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Abstract. This article outlines a network approach to the study of technological change.
We propose that new inventions reshape networks of interlinked technologies by shift-
ing inventors’ attention to or away from the knowledge on which those inventions build.
Using this approach, we develop novel indexes of the extent to which a new invention con-
solidates or destabilizes existing technology streams. We apply these indexes in analyses
of university research commercialization and find that, although federal research funding
pushes campuses to create inventions that are more destabilizing, deeper commercial ties
lead them to produce technologies that consolidate the status quo. By quantifying the
effects that new technologies have on their predecessors, the indexes we propose allow
patent-based studies of innovation to capture conceptually important phenomena that
are not detectable with established measures. The measurement approach presented here
offers empirical insights that support theoretical development in studies of innovation,
entrepreneurship, technology strategy, science policy, and social network theory.
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Economic progress, in capitalist society, means tur-
moil . . . .Newproducts and newmethods competewith
the old products and old methods not on equal terms
but at a decisive advantage that may mean death to the
latter. (Schumpeter 1942, p. 32)

1. Introduction
Foundational theories of technological change distin-
guish between two types of new technologies. The
first “come to exist as entities that depart in some
deep sense from what went before” (Arthur 2007,
p. 274; Mokyr 1990). Recombinant DNAmade a radical
departure from existing drug discovery methods that
had relied on massive screening of potentially ther-
apeutic compounds (Henderson and Cockburn 1996,
Gambardella 1995). Inventions like this can transform
the fortunes of organizations and industries. A second
type of new technology builds on and enhances its pre-
decessors and therefore has the result of consolidating
(not challenging) the status quo. In one classic study,
Enos (1962) describes four waves of improvements in
processes for manufacturing gasoline. Although new
technologies of this type are sometimes dubbed “incre-
mental,” they may make substantial improvements
over their predecessors and they account for the lion’s
share of economic and social welfare returns from

technological progress (Enos 1958, Rosenberg 1982,
David 1990).

Despite the substantive and theoretical importance
of differentiating between these two types of technolo-
gies, no quantitative measure exists to capture this
distinction. Systematic explanations for why, when,
and how particular inventions have differential effects
on their environment remain elusive. Assessments of
technological dynamics traditionally relied on detailed
case studies of particular technologies (Dosi 1982,
Bresnahan and Greenstein 1996, Goldfarb 2005, Arthur
2009). Quantitative studies exploded with the intro-
duction of the National Bureau of Economic Research
(NBER) U.S. Patent Citations Data File in the late
1990s (Hall et al. 2002) and led to many productive
insights. However, the patent literature’s focus on cita-
tion counts and forward-citation-based measures of
impact has become a limitation, because many dimen-
sions of technological change cannot be seen by observ-
ing the simple magnitude of an invention’s later use.
Attending to the impact of a new invention without
also considering how it relates to already extant tech-
nologies creates bias and ambiguity in analyses.

The inability to systematically measure fundamen-
tal concepts has made theoretical development chal-
lenging in many areas. Consider work on university
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research commercialization. Since the 1980 passage
of the Bayh–Dole Act (Public Law 96-517, 94 Stat.
3015), a law that allowed organizations to seek patents
and issue licenses on inventions made with federal
funding, scholarly debate has raged over the con-
sequences of commercial activity for university sci-
ence. Although proponents emphasize universities’
ability to make transformative discoveries, detractors
worry that commercial engagement pushes campuses
to focus on narrow pursuits that are attractive to indus-
try. Empirical research has been unable to adjudi-
cate between these positions. Part of the challenge is
that forward-citation-based measures of universities’
patent impact are unable to determine whether corpo-
rate engagement results in greater alignment between
industrial interests and academic priorities. Indeed,
studies find that both industrial and more traditional
academic funding sources yield higher-impact patents
(e.g., Owen-Smith and Powell 2003). Such findings help
to establish that public and corporate partners both
select high-quality projects, but they do little to adju-
dicate the key substantive question for studies of aca-
demic commercialization.
Computational advances are creating opportuni-

ties for extracting deeper insights from large-scale
databases like the U.S. Patent Citations Data File. In the
area of technological change, a quantitative measure
that leverages these advances to distinguish between
technologies that depart from or reinforce established
trajectories would allow empirical studies to better
match foundational theories and may facilitate new
conceptual development. To create such a measure,
we begin with a network conception of technolog-
ical change. New discoveries are additions to pre-
existing networks of complementary or substitutable
components. Inventions alter the structure of these net-
works by creating relationships among technologies
and changing the way subsequent additions connect.
Networks of technologies evolve as inventions consol-
idate or destabilize the status quo by increasing or
decreasing the use of incumbent technologies.

We build on studies that distinguish between tech-
nologies that render firm capabilities obsolete (and
therefore are competency destroying) and those that
improve the value of capabilities (and therefore are
competency enhancing) (Abernathy and Clark 1985,
Tushman and Anderson 1986, Christensen 1997). How-
ever, our approach differs from these works. First,
studies of competency-enhancing and competency-
destroying inventions focus on major changes, i.e., dis-
continuities that fundamentally break with existing
standards (Tripsas 1997, Kaplan et al. 2003, Feldman
and Yoon 2012). By contrast, we suggest that a new
technology’s influence on the status quo is a matter of
degree, not categorical difference, and we make this
observation a focal point of our indexes. Second, our

approach decouples the consolidating or destabilizing
effects of new technologies from organizations’ compe-
tencies. Although the implications of new inventions
are felt forcefully in terms of how they influence incum-
bents’ capabilities (Benner 2007; Sosa 2009, 2011), their
effects ripple more broadly through dynamic networks
of prior and subsequent technologies.

Using our network model of technological change,
we propose a measure, the CDt index, that quantifies
the extent to which an invention consolidates or desta-
bilizes the subsequent use of the components on which
it builds. Combining our CDt index with an impact
weight yields an additional mCDt index that charac-
terizes the magnitude of an invention’s consolidation
or destabilization of the status quo. These indexes are
sensitive to the enhancing and destructive effects of
important new technologies.

Applying these measures to the context of univer-
sity research commercialization, we find clear evi-
dence that, when universities have greater commercial
engagement, they tend to create technologies that con-
solidate the status quo but, when they receive more
federal funding for academic research, they tend to
produce more destabilizing inventions. Commercial
engagement and federal support are both positively
associated with forward citations of university patents.
This important finding points to the challenge of rely-
ing on forward-citation-based impact measures to dis-
tinguish among patents.

In what follows, we first review existing measures.
Next, we present our CDt and mCDt indexes. Sub-
sequent sections use patent data in four validation
exercises. First, we demonstrate that our indexes dis-
criminate among patents along dimensions that are
known to be associated with the destabilizing or con-
solidating nature of technologies. Second, we present
case studies that illustrate core features of our indexes
while attesting to their ability to identify recognized
breakthroughs. Third, we demonstrate the usefulness
of our approachwith regressions that compare patents’
impact with their scores on the CDt andmCDt indexes.
Finally, we present several different aggregate ver-
sions of our measures and evaluate their potential
for organizational-level analyses in models that exam-
ine how features of the academic research enterprise
explain characteristics of university patents.

2. Measuring the Effects of Technologies
2.1. Existing Measures
Many quantitative metrics treat technologies as vari-
able in their impact, i.e., the extent to which they are
later used. Although the true impact of a technology
is difficult to measure, citations of papers and patents
are a common proxy (Griliches 1990, Trajtenberg
1990, Harhoff et al. 1999, Hall and Trajtenberg 2004,
Lanjouw and Schankerman 2004, Wuchty et al. 2007,
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Schoenmakers and Duysters 2010). Impact measures
are attractive because they correspond to the intuitive
idea that new technologies that offer improvements
over the state of the art should become more widely
used than less valuable inventions. However, because
they focus on themagnitude of future use, impact mea-
sures of technologies miss the key substantive distinc-
tion between new things that are valuable because they
reinforce the status quo and new things that are valu-
able because they challenge the existing order. In short,
impact measures are good for evaluating the extent to
which new inventions are used, but they are limited
because they offer no insight into how they are used
and what those uses do to shape future trajectories,
a central objective of evolutionary theories of change
(Arthur 2007, 2009; Dosi 1982; Nelson andWinter 1982;
Verspagen 2007). This ambiguity makes it problem-
atic to use impact measures to develop and test such
theories.

