9. [12 points] Match each of the following differential equations with its possible slope field. Circle your answers. No justification is required.
(a) $y^{\prime}=a y$ with $a>0$.
(b) $y^{\prime}=k(y-a)$ with $a>0$ and $k<0$.

I

II

I

I

III
II
II

IV
(a) $y^{\prime}=x(y-a x)$ with $a>0$.
(b) $y^{\prime}=a y^{2}-y$ with $a>0$.

V

VI

V VI

V VI

VII

VIII
4. [12 points] Another farmer notices the plague of grasshoppers has spread to his crop. He also visits the pest control company and requests a cheaper pesticide. This new pesticide is capable of eliminating the grasshoppers at a rate that decreases with time. Specifically, the rate at which grasshoppers are killed is given by the function $f(t)=\frac{3}{10}(4-t)$ in thousands of grasshoppers per week at t weeks after the pesticide application. There is no pesticide remaining after 4 weeks. Suppose there are 3000 grasshoppers at the time the pesticide is applied.

Let $Q(t)$ the population of grasshoppers (in thousands) t weeks after this cheaper pesticide is applied to the crop. Then for $0 \leq t \leq 4, Q(t)$ satisfies

$$
\frac{d Q}{d t}=\frac{Q}{5}-f(t)
$$

a. [1 point] Is this differential equation separable?
b. [7 points] Using Euler's method, fill the table with the amount of grasshoppers (in thousands) in the crop during the first week. Show all your computations.

t	0	$\frac{1}{2}$	1
$Q(t)$			

(problem 4 continued)

Use the slope field of the differential equation satisfied by $Q(t)$ to answer the following questions.

c. [2 points] Does this equation have any equilibrium solutions in the region shown? List each equilibrium solution and determine whether it is stable or unstable. Justify your answer.
d. [2 points] If the farmer's goal is to kill all the grasshoppers in his crop, will the pesticide be effective in this case? Draw the solution $Q(t)$ on the slope field.
3. [14 points] A farmer notices that a population of grasshoppers is growing at undesirable levels in his crop. He decides to hire the services of a pest control company. They offer the farmer a pesticide capable of eliminating the grasshoppers at a rate of 1 thousand grasshoppers per week. In the absence of pesticides, it is estimated that the grasshopper population grows at a rate of 20 percent every week. Let $P(t)$ be the number of grasshoppers (in thousands) t weeks after the pesticide is applied to the crop. Then $P(t)$ satisfies

$$
\frac{d P}{d t}=\frac{P}{5}-1 .
$$

Suppose there are P_{0} thousand grasshoppers in the crop at the time the pesticide is applied in the crop.
a. [8 points] Find a formula for $P(t)$ in terms of t and P_{0}.
b. [3 points] Does the differential equation have any equilibrium solutions? List each equilibrium solution and determine whether it is stable or unstable. Justify your answer.
c. [3 points] Does the effectiveness of the pesticide depend on P_{0} ? That is, is the pesticide guaranteed to eliminate the grasshopper population regardless of the value of P_{0}, or are there some values of P_{0} for which the grasshoppers will survive? If so, determine these values of P_{0}.
4. [13 points]
a. [6 points] A cylindrical tank with height 8 m and radius of 8 m is standing on one of its circular ends. The tank is initially empty. Water is added at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$. A valve at the bottom of the tank releases water at a rate proportional to the water's depth (proportionality constant $=k$). Let $V(t)$ be the volume of the water in the tank at time t, and $h(t)$ be the depth of the water at time t.
i. Find a formula for $V(t)$ in terms of $h(t) . V(t)=$ \qquad
ii. Find the differential equation satisfied by $V(t)$. Include the appropriate initial conditions.

Differential equation:
Initial condition: \qquad
b. [7 points] Let $M(t)$ be the balance in dollars in a bank account t years after the initial deposit. The function $M(t)$ satisfies the differential equation

$$
\frac{d M}{d t}=\frac{1}{100} M-a
$$

where a is a positive constant. Find a formula for $M(t)$ if the initial deposit is 1,000 dollars. Your answer may depend on a.
5. [14 points] A particle moves on the unit circle according to the parametric equations

$$
x(t)=-\sin \left(b t^{2}\right) \quad, y(t)=\cos \left(b t^{2}\right) \quad \text { and } b>0 .
$$

for $0 \leq t \leq \pi$. Make sure to show all your work.
a. [1 point] What is the starting point of the particle?
b. [2 points] In which direction (counterclockwise/clockwise) is the particle moving along the circle? Justify.
c. [5 points] Find an expression for the speed of the particle. Simplify it as much as possible.
d. [2 points] At what value of t in $[0, \pi]$ is the speed of the particle the largest?
e. [4 points] Find the equation of the tangent line to the parametric equation at $t=\sqrt{\frac{\pi}{3 b}}$.
2. [14 points] The graph of the circle $r=4$ and and the cardioid $r=2 \sin \theta-2$ are shown below.

a. [3 points] Write a formula for the area inside the circle and outside the cardioid in the first quadrant.
b. [7 points] At what angles $0 \leq \theta<2 \pi$ is the minimum value of the y coordinate on the cardioid attained? No credit will be given for answers without proper mathematical justification.
c. [4 points] Write an integral that computes the value of the length of the piece of the cardioid lying below the x -axis.
2. [11 points] Consider the graph of the spiral $r=\theta$ for $\theta \geq 0$.

In the following questions, write an expression (you do not need to evaluate any integrals) involving definite integrals that computes the values of the following quantities :
a. [4 points] The length of the $\operatorname{arc} L$.
b. [7 points] The area of the shaded region.
5. [11 points] Determine if the following integrals converge or diverge. If an integral diverges, explain why. If it converges, find the value to which it converges. Mathematical precision is important.
a. [4 points] $\int_{-1}^{2} \frac{1}{\sqrt{2-x}} d x$
b. [4 points] $\int_{10}^{\infty} \frac{5+2 \sin (4 \theta)}{\theta} d \theta$
c. [3 points] $\int_{1}^{\infty} \frac{x}{1+x} d x$
8. [15 points] Graphs of f, g and h are below. Each function is positive, is continuous on $(0, \infty)$, has a horizontal asymptote at $y=0$ and has a vertical asymptote at $x=0$. The area between $g(x)$ and $h(x)$ on the interval $(0,1]$ is a finite number A, and the area between $g(x)$ and $h(x)$ on the interval $[5, \infty)$ is infinite. On the right is a graph of an antiderivative $G(x)$ of $g(x)$. It also has a vertical asymptote at $x=0$.
Use the information in these graphs to determine whether the following three improper integrals converge, diverge, or whether there is insufficient information to tell. You may assume that f, g and h have no intersection points other than those shown in the graph. Justify all your answers.

a. [3 points] $\int_{1}^{\infty} h(x) d x$
b. [4 points] $\int_{0}^{1} g(x) d x$

(problem 8 continued)

These graphs are the same as those found on the previous page.

c. [3 points] $\int_{0}^{1} h(x) d x$
d. [5 points] If $f(x)=1 / x^{p}$, what are all the possible values of p ? Justify your answer.

