ATC), and Collaborative Optimization (CO). Each had distinct origins, and

are linked to different industries: ATC to the automotive industry, and CO to the

aerospace industry. The nature of a methodology is colored by its origin; implicit

emphases are inseparably connected to original intent. CO was developed based on

Multidisciplinary Analysis needs and under a by-discipline partitioning paradigm.

A natural result is an implicit emphasis on analysis. ATC stemmed from needs to

formalize product development in a hierarchically structured organization, aligned

by object. ATC is characteristically focused on physical aspects of a product.

Although CO and ATC had contrasting origins and were intended for different

purposes, the resulting mathematical formulations seem similar. Each formulation

could possibly be extended to fit problems natural for the other. For example,

additional constraints could be imposed on a general non-hierarchic problems in order

to fit the ATC structure. Similarly, a problem with a multi-level hierarchic structure

could be forced into a bi-level problem for solution with CO. Mathematically these

extensions are feasible, but would practical application prove successful? Would the
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transformed problems behave well? Intuitively it does not make sense to force an

multidisciplinary problem into a multilevel, ATC type structure— there is no reason

to put disciplinary analyses on different levels. Alternatively, forcing a multilevel

structure into a bi-level problem in order to implement CO requires breaking natural

communication pathways. For example, in an automotive design team it makes sense

for an engine design group to report its results to the powertrain design group. A

forced CO formulation would require all design groups to report directly to the top

level instead.

Some extension beyond a methodology’s original purpose seems reasonable. For

example, ATC was designed as an early product development tool. However, us-

ing detailed simulations permits its use as a strategy for the entire design process.

Additionally, could CO be used to set targets for product development? This and

other questions about other potential extensions of ATC and CO deserve further

investigation.

Another result of the different contexts these methodologies were developed in is

the way in which quantities are classified. In most cases the same quantities exist in

each formulation; they are however classified differently. These classification schemes

were juxtaposed in Chapter 5, and clarified using a Venn diagram and illustrated

with the example of Chapters 6 and 7. For convenience the terminology definitions

are presented here as well. Of particular importance is the distinction between shared

variables and linking variables.

Three key terms used in MDO formulations are:

x Local design variables : Design variables that are each inputs to only one subspace.

xs Shared design variables : Design variables that are each inputs to more than one
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subspace.

y Coupling variables : Quantities that are passed from one subspace to another that

are not original design variables, but rather artifacts of decomposition.

Four important terms for ATC formulations are listed below. The † symbol is used

to distinguish the ATC terms when a symbol already used for MDO nomenclature

is employed.

y† Linking variables : Quantities that are input to more than one subspace. These

could be either shared variables (original design variables) or coupling variables

(artifacts of decomposition— not original design variables).

x† Local decision variables : Variables that a particular subspace determines the

value of. May or may not be original design variables.

R Responses : Values generated by subspaces required as inputs to respective parent

subspaces. May or may not be coupling variables.

T Targets : Values set by parent subspaces to be matched by the corresponding

quantities from child subspaces. Targets may exist for either responses or

linking variables.

Note that coupling variables may be either linking variables or responses, and

shared variables are always linking variables. Quantities may also exist that are

neither shared nor coupling variables, but could be linking variables or responses.

Table 8.1 summarizes several properties of the ATC and CO methodologies.
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Table 8.1: ATC and CO comparison summary.

Property ATC CO

BProcess con-
figuration

Nested coordination Nested optimization

BNumber of
top-level opti-
mizations

Multiple Single

BNumerical Proven convergence

BIntended us-
age

Early product development Multidisciplinary Analysis and
product design

BAuxiliary
constraints

Inequality w/ tolerance Equality

BTargets Linking variables & responses Shared & coupling variables

BQuantity
classification

x†, y†, R, T x, xs, y, z, ẑ

BProblem
structure

Hierarchic General non-hierarchic

BIntended
partitioning

Object (example: automotive) Aspect (example: aerospace)
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8.3 Future Work

Several questions were posed in this chapter that merit further investigation.

More in-depth studies regarding Analytical Target Cascading and Collaborative Op-

timization should be conducted to clarify distinctions between the methodologies,

and to answer questions such as:

• Should ATC be employed to solve problems with general non-hierarchic struc-
tures?

• Can CO be used as a product development target setting tool?

• Can CO be extended from a bi-level to a multilevel formulation?

Some of these questions could be answered by carefully selecting and utilizing test

problems to further elucidate the properties of each methodology. One interesting

approach could be to nest CO within ATC. Recall that CO has an implicit focus

on analysis, while ATC is intended to be a product development tool. One nesting

approach could be to use ATC to coordinate the overall system problem (partitioned

by object), and use CO to optimize each object (partitioned by discipline).

In addition to a review of CO and ATC, other important methodologies should

be considered as well, such as Concurrent Subspace Optimization (CSSO) and Bi-

Level Integrated System Synthesis (BLISS). Clear elucidation of these formulations

in a single work would be a remarkable contribution, providing means for identifying

what formulations best suit particular problems, and for assessing what needs have

yet to be met.
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8.4 Final Remarks

Strategies for complex system optimization have profound potential for improving

product quality and performance and for reducing design cycle time. These strate-

gies facilitate understanding and exploiting synergistic interactions between system

members, and provide means for task parallelization, while frequently allowing use

of existing expertise and resources.

A greater understanding of the spectrum of available strategies will encourage

better utilization in industry. This thesis provides a basic exposition of selected

fundamental strategies. No single formulation can be said to be superior; each has

strengths and fills a specific niche. Some methodologies have been developed and

refined in different industries— in parallel and in relative independence. Collabora-

tion among the proponents of these separate methodologies could lead to synergistic

results.

An understanding of the many available approaches to complex system opti-

mization is an advantage to practitioners seeking the best solution to their own

design problem. This understanding is enhanced by sharing information and experi-

ence, particularly across industry boundaries. A vision is to have available the tools

necessary to effectively map mathematical formulations to general complex system

optimization problems in industry, particularly beyond the few industries currently

engaged in these activities. This thesis is a small step towards this end.
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