We argue that, to understand a new technology’s
effects, it is necessary to look not only at its impact,
but also how the technology fits into existing trajec-
tories. Measures that consider only the magnitude of
a technology’s later use miss the crucial point that
new technologies emerge in environments that are
comprised of other technologies (Arthur 2007, 2009).
Existing approaches are therefore unable to describe
the substantial effects that inventions may have on
the subsequent use of their technological predecessors
or the evolution of broader technological trajectories.
We describe a new measure designed to capture these
very effects by appeal to network science.

2.2. Consolidating and Destabilizing Technologies
Our measure has four core features. First, and most
important, it is structural in a network sense, able to
capture the extent towhich future inventions that build
on a technology also rely on that technology’s pre-
decessors. This second-order view of impact implies
that an invention’s importance stems both from how
it influences the use of other technologies and its
own direct use. Second, the measure is dynamic,
able to account for variation in the extent to which
an invention alters the use of its predecessors over
time. Third, the measure is continuous, able to cap-
ture degrees of consolidation and destabilization rang-
ing from large-scale transformations to smaller-scale,
incremental shifts. Finally, the measure is valenced,
able to distinguish between consolidating and destabi-
lizing technologies that may have similar impact but
different consequences for the status quo.
We developed our measure using utility patents

granted by the U.S. Patent and Trademark Office
(USPTO). Utility patents cover the majority of patented
inventions. They include any newor improvedmethod,
process, machine, manufactured item, or chemical

compound. Although other categories exist for design
patents, which are granted for ornamental designs of
functional items, and plant patents, which cover plant
breeds, most patents granted in the United States are
in the utility category, over 90% in 1999 (Hall et al.
2002). We focus on utility patents to help to avoid com-
plexities that arise from differences in citation practices
across categories.

Patents are attractive for our purposes because the
USPTO requires inventors to include citations of rele-
vant technological predecessors (known as “prior art”)
in their patent documents. Before being granted, all
patents go through an evaluation process in which
examiners review these citations for comprehensive-
ness. Applicants have incentives to make accurate
citations: listing irrelevant predecessors weakens a
patent’s enforceability, but failing to acknowledge
related work can invalidate a patent.1

2.3. Measure Development
The CDt index characterizes how future inventions
make use of the technological predecessors cited by a
focal patent. Our intuition is that citations of prede-
cessors should decrease after a destabilizing invention
is introduced because the technology entails a break
with past ways of thinking. By contrast, consolidating
inventions should be cited together with their prede-
cessors and therefore increase citations of technologies
on which they build. The networks in the bottom left
and right panels of Figure 1 illustrate this idea.
The bottom left panel of Figure 1 depicts a hypo-

thetical patent that is maximally destabilizing. The
focal invention (black diamond) cites four predeces-
sor technologies (gray diamonds). These citations con-
tribute to the impact of earlier inventions and indicate
the focal patent’s technological lineage. On the right
side of the panel, six subsequent patents (white cir-
cles) cite the focal invention, but note that none of
these future patents (or “forward citations”) also cite
the focal invention’s technological predecessors. The
focal patent is destabilizing because it directs the atten-
tion of subsequent inventors and examiners away from
technologies that were relevant to its conceptualiza-
tion. The bottom right panel of Figure 1 shows a focal
patent that has identical impact to the one in the
left panel (as measured by forward citations) but is
maximally consolidating. As illustrated by the white
squares, each future patent also cites at least one of the
focal patent’s predecessors, and therefore this hypo-
thetical patent appears to consolidate the use of these
earlier technologies.2

Drawing on the tools of network science, we devel-
oped our measure by conceptualizing patents as nodes
in tripartite networks (or “graphs”).3 A tripartite
graph, denoted G � (V1 ,V2 ,V3 ,E), is a network with
three generic types or categories of nodes, V1, V2,
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Figure 1. Illustrative Calculations of the CDt Index for Three Patents
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Note. For simplicity, we eliminate the weighting parameter wit by setting it to 1.

and V3, and ties (or “edges”) E that connect nodes of
different types. The edges in our graphs are directed
because citations point from one patent to another, and
our graphs are acyclic because patents only cite inven-
tions that are temporally prior and therefore there are
no paths that begin and end with the same patent
(or “node”).
Using this notation, let V1 consist of a focal patent, f ,

that we seek to evaluate; V2 consist of predecessor
inventions, b, cited by the focal patent; and V3 consist
of a set of future patents, i, that eventually cite the
focal patent and/or its predecessors. Types f and b
are fixed at focal patent’s issue date, but i can grow
as time passes and the patent and/or its predecessors
accrue new citations. Our objective is to characterize
how a new patent, i, joins the network defined by the
ties (citations) between patents of type b and f . New
patents may join in one of three ways: (1) i can cite the
focal patent’s predecessors (type b), (2) i can cite the

focal patent (type f ), or (3) i can cite the focal patent
and its predecessors (both types f and b). For a focal
patent and vector i� (i1 , i2 , . . . , in−1 , in) of future patents
that cite the focal patent and/or its technological pre-
decessors at time t, we define the CDt index as

CDt �
1
nt

n∑
i�1

−2 fit bit + fit

wit
, wit > 0, (1)

where

fit �

{
1 if i cites the focal patent (type f ),
0 otherwise,

(2)

and

bit �


1 if i cites any focal patent

predecessors (type b),
0 otherwise,

(3)

where nt is the number of forward citations in i, and
wit indexes amatrixW ofweights for patent i at time t.4
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We emphasize that nt is the number of forward cita-
tions of both the focal patent and/or its technological
predecessors and therefore this quantity differs from
a traditional measure of patent impact. The multipli-
cation by −2 in the numerator of Equation (1) ensures
that the measure ranges from −1 to 1, with positive val-
ues representing inventions that are more destabilizing
and negative values highlighting inventions that are
more consolidating. Figure 1 gives examples of how to
calculate the CDt index for three different patents.

The CDt index captures the direction of an inven-
tion’s effects on existing technologies, not the mag-
nitude; therefore the measure does not discriminate
among inventions that influence a large stream of sub-
sequent work and those that shape the attention of a
smaller number of later inventors. By introducing a
weighting parameter to Equation (1), the magnitude
of a focal invention’s future use can be incorporated.
Formally,

mCDt �
mt

nt

n∑
i�1

−2 fit bit + fit

wit
, wit > 0, (4)

where mt is a parameter that captures themagnitude of
use of f at time t. In this formulation, mt differs from nt
in that the former counts only citations of the focal
patent, whereas the latter includes citations of both the
focal patent and its predecessors. This measure differs
from the CDt index by distinguishing among inven-
tions according to their overall effect on a network of
interlinked technologies. The CDt index captures the
direction of an invention’s effects, whereas the mCDt
index mixes both direction and magnitude.
In caseswhere neither the focal patent nor its techno-

logical predecessors receive any citations from future
patents during the measurement interval, the value
of nt is 0 and the indexes are undefined. When cal-
culated five years after the focal patent’s issue date,
undefined values of the CDt and mCDt indexes were
rare, occurring in only 82,572 cases of 2.9 million, a
rate of 2.8%. Empirical analyses in later sections exam-
ine the implications of these undefined values more
closely.5

3. Assessments of Face Validity
3.1. Descriptive Statistics and Correlations
Using data on the 2.9 million U.S. utility patents
granted between 1977 and 2005, we examine the abil-
ity of our indexes to discriminate among inventions
along dimensions that are known from previous work
to have associations with the destabilizing or con-
solidating nature of new technologies. Our analyses
exclude 34,889 patents that were outside the scope of
the National Bureau of Economic Research’s (NBER’s)
technology categorization system and 177 patents with
substantial missing data. The basic covariates were

obtained from the Patent Network Dataverse (Li et al.
2014) and supplemented with data taken from the
USPTO.

