8.4: Mass and Density

Problems

1. An ice cream cone has a height of 15 centimeters and the diameter at the top is 5 centimeters. The cone is filled with soft-serve ice cream so it completely fills the cone, but does not go above the top of the cone. The ice cream has a constant density of 2 grams per cubic centimeter.
(a) Write an expression for the approximate mass of ice cream contained in a circular slice that is located h_{i} centimeters from the bottom tip of the cone and has a thickness of Δh centimeters. Your answer should be in terms of h_{i} and Δh. Include units.
(b) Find the mass of the ice cream in the cone, including units. [Integrate by hand]
(c) Find \bar{h}, the height above the tip of the cone of the center of mass of the ice cream. Include units. [Integrate by hand]
2. A metal plate with density $\delta=5 \mathrm{~kg} / \mathrm{m}^{2}$ has a shape bounded by the curve $y=\sqrt{x}$, the line $x=9$, and the x and y axes. Here, x and y are measured in meters.
(a) Find the mass of the plate. Include units. [Integrate by hand]
(b) Find the x and y coordinates of the center of mass. Include units. [Integrate by hand]
3. The number of trees in a particular forest is $\delta(r)=100-\frac{1}{2} r^{2}$ trees $/ \mathrm{mi}^{2}$ where r is the number of miles from the center of the forest. Write an integral for the number of trees within 10 miles of the center of the forest.

Answers

1. (a) $\frac{\pi}{18} h_{i}^{2} \Delta h$ grams (b) $\frac{125 \pi}{2}$ grams (c) $\frac{45}{4} \mathrm{~cm}$ 2. (a) 90 kg (b) $\bar{x}=5.4 \mathrm{~m}, \bar{y}=1.125 \mathrm{~m}$
2. $\int_{0}^{10} 2 \pi r\left(100-\frac{1}{2} r^{2}\right) \mathrm{d} r$
