8.2: Applications to Geometry

Problems

Consider the region R which is bounded by the curves $y=x^{2}$ and $y=x^{4}$, between $x=0$ and $x=1$. Write an integral for each of the following quantities.

1. The area of R. 2. The perimeter of R.
2. The volume of the solid obtained by rotating the region R around the x-axis.
3. The volume of the solid obtained by rotating the region R around the line $x=-1$.

For the next two problems use the table of values of $f(x)$ and $f^{\prime}(x)$ provided below.

x	0	0.5	1	1.5	2
$f(x)$	1	3	4	5	5.5
$f^{\prime}(x)$	2	1.5	1.2	1	0.5

5. Estimate the length of the arc defined by the graph of $f(x)$ between $x=0$ and $x=2$.
6. Let R be the region bounded by the x-axis, the graph of $f(x)$, and the lines $x=0$ and $x=2$. Estimate the volume of the solid obtained by rotating the region R around the x-axis using the trapezoidal rule.
7. Find the volume of the region bounded by $y=e^{-x / 3}$, the x-axis, the y-axis, and the line $x=5$ and whose cross sections perpendicular to the x-axis are equilateral triangles.
8. Consider a solid S whose base is the region bounded by the circle $x^{2}+y^{2}=4$ and the y-axis with $0 \leq x \leq 2$ in the $x y$-plane, and whose cross-sections perpendicular to the x-axis are half ellipses. The major and minor axes of the ellipses satisfy $a=\frac{1}{4} b$. The area of an ellipse is $A=\pi a b$. Write a definite integral of the solid S.

Answers

1. $\int_{0}^{1} x^{2}-x^{4} \mathrm{~d} x$
2. $\int_{0}^{1} \sqrt{1+4 x^{2}}+\sqrt{1+16 x^{6}} \mathrm{~d} x$
3. $\pi \int_{0}^{1} x^{4}-x^{8} \mathrm{~d} x \quad$ 4. $\pi \int_{0}^{1}(\sqrt[4]{y}+1)^{2}-$
$(\sqrt{y}+1)^{2} \mathrm{~d} y$
4. 3.228044
5. 103.084
6. $\frac{3 \sqrt{3}}{8}\left(1-e^{-10 / 3}\right)$
7. $\frac{\pi}{8} \int_{0}^{2} 4-x^{2} \mathrm{~d} x$