For simplicity, we set the weighting parameter wit in
Equations (1) and (4) to 1 so that each future patent i
that eventually cites the focal patent and/or its pre-
decessors contributes equally. Most of our analyses in
this and later sections evaluate impact and the CDt
and mCDt indexes using forward citations made dur-
ing the first five years after the focal patent’s issue,
because annual citations of most patents reach their
peak within this time frame (Jaffe and Trajtenberg
2002).We denote these quantities as I5, CD5, andmCD5,
respectively. In a small number of cases, we use all cita-
tions made through the year 2010, regardless of the
focal patent’s issue date. For clarity, we label these val-
ues I2010y , CD2010y , and mCD2010y to indicate the differ-
ent approach to calculation.

Table 1 reports descriptive statistics and correlations.
Values of the CD5 index roughly approximate a nor-
mal distribution with a mode of 0, mean of 0.07, stan-
dard deviation of 0.23, and a range from −1 to 1. The
distribution leans slightly to the right, which suggests
that modestly destabilizing inventions may be more
common than slightly consolidating ones. This runs
counter to prior research, which shows that destabiliz-
ing technologies are rare. However, existing literature
does not account for the possibility that destabilization
is a matter of degree. Given that patents are somewhat
costly to obtain and applicants are required to demon-
strate how their invention is nonobvious, useful, and
novel, this distributional skewmay be expected. More-
over, when interpreting the distribution, it is useful to
observe that the measure is only modestly correlated
with impact (r � 0.03, p < 0.001). The distribution of the
mCD5 index is similar to the CD5 index, with a mode
of 0, mean of 0.31, standard deviation of 1.75, and a
range from −127.84 to 222.67, but the tails are longer.

Other estimates in Table 1 also add support that our
indexes function as intended. First, consider the cor-
relations between assignee type and the CD5 index.
The (small) negative correlation between the CD5
index and firm assignee (r �−0.00, p < 0.01) sug-
gests that firms tend to produce more consolidating
inventions, whereas universities (r � 0.02, p < 0.001)
and government laboratories (r � 0.02, p < 0.001)
generate more destabilizing ones. These correla-
tions are consistent with previous observations about
the differences between these types of organiza-
tions. Companies tend to specialize in shorter-term,
application-oriented development whereas public sec-
tor organizations more often focus on longer-term,
fundamental research (Dasgupta and David 1994,
Rosenberg and Nelson 1994). Consistent with these
observations, the CD5 and mCD5 indexes are also pos-
itively correlated with acknowledgement of a “gov-
ernment interest” (r � 0.02, p < 0.001, and r � 0.01,
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Table 1. Descriptive Statistics and Correlations

Variable Mean SD 1 2 3 4 5 6 7 8 9 10 11 12

1. CD5 index 0.07 0.23 1.00
2. mCD5 index 0.31 1.75 0.53 1.00
3. Impact (I5) 3.60 5.92 0.03 0.20 1.00
4. Government interest 0.02 0.14 0.02 0.01 −0.00 1.00
5. Nonpatent predecessors cited (log) 0.44 0.82 0.00 0.01 0.13 0.13 1.00
6. Predecessor patents cited 8.86 13.14 −0.17 −0.11 0.19 −0.01 0.26 1.00
7. Claims 14.21 12.32 −0.04 0.00 0.19 0.01 0.19 0.20 1.00
8. Distinctiveness 0.69 0.46 0.03 0.03 0.05 0.01 0.03 0.02 0.02 1.00
9. NBER—Chemical 0.18 0.38 0.01 −0.01 −0.07 0.02 0.07 −0.03 −0.02 0.06 1.00

10. NBER—Computers 0.14 0.35 −0.01 0.05 0.18 −0.01 0.05 0.03 0.09 −0.01 −0.19 1.00
11. NBER—Drugs 0.09 0.29 0.02 −0.01 0.02 0.05 0.30 0.03 0.05 −0.04 −0.15 −0.13 1.00
12. NBER—Electrical 0.19 0.39 0.03 0.04 0.04 0.03 −0.03 −0.03 0.00 0.01 −0.22 −0.20 −0.16 1.00
13. NBER—Mechanical 0.20 0.40 −0.01 −0.03 −0.07 −0.03 −0.16 −0.02 −0.06 −0.03 −0.23 −0.21 −0.16 −0.24
14. NBER—Others 0.19 0.40 −0.05 −0.04 −0.07 −0.04 −0.14 0.02 −0.05 0.00 −0.23 −0.20 −0.16 −0.24
15. Government 0.02 0.14 0.02 0.00 −0.03 0.28 0.03 −0.03 −0.03 0.01 0.03 −0.01 0.01 0.02
16. Firm 0.79 0.41 −0.00 0.02 0.08 −0.17 0.02 0.04 0.07 0.01 0.07 0.12 −0.07 0.08
17. University 0.02 0.13 0.02 0.01 0.01 0.29 0.22 −0.01 0.04 0.01 0.02 −0.03 0.14 −0.01
18. Median assignee experience (log) 4.43 3.35 0.03 0.05 0.09 0.06 0.09 −0.02 0.04 0.02 0.08 0.21 −0.08 0.15
19. Median team distance (log) 1.56 2.19 0.00 0.01 0.06 0.04 0.14 0.05 0.09 0.02 0.08 0.02 0.08 −0.01
20. Median team experience (log) 1.26 1.14 −0.02 −0.00 0.08 −0.02 0.10 0.10 0.10 −0.02 0.08 0.04 0.04 0.05
21. Inventors 2.15 1.55 0.02 0.03 0.09 0.02 0.17 0.06 0.10 0.02 0.11 0.03 0.09 −0.01
22. Examiner experience (log) 5.09 2.60 0.00 −0.01 −0.05 −0.02 −0.10 −0.03 −0.05 −0.03 0.02 −0.12 −0.04 −0.00
23. Examiner workload 579.68 528.19 −0.03 0.00 0.07 −0.01 0.02 0.05 0.07 0.00 −0.08 0.12 −0.01 0.10
24. Grant lag 2.08 1.97 −0.00 0.01 0.04 0.02 0.10 0.05 0.06 0.02 −0.02 0.10 0.04 −0.01
25. Application year 1,991.84 8.14 −0.08 −0.02 0.13 −0.01 0.17 0.16 0.21 −0.04 −0.09 0.13 0.05 0.06
26. Grant year 1,993.92 8.10 −0.09 −0.02 0.14 −0.01 0.20 0.17 0.23 −0.03 −0.10 0.15 0.06 0.05

Variable 13 14 15 16 17 18 19 20 21 22 23 24 25 26

13. NBER—Mechanical 1.00
14. NBER—Others −0.25 1.00
15. Government −0.02 −0.03 1.00
16. Firm −0.02 −0.19 −0.26 1.00
17. University −0.05 −0.05 −0.01 −0.25 1.00
18. Median assignee experience (log) −0.08 −0.28 0.07 0.51 0.01 1.00
19. Median team distance (log) −0.06 −0.10 0.03 0.16 0.06 0.17 1.00
20. Median team experience (log) −0.05 −0.14 −0.05 0.22 −0.03 0.34 0.06 1.00
21. Inventors −0.07 −0.12 0.03 0.19 0.04 0.25 0.49 0.07 1.00
22. Examiner experience (log) 0.07 0.06 −0.00 −0.03 −0.03 −0.06 −0.04 −0.02 −0.05 1.00
23. Examiner workload −0.02 −0.10 −0.01 0.04 −0.00 0.07 0.02 0.05 0.03 0.29 1.00
24. Grant lag −0.04 −0.05 0.02 0.02 0.03 0.03 0.04 −0.00 0.04 −0.13 0.10 1.00
25. Application year −0.06 −0.06 −0.04 0.07 0.04 0.15 0.11 0.20 0.15 −0.07 0.19 −0.14 1.00
26. Grant year −0.07 −0.07 −0.04 0.08 0.05 0.16 0.12 0.20 0.16 −0.10 0.22 0.10 0.97 1.00

p < 0.001, respectively).6 Government interest patents
result from federally funded research programs that
have been vetted by peer review and are ori-
ented toward more fundamental discoveries. Finally,
the small positive correlation between the num-
ber of inventors and the CD5 (r � 0.02, p < 0.001)
and mCD5 (r � 0.03, p < 0.001) indexes implies
that larger teams may produce more destabilizing
technologies, a potentially noteworthy addition to
research on scientific collaboration (Wuchty et al. 2007,
Singh and Fleming 2010).
Figure 2 shows the within-year variability of the

CD5 index by NBER category. Consistent with cri-
tiques about the exploding volume of patenting and
perceived lowering of quality thresholds required for
obtaining a successful grant (Jaffe and Lerner 2004),

the figure suggests that, across technology categories,
the average patent of today is less destabilizing than
those of the late 1970s and early 1980s. We also find
significant (all p < 0.001) negative correlations across
categories between application and grant year and the
CD5 index. However, Figure 2 also showsmore outliers
on the positive end of the CD5 index in later years.7

3.2. Case Studies
Quantitative descriptions of our indexes are consistent
with established findings about the correlates of var-
ious types of inventions. We next examine how well
they are able to identify and classify particular break-
throughs. Table 2 reports the impact and CDt and
mCDt indexes measured five years after issue (I5, CD5,
andmCD5) and as of 2010 (I2010y , CD2010y ,mCD2010y) for
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Figure 2. Distribution of the CD5 Index Among U.S. Utility Patents Granted Between 1977 and 2005
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select inventions that have had a significant influence
on their fields.
Several patents on enhancements in oil and gas dril-

ling are notable among inventions that have consoli-
dated theuseof their predecessors. These inventions do
not establish new methods; they refine already widely

used technologies. For example, patent 4,573,530, “In-
Situ Gasification of Tar Sands Utilizing a Combustible
Gas,” assigned to Mobil Oil Corporation, describes an
improved process for extracting carbon monoxide and
hydrogen from tar sands. Process inventions like this
have become important in recent years because con-



Funk and Owen-Smith: A Dynamic Network Measure of Technological Change
798 Management Science, 2017, vol. 63, no. 3, pp. 791–817, ©2016 INFORMS

Table 2. Illustrative Patents

CD5 mCD5 Predecessors App. Grant
Patent index index I5 I2010y cited year year Title Assignee

4,637,464 −0.20 −0.20 1 194 7 1984 1987 In Situ Retorting of Oil Shale
with Pulsed Water Purge

Amoco Corp.

4,573,530 0.17 0.17 1 192 6 1983 1986 In-Situ Gasification of Tar
Sands Utilizing a
Combustible Gas

Mobil Oil Corp.

4,658,215 0.29 0.57 2 200 4 1986 1987 Method for Induced
Polarization Logging

Shell Oil Co.

4,928,765 0.00 0.00 0 195 10 1988 1990 Method and Apparatus for
Shale Gas Recovery

Ramex Synfuels,
International, Inc.

6,958,436 −0.85 −127.84 150 150 5 2002 2005 Soybean Variety SE90346 Monsanto Co.
5,015,744 −0.46 −17.12 37 173 4 1989 1991 Method for Preparation of

Taxol Using an Oxazinone
Florida State

University
6,376,284 −0.30 −33.04 111 175 19 2000 2002 Method of Fabricating a

Memory Device
Micron Technology,

Inc.
6,063,738 −0.01 −0.39 51 178 12 1999 2000 Foamed Well Cement Slurries,

Additives and Methods
Halliburton Co.

4,724,318 0.09 3.57 42 145 2 1986 1988 Atomic Force Microscope and
Method for Imaging
Surfaces with Atomic
Resolution

IBM Corp.

5,016,107 0.06 1.65 28 163 17 1989 1991 Electronic Still Camera
Utilizing Image
Compression and Digital
Storage

Eastman Kodak Co.

6,285,999 0.16 5.22 33 193 7 1998 2001 Method for Node Ranking in a
Linked Database

Stanford University

4,356,429 0.00 0.00 2 408 4 1980 1982 Organic Electroluminescent
Cell

Eastman Kodak Co.

4,445,050 0.20 0.20 1 150 4 1981 1984 Device for Conversion of Light
Power to Electric Power

None

5,010,405 0.60 5.40 9 159 2 1989 1991 Receiver-Compatible
Enhanced Definition
Television System

MIT

4,237,224 0.81 46.77 58 282 1 1979 1980 Process for Producing
Biologically Functional
Molecular Chimeras

Stanford University

4,399,216 0.70 11.13 16 339 2 1980 1983 Processes for Inserting DNA
Into Eucaryotic Cells and
for Producing
Proteinaceous Materials

Columbia
University

4,343,993 1.00 5.00 5 169 0 1980 1982 Scanning Tunneling
Microscope

IBM Corp.

4,683,202 1.00 42.00 42 2, 209 0 1985 1987 Process for Amplifying
Nucleic Acid Sequences

Cetus Corp.

ventional gasification methods are difficult to use in
remote regions like Northern Alberta, Canada, where
the largest tar sands deposits are located.
The measure also identifies technologies that are

known to have destabilized the use of their pre-
decessors. Patents 4,237,224, 4,399,216, and 4,683,202
(the Cohen–Boyer patent on recombinant DNA, the
Axel patent on eukaryotic cotransformation, and the
Mullis patent on polymerase chain reaction (PCR),
respectively) are at the bottom of Table 2.8 These three
inventions from the late 1970s and early 1980s set the
stage for the molecular biology revolution in pharma-
ceutical R&D by making techniques for targeted in
vitro drug discovery possible (Powell and Owen-Smith

1998). That technological shift altered the international
pharmaceutical industry in the 1980s and 1990s by
challenging traditional organic-chemistry-based drug
discovery methods (Henderson and Cockburn 1996,
Powell et al. 1996). These patents were also lucrative
for their assignees. The Cohen–Boyer patent generated
some $255 million in licensing royalties for Stanford
University over its lifetime (Hughes 2001). A more
aggressive licensing policy at Columbia University led
the Axel patent to yield some $790 million in revenues
(Colaianni and Cook-Deegan 2009). Finally, some esti-
mates place the total royalties for the Mullis patent at
$2 billion (Fore et al. 2006).
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The scanning tunneling microscope (STM, patent
4,343,993) and the atomic force microscope (AFM,
patent 4,724,318) together enabled the development
of nanotechnology. Both instruments image and move
individual atoms on material surfaces, which allows
electronics, medications, and other products to be
designed and built atom by atom. Although both
inventions are destabilizing on our measure (i.e., they
have positive scores), the AFM is less so than the
STM. This relative ranking accords with nanotechnol-
ogy’s evolution. Although the STMwas introduced five
years before the AFM, the AFM offered several major
improvements, including three-dimensional render-
ings and the ability to image living organisms (Youtie
et al. 2008). The AFM was a radical improvement over
prior microscopes, but it was less destabilizing because
it built on (and cited) the more transformative STM.

Finally, consider patent 5,016,107, for an “Electronic
Still Camera Utilizing Image Compression and Digi-
tal Storage.” This is an Eastman Kodak patent for an
early digital camera that employed novel techniques
for image processing, compression, and recording on
a removable storage medium (Lucas and Goh 2009).
Relative to the perceived destabilization of digital pho-
tography for silver halide imaging, this patent ranks
low on the CD5 index with a score of 0.06. One expla-
nation is that, unlike the technologies discussed above,
a single patent did not cover the advent of digital pho-
tography (Christensen 1997).9
The examples described above cover well-known

breakthroughs from multiple industries and technol-
ogy classes. They demonstrate that our approach dis-
tinguishes between destabilizing and consolidating
inventions, as well as among degrees within each cat-
egory. We now turn to a more detailed consideration
of three inventions—glyphosate-resistant soybeans, a
method of ranking of online search results, and a
eukaryotic cotransformation technique—that occupy
different locations on the consolidating–destabilizing
spectrum.

Consider Monsanto’s patent 6,958,436, titled “Soy-
bean Variety SE90346.” This invention illustrates the
core premise of a consolidating invention. The patent
describes a genetically engineered soybean that is resis-
tant to glyphosate, an herbicide patented by Monsanto
in the 1970s. Glyphosate is the active ingredient in
Monsanto’s Roundup product line, the best-selling her-
bicide worldwide. In addition to glyphosate tolerance,
the seed integrates other desirable plant traits, includ-
ing improved yield, immunity to various diseases, and
resistance to shattering, by using genetic sequences
owned by Monsanto. Genetically engineered seeds
increase the value of the earlier patented chemical and
biological technologies by broadening potential appli-
cation areas and excluding competitors (Graff et al.
2003, Pollack 2009). In this particular case, Monsanto

has developed a plant variety engineered to resist dam-
age from its market-leading herbicide.

The top panel in Figure 3 plots citations between
the Monsanto soybean patent, its predecessors, and
subsequent inventions. The line graph below the fig-
ure tracks the patent’s annually updated CD5 index.
In the network diagram, as in the measure, forward
citations are divided into three types. Triangles are
patents that cite the focal patent’s predecessors but not
the focal patent. Circles represent patents that cite only
the focal invention and not its predecessors. Squares
indicate patents that cite both the focal patent and its
predecessors.

The figure shows interesting features of this con-
solidating invention. Note that, although the soybean
patent has received 150 total citations (as of 2010), it
has never been cited independently of the technolo-
gies on which it builds. The patent’s introduction also
virtually eliminated independent citations of its prede-
cessors (i.e., triangles).

The line graph that tracks the patent’s CD5 index
starts at 0 but rapidly approaches −1. This pattern
implies that the focal patent and its predecessors are
complementary in a way that would not be expected if
this invention had, for instance, opened a new method
of plant engineering.

Although not revealed in the figure, two additional
features of the Monsanto soybean patent are sugges-
tive. First, consider raw citation counts. In the five years
before the focal patent was granted, the five techno-
logical predecessors received a total of 61 citations, or
2.44 citations per patent per year on average. In the
five years following the soybean patent grant, citations
of the predecessors increased bymore than 600%, to an
average of 15.28 per patent per year.10

The second suggestive feature is the antecedent
technology’s ownership. By the time of application,
Monsanto had acquired the firms that owned all but
one of the predecessors cited by the focal patent.11
This observation fits with theories of technological
innovation that argue that incumbent firms strive to
enhance the value of their knowledge bases (Sosa
2011). It also suggests interesting possibilities for using
this approach to examine corporate decisions about
when to litigate competitor’s intellectual property. We
would predict that the most likely patents to be chal-
lenged in established industries are those that consol-
idate the technological position of a significant com-
petitor. A similar logic might be used in explanations
of merger and acquisition activities in technologically
intensive fields, where complementary patent portfo-
lios loom large.

Next, we examine patent 6,285,999, titled “Method
for Node Ranking in a Linked Database.” This inven-
tion, referred to as PageRank, covers the core algorithm
used by Google to measure the importance of web
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Figure 3. Network Diagrams for the Monsanto (Top), PageRank (Middle), and Axel (Bottom) Patents

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

–1.0

0

I2010y
: 150

CD2010y
 index: –0.85

mCD2010y index: –127.84

I5 : 150
CD5 index: –0.85
mCD5 index: –127.84

(3) 5,767,350 6,958,436(26)
5,084,082

(15) 5,304,728

(163) 5,576,474

(164) 5,569,815

Patent 6,958,436, “Soybean Variety
SE90346”

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

0

1.0

I2010y
: 193

CD2010y
 index: 0.37

mCD2010y index: 71.41

I5: 33
CD5 index: 0.16
mCD5 index: 5.22

(62) 5,848,407

6,285,999

(87) 5,832,494

(14) 5,752,241

(97) 5,748,954

(30) 4,953,106 (21) 5,450,535

Patent 6,285,999, “Method For Node
Ranking In a Linked Database”

1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

0

1.0
CDt index

CDt index

CDt index

4,399,216(5) 3,800,035
4,195,125
(13)

Patent 4,399,216, “Processes For Inserting
DNA Into Eucaryotic Cells and For
Producing Proteinaceous Materials”

I2010y
: 339

CD2010y
 index: 0.95

mCD2010y
 index: 332.05

I5: 16
CD5 index: 0.70
mCD5 index: 11.13

6,014,678
(31)

Notes. Black diamonds are focal patents, gray diamonds are predecessors, triangles cite predecessors but not the focal patent, squares cite the
focal patent and predecessors, and circles cite the focal patent but not predecessors. Node sizes are proportional to degree centrality, given in
parentheses. The CDt index over time appears below each network.



Funk and Owen-Smith: A Dynamic Network Measure of Technological Change
Management Science, 2017, vol. 63, no. 3, pp. 791–817, ©2016 INFORMS 801

pages. Before PageRank, search engines used largely
ineffective strategies to rank search results (Brin and
Page 1998). PageRank,which is owned by StanfordUni-
versity but licensed exclusively to Google, proposed
a new method that drew on insights from social net-
work theory to rank web pages by the number of links
they receive from other sites. PageRank’s destabiliz-
ing effects are evident in Yahoo!’s June 2000 agreement
to make Google its default search engine. Prior to the
implementation of Google’s search technology, Yahoo!
was the market-leading search engine. After the intro-
duction of this invention, Yahoo! could only maintain
its position by adopting its competitor’s technology.
The middle panel of Figure 3 presents the network

of citations involving the PageRank patent, its prede-
cessors, and subsequent patents. The figure is instruc-
tive when compared to the Monsanto soybean patent
above it. Unlike the soybean patent, which quickly
garnered a substantial number of citations, PageRank
appears to have been overlooked in years immediately
following its 2001 publication.12 Most citations between
2002 and 2007 cite PageRank’s technological predeces-
sors, but not the patent itself. This changes between
2007 and 2010, when more subsequent inventions cite
PageRankwithout its predecessors. During this period,
PageRank increasingly destabilizes its predecessors’
use. This pattern of change is also visible in the CD5
index trend line, which begins near 0 and rises to 0.37.
For our final case, we turn to the Axel patent on

eukaryotic cotransformation, in the bottom panel of
Figure 3. This destabilizing discovery is one of the
foundational inventions of biotechnology. The patent
covers a method for inserting foreign genes into
cells that then produce associated proteins. Along
with the bacteriological method of recombinant DNA
invented by Cohen and Boyer, cotransformation is a
fundamental tool in biologically based drug devel-
opment. In contrast to both Monsanto’s soybean and
Google’s PageRank, citations of the predecessors cited
by Columbia’s Axel patent effectively cease within
two years of its publication. Of nearly 340 citations of
the Axel patent, only one subsequent invention cites
it together with its predecessors and only 14 cited
the predecessors on their own.13 Indeed, the trend
line below this panel suggests that a swift change in
the CD5 index happened three years after issue and
was followed by a smooth rise to a maximum value
of 0.95.
The juxtaposition of the cotransformation and soy-

bean patents is interesting when viewed in light of
research on technology paradigms and industry life
cycles. If the Axel invention and similar technologies
laid the foundations for molecular biology in the late
1970s and early 1980s, then subsequent breakthroughs
that follow much later but operate within the same
paradigm should be more consolidating, as is the case

with the Monsanto patent. Tracing changes in the CDt
index of inventions that belong to particular lineages
over time might offer new means to evaluate indus-
try evolution and the process by which knowledge
paradigms and technology standards coalesce, expand,
and are swept away.

3.3. Regression Analyses
Our analyses so far have looked at the face validity and
discriminatory power of the CDt andmCDt indexes rel-
ative to patent impact. We found that (1) the CDt index
is essentially uncorrelated with impact, and (2) the
technologies our approach identifies as consolidating
or destabilizing are sensible and echo published eval-
uations of high-profile technologies.

In this section, we begin to explore the value of the
CDt andmCDt indexes for substantive research. We do
this by considering the CDt and mCDt indexes along-
side impact in sets of regressions that explore argu-
ments from current literature about the determinants
of important new technologies.We begin by presenting
models at the patent level and then consider adapta-
tions of the CDt and mCDt indexes at the organization
level in analyses of university patenting.
3.3.1. Patent-Level Analyses.
Sample. Our data consisted of the 2.9 million U.S.
utility patents that (1) were granted after 1976 but
before 2006, (2) were available in full-text form from
the USPTO (this criterion eliminated a small number
of patents, most of which had been withdrawn from
issue), and (3) were assigned to one of the six NBER
technology categories. For each patent, we collected
covariates at the patent, assignee, team, and examiner
levels.
Patent Importance. We measured our three indicators
of patent importance—the CD5 and mCD5 indexes and
impact (I5)—using citations received during the first
five years after being granted. As noted previously, the
CD5 and mCD5 indexes are undefined when neither a
focal patent nor its predecessors receive any citations.
To better understand the behavior of the indexes, we
therefore also considered models where we replaced
these undefined values with 0.
Patent Covariates. One alternative interpretation of
our indexes is that, rather than capturing differences
in the effects of new technologies, they record varia-
tion in opportunity. As a focal patent cites more pre-
decessors, it also makes it easier for future patents to
cite those predecessors, which in turn may cause the
focal patent to appear less destabilizing. To explore this
possibility, we include a variable, Predecessor patents
cited, that counts the number of citations made by the
focal patent to U.S. utility patents.

In addition to prior inventions, U.S. patents must
also disclose when they build on existing knowledge
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that is not subject to patent protection (Fleming and
Sorenson 2004). Although these works (usually techni-
cal manuals or scientific papers) are not incorporated
in our indexes, we include a count of Nonpatent pre-
decessors cited (log) in our models, because these may
influence the nature and extent of a patent’s uses. For
example, inventions that cite scientific papers may be
closer to the frontiers of knowledge and therefore more
likely to open new technological domains.

Prior research also indicates that a patent’s scope
and distinctiveness are good indicators of its impor-
tance (Hall and Trajtenberg 2004, Lanjouw and
Schankerman 2004). Some patents describe improve-
ments within a narrow area whereas others make
broader assertions. To capture these differences in
scope, we followed earlier research and included in our
models a count of the number of Claims made by each
focal patent.We also used prior work to guide ourmea-
sure of distinctiveness, which attempts to capture how
different an invention is from earlier ones by determin-
ingwhether it proposes novel combinations. Following
this logic, we assign patents a Distinctiveness value of 1
if they are classified with a previously uncombined set
of USPTO subclasses and 0 otherwise (Fleming 2001,
Funk 2014).

The context of discovery also influences a new
technology’s importance. Although many contextual
factors matter, contemporary discussions often focus
on the effects of sponsorship. We therefore include
a dummy variable that captures whether a focal
patent declares a Government interest, meaning that the
research leading to the patent was supported by fed-
eral grants. Grant support may indicate one of several
things that could bear on the CD5 or mCD5 indexes.
First, because federal R&D funding is competitive,
grant support may simply be an indicator for high-
quality research. That in itself may bear on a patent’s
eventual impact but does not suggest a clear impli-
cation for its destabilization. However, if the grant-
funded research is higher quality and oriented to more
fundamental objectives than privately fundedR&D,we
might expect government interest patents to be more
destabilizing.
Finally, to evaluate the effect of changes in citation

patterns over time and across different kinds of inven-
tions, we included indicator variables for the grant year
and NBER category of each focal patent (Mehta et al.
2010): Computers,Drugs, Electrical,Mechanical, orOthers
(with Chemical omitted).

Assignee Covariates. Researchers have shown that
assignee characteristics may also influence the impor-
tance of new technologies. Universities, government
laboratories, and private firms differ in terms of their
research missions and may generate different kinds
of inventions (Dasgupta and David 1994, Rosenberg

and Nelson 1994, Stephan 2012). To examine poten-
tial differences attributable to organizational form, we
included indicators for whether each focal patent listed
an assignee thatwas aGovernment entity (including for-
eign and domestic), Firm, or University. Some patents
have multiple assignees of different forms, in which
case we assigned them a value of 1 on each of the rel-
evant indicators. The USPTO does not keep systematic
records on assignees’ organizational forms and, there-
fore, to obtain our indicators, we relied on features
of assignee names. We began by manually coding a
small subsample, which we then used to train a naïve
Bayes classifier to label the more than 300,000 unique
assignee names in the USPTO database.

Experience may also influence technological impor-
tance. For instance, as an organization develops and
patentsmore inventions, itmayacquireaunique knowl-
edge of particular components that when brought
together form a destabilizing new technology. By
contrast, there may also be an association between
experience and the production of more consolidating
inventions, as organizations seek to bolster or expand
a particular technological trajectory. Recall the very
clear case of such a development strategy, apparent in
Monsanto’s soybean patent. To capture these possibil-
ities, we control for the stock of eventually successful
patent applications that assignees made before apply-
ing for the focal patent. When there was more than one
assignee we used the median stock of patents. We also
added a quadratic term in the models to account for
diminishing returns to experience.

Team Covariates. Invention is a social activity
(Wuchty et al. 2007) and the structure of the team that
creates a new technology may influence that technol-
ogy’s importance. Prior research indicates, for instance,
that despite advances in information technology, geo-
graphic proximity among inventors still matters (Funk
2014). To capture these differences, we included a
measure of Median team distance (log). This variable
records the median geographic distance among each
focal patent’s inventors, adjusted for Earth’s curvature.
It takes a value of 0 for patents with a single inven-
tor. We also added Median team experience (log) and
a quadratic term, which we measured as the median
number of ultimately granted patents applied for by
the inventors of the focal patent. To evaluate differences
in team size, we included a count of the number of
Inventors listed on the focal patent in each model.

USPTO Covariates. Our last set of covariates focused
on the USPTO examination process. As with assignees
and inventors, examiner experience may influence a
technology’s importance. Lemley and Sampat (2012)
reported that examiners who have prosecuted more
patent applications tended to cite fewer predecessor
technologies andwere also less likely to issue rejections
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that would require applicants to revise their claims.
We therefore added Examiner experience (log) to our
models, which we measured as the number of granted
patents on which the examiner of the focal patent also
served as an examiner, before the focal patent’s appli-
cation date. The time and energy an examiner has
to devote to review may also influence citations of
prior patents. To capture these differences, we added a
covariate for Examiner workload. This variable counted
the number of open patent applications assigned to the
examiner at the same time as the focal patent by iden-
tifying granted patents with application dates before
and grants dates after a focal patent that were evalu-
ated by the same examiner. This measure likely under-
estimates the actual workload of examiners because
we do not include applications that were eventually
denied. We also controlled for Grant lag, which was the
number of years between the grant year and applica-
tion year of the focal patent (Mehta et al. 2010).14

Statistical Approach. We used ordinary least squares
(OLS) regressions to model the CD5 andmCD5 indexes
because both indexes are continuous and our data are
cross-sectional. Models of impact (I5) used a negative
binomial specification because the variable takes on
only nonnegative integer values and likelihood ratio
tests of overdispersion suggested that a Poisson process
did not generate the data. After excluding patents with
undefined CD5 and mCD5 indexes we had 2,828,700
observations. In models of impact (I5) and those that
set undefined values of CD5 and mCD5 to 0, our sam-
ple size increased to 2,910,506. Correlations among the
covariates were low and the variance inflation factors
(VIFs) and tolerances did not indicatemulticollinearity.

3.3.2. Patent-Level Results. Table 3 displays estimates
from four negative binomial models of patent impact
(I5). Overall, the coefficients are consistent in sign and
significance and are supportive of findings from ear-
lier research. At the patent level, all four models show
a positive association between Predecessor patents cited,
Nonpatent predecessors cited (log), Claims, and Distinc-
tiveness, which together suggest that higher-impact
patents tend to be broader in scope and novelty, while
also building on existing streams of technology and sci-
ence. Impact also varies across technological domains.
Relative to Chemical (the omitted NBER category),
patents in the Computers, Drugs, Electrical, Mechanical,
and Others categories receive—according to estimates
in Model 4—between e0.120×1 ≈ 1.13 and e0.710×1 ≈ 2.03
times more citations within five years of being granted.
Also noteworthy, Models 2 and 3 suggest a negative
association between Government interest and impact,
although that effect washes away in more fully speci-
fied models.
There are significant associations between assignee-

level characteristics and impact, such that patents

awarded to a Firm or University are more highly
cited, whereas those with a Government assignee are
less acknowledged by future inventors. Echoing some
research on team science (Wuchty et al. 2007), patents
with more Inventors and greater Median team distance
(log) receive more citations, as do those that have
longer Grant lag and those that are reviewed by exam-
iners with higher Examiner workload. Finally, we find
consistent evidence that experience matters for patent
impact, but in different ways across levels. Increases in
Median assignee experience (log) and Median team experi-
ence (log) are associated with higher impact. However,
as Median examiner experience (log) increases, impact
decreases, a finding that is consistent with work by
Lemley and Sampat (2012).

OLSmodels of the CD5 andmCD5 indexes are shown
in Tables 4 and 5, respectively. Although the coef-
ficients in each table are internally consistent with
respect to their sign and significance, the estimates
and their interpretations differ from our impact mod-
els. Beginning with the patent level, estimates in Mod-
els 5–8 of Table 4 and Models 11–14 of Table 5 reveal
positive relationships between reporting a Government
interest and the CD5 and mCD5 indexes, respectively.
This finding makes sense in light of the federal gov-
ernment’s tendency to fund basic research that seeks
to open new areas.

Models in Tables 4 and 5 also suggest that the rela-
tionship between technological importance and the
use of existing knowledge is more complex than is
apparent from models of impact. Although Predecessor
patents cited and Nonpatent predecessors cited (log) both
have a positive relationship with patent impact, the
former has a negative association with the CD5 and
mCD5 indexes, whereas the latter has a positive associ-
ation. These relationships are open to several interpre-
tations. First, they may indicate that patents that build
on more patented inventions tend to consolidate the
status quo, whereas those that build on more knowl-
edge that is not subject to patent protection, including
scientific papers, tend to destabilize it. Second, the pos-
itive association between Nonpatent predecessors cited
(log) and our indexes may happen as flurries of new
scientific discoveries create opportunities for techno-
logical advances that are destabilizing (Azoulay et al.
2007). Finally, the relationship may result from patents
building on scientific and other knowledge that is old
but has never been applied to a technological domain.

Coefficients on our variables for assignee type also
raise the possibility that evaluating impact alone may
conceal important nuances. For instance, Model 4 in
Table 3 reports a positive association between assign-
ment to a Firm or University and a patent’s impact.
Moreover, with respective increases in citations of
e0.092×1 ≈ 1.10 and e0.036×1 ≈ 1.04, the magnitudes of the
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Table 3. Negative Binomial Regression Models of Patent Impact (I5)

Model 1 Model 2 Model 3 Model 4

Patent
Government interest 0.006 −0.081∗∗∗ −0.090∗∗∗ 0.009

(0.007) (0.006) (0.006) (0.007)
Nonpatent predecessors cited (log) 0.049∗∗∗ 0.045∗∗∗ 0.052∗∗∗ 0.042∗∗∗

(0.001) (0.001) (0.001) (0.001)
Predecessor patents cited 0.014∗∗∗ 0.013∗∗∗ 0.014∗∗∗ 0.013∗∗∗

(0.000) (0.000) (0.000) (0.000)
Claims 0.014∗∗∗ 0.014∗∗∗ 0.015∗∗∗ 0.014∗∗∗

(0.000) (0.000) (0.000) (0.000)
Distinctiveness 0.164∗∗∗ 0.167∗∗∗ 0.163∗∗∗ 0.161∗∗∗

(0.002) (0.002) (0.002) (0.002)
NBER—Computersa 0.700∗∗∗ 0.753∗∗∗ 0.695∗∗∗ 0.710∗∗∗

(0.003) (0.003) (0.003) (0.003)
NBER—Drugsa 0.277∗∗∗ 0.248∗∗∗ 0.218∗∗∗ 0.269∗∗∗

(0.004) (0.004) (0.004) (0.004)
NBER—Electricala 0.389∗∗∗ 0.425∗∗∗ 0.386∗∗∗ 0.400∗∗∗

(0.003) (0.003) (0.003) (0.003)
NBER—Mechanicala 0.099∗∗∗ 0.116∗∗∗ 0.077∗∗∗ 0.120∗∗∗

(0.003) (0.003) (0.003) (0.003)
NBER—Othersa 0.108∗∗∗ 0.109∗∗∗ 0.045∗∗∗ 0.140∗∗∗

(0.003) (0.003) (0.003) (0.003)
Grant year indicators Yes Yes Yes Yes

Assignee
Government −0.273∗∗∗ −0.273∗∗∗

(0.007) (0.007)
Firm 0.113∗∗∗ 0.092∗∗∗

(0.003) (0.003)
University 0.037∗∗∗ 0.036∗∗∗

(0.008) (0.008)
Median assignee experience (log) 0.019∗∗∗ 0.011∗∗∗

(0.000) (0.000)
Median assignee experience2 (log) −0.000 0.000∗∗

(0.000) (0.000)
Team

Median team distance (log) 0.009∗∗∗ 0.007∗∗∗
(0.000) (0.000)

Median team experience (log) 0.068∗∗∗ 0.051∗∗∗
(0.001) (0.001)

Median team experience2 (log) −0.011∗∗∗ −0.008∗∗∗
(0.001) (0.001)

Inventors 0.039∗∗∗ 0.032∗∗∗
(0.001) (0.001)

Examiner
Examiner experience (log) −0.013∗∗∗ −0.011∗∗∗

(0.001) (0.001)
Examiner experience2 (log) −0.000∗∗ −0.000

(0.000) (0.000)
Examiner workload 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000)
Grant lag 0.003∗∗ 0.005∗∗∗

(0.001) (0.001)
Constant −0.053∗∗∗ −0.030∗∗∗ −0.006 −0.118∗∗∗

(0.007) (0.006) (0.006) (0.007)
N 2,910,506 2,910,506 2,910,506 2,910,506
Log-likelihood −6,722,030.578 −6,721,725.011 −6,730,242.211 −6,715,399.148

Note. Robust standard errors are in parentheses.
aThe omitted NBER technology category is Chemical.
∗∗p < 0.01; ∗∗∗p < 0.001.



Funk and Owen-Smith: A Dynamic Network Measure of Technological Change
Management Science, 2017, vol. 63, no. 3, pp. 791–817, ©2016 INFORMS 805

Table 4. OLS Regression Models of Patent CD5 Index

Model 9 Model 10
Model 5 Model 6 Model 7 Model 8 Undefined� 0 Undefined� 0

Patent
Government interest 0.005∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Nonpatent predecessors cited (log) 0.013∗∗∗ 0.013∗∗∗ 0.014∗∗∗ 0.013∗∗∗ 0.011∗∗∗ 0.012∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Predecessor patents cited −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Claims −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Distinctiveness 0.013∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.012∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
NBER—Computersa 0.005∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.008∗∗∗ 0.011∗∗∗ 0.008∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
NBER—Drugsa 0.018∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.018∗∗∗ 0.015∗∗∗ 0.017∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
NBER—Electricala 0.016∗∗∗ 0.018∗∗∗ 0.017∗∗∗ 0.019∗∗∗ 0.021∗∗∗ 0.018∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
NBER—Mechanicala −0.004∗∗∗ −0.004∗∗∗ −0.006∗∗∗ −0.003∗∗∗ −0.001† −0.003∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
NBER—Othersa −0.015∗∗∗ −0.016∗∗∗ −0.019∗∗∗ −0.014∗∗∗ −0.012∗∗∗ −0.014∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Grant year indicators Yes Yes Yes Yes Yes Yes

Assignee
Government −0.001 −0.004∗∗ −0.005∗∗∗ −0.004∗∗

(0.001) (0.001) (0.001) (0.001)
Firm −0.008∗∗∗ −0.009∗∗∗ −0.008∗∗∗ −0.008∗∗∗

(0.001) (0.001) (0.001) (0.001)
University 0.005∗∗∗ 0.004∗∗ 0.003∗ 0.004∗∗

(0.001) (0.001) (0.001) (0.001)
Median assignee experience (log) 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.000) (0.000) (0.000) (0.000)
Median assignee experience2 (log) −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000)
Team

Median team distance (log) −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗
(0.000) (0.000) (0.000) (0.000)

Median team experience (log) −0.001∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗
(0.000) (0.000) (0.000) (0.000)

Median team experience2 (log) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗
(0.000) (0.000) (0.000) (0.000)

Inventors 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗
(0.000) (0.000) (0.000) (0.000)

Examiner
Examiner experience (log) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Examiner experience2 (log) 0.000† 0.000∗ 0.000∗ 0.000∗

(0.000) (0.000) (0.000) (0.000)
Examiner workload −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000)
Grant lag 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Imputed −0.105∗∗∗

(0.000)
Constant 0.130∗∗∗ 0.110∗∗∗ 0.122∗∗∗ 0.120∗∗∗ 0.109∗∗∗ 0.120∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
N 2,828,700 2,828,700 2,828,700 2,828,700 2,910,506 2,910,506
R2 0.040 0.041 0.040 0.041 0.038 0.044

Note. Robust standard errors are in parentheses.
aThe omitted NBER technology category is Chemical.
†p < 0.1; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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Table 5. OLS Regression Models of Patent mCD5 Index

Model 15 Model 16
Model 11 Model 12 Model 13 Model 14 Undefined� 0 Undefined� 0

Patent
Government interest 0.031∗∗ 0.040∗∗∗ 0.035∗∗∗ 0.034∗∗∗ 0.032∗∗∗ 0.031∗∗

(0.010) (0.009) (0.009) (0.010) (0.009) (0.009)
Nonpatent predecessors cited (log) 0.070∗∗∗ 0.066∗∗∗ 0.072∗∗∗ 0.064∗∗∗ 0.058∗∗∗ 0.062∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Predecessor patents cited −0.015∗∗∗ −0.015∗∗∗ −0.015∗∗∗ −0.015∗∗∗ −0.015∗∗∗ −0.015∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Claims 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Distinctiveness 0.113∗∗∗ 0.113∗∗∗ 0.113∗∗∗ 0.111∗∗∗ 0.112∗∗∗ 0.107∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
NBER—Computersa 0.299∗∗∗ 0.331∗∗∗ 0.312∗∗∗ 0.311∗∗∗ 0.320∗∗∗ 0.309∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
NBER—Drugsa 0.023∗∗∗ 0.010∗ 0.002 0.020∗∗∗ 0.010∗ 0.015∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
NBER—Electricala 0.195∗∗∗ 0.218∗∗∗ 0.202∗∗∗ 0.209∗∗∗ 0.216∗∗∗ 0.206∗∗∗

(0.003) (0.003) (0.003) (0.004) (0.003) (0.003)
NBER—Mechanicala 0.003 0.012∗∗∗ −0.008∗∗ 0.016∗∗∗ 0.023∗∗∗ 0.016∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
NBER—Othersa −0.043∗∗∗ −0.041∗∗∗ −0.069∗∗∗ −0.030∗∗∗ −0.021∗∗∗ −0.029∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Grant year indicators Yes Yes Yes Yes Yes Yes

Assignee
Government −0.121∗∗∗ −0.137∗∗∗ −0.137∗∗∗ −0.131∗∗∗

(0.008) (0.008) (0.008) (0.008)
Firm −0.038∗∗∗ −0.051∗∗∗ −0.046∗∗∗ −0.049∗∗∗

(0.003) (0.004) (0.003) (0.003)
University 0.019 0.011 0.006 0.008

(0.012) (0.012) (0.011) (0.011)
Median assignee experience (log) 0.016∗∗∗ 0.013∗∗∗ 0.013∗∗∗ 0.013∗∗∗

(0.000) (0.000) (0.000) (0.000)
Median assignee experience2 (log) 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
Team

Median team distance (log) −0.002∗∗ −0.002∗∗ −0.002∗ −0.002∗∗
(0.001) (0.001) (0.001) (0.001)

Median team experience (log) 0.007∗∗∗ −0.001 0.000 −0.000
(0.001) (0.001) (0.001) (0.001)

Median team experience2 (log) 0.001 0.001 0.000 0.001
(0.001) (0.001) (0.001) (0.001)

Inventors 0.039∗∗∗ 0.036∗∗∗ 0.034∗∗∗ 0.035∗∗∗
(0.001) (0.001) (0.001) (0.001)

Examiner
Examiner experience (log) −0.003∗∗∗ −0.002∗∗ −0.002∗∗ −0.002∗

(0.001) (0.001) (0.001) (0.001)
Examiner experience2 (log) 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)
Examiner workload −0.000 −0.000 −0.000 −0.000

(0.000) (0.000) (0.000) (0.000)
Grant lag 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001) (0.001)
Imputed −0.373∗∗∗

(0.002)
Constant 0.288∗∗∗ 0.178∗∗∗ 0.242∗∗∗ 0.220∗∗∗ 0.188∗∗∗ 0.226∗∗∗

(0.006) (0.006) (0.006) (0.007) (0.007) (0.007)
N 2,828,700 2,828,700 2,828,700 2,828,700 2,910,506 2,910,506
R2 0.023 0.023 0.022 0.024 0.023 0.025

Note. Robust standard errors are in parentheses.
aThe omitted NBER technology category is Chemical.
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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associations are nearly identical. This result is surpris-
ing in light of prior research on the differences between
approaches to research and invention at firms and uni-
versities (Dasgupta and David 1994, Rosenberg and
Nelson 1994). Estimates using our indexes are more
consistent with these earlier arguments. The negative
and significant coefficients on the Firm indicator in
Model 8 of Table 4 (for the CD5 index) and Model 14
of Table 5 (for the mCD5 index) suggest that commer-
cial entities produce patents that do more to consoli-
date the status quo than other assignees. By contrast,
the coefficients for theUniversity assignee indicator are
positive, which suggests that academic organizations
generate inventions that destabilize existing technol-
ogy streams, although only the coefficient on the CD5
index is significant. In other words, both universities
and firms tend to produce higher-impact inventions
than other types of organizations, but that similarity
masks important differences in how the technologies
enter and change existing technological trajectories.
Results reported in Tables 4 and 5 also suggest that

the CD5 and mCD5 indexes may offer insights into
distributed teams that are not apparent from impact
alone. As noted above, Table 3 reports a positive
association between Median team distance (log) and
patent impact, but this finding is somewhat hard to
interpret in light of earlier research. Although some
studies find value in distributed collaboration (Owen-
Smith and Powell 2004), others emphasize the chal-
lenges of working across distances (Funk 2014). The
positive and significant coefficients onMedian team dis-
tance (log) in Tables 4 (for the CD5 index) and 5 (for
the mCD5 index) imply that geographically distributed
teamsmay have a greater tendency to create inventions
that consolidate the status quo.
Finally, several coefficients are noteworthy because

they help to further establish the face validity of our
indexes, although they do not contrast with the results
of our impact models. Patents that bridge a previously
uncombined set of USPTO subclasses, for instance,
and therefore score a 1 on our measure of Distinctive-
ness also challenge the status quo, as indicated by the
positive and significant coefficients in Tables 4 and 5.
Moreover, consistent with the research on team struc-
ture and invention, we also find, again in Tables 4 (for
the CD5 index) and 5 (for the mCD5 index), a positive
and significant association with Inventors: larger teams
produce more destabilizing inventions. Last, models of
the CD5 and mCD5 indexes both show positive coeffi-
cients for Grant lag, which is consistent with the idea
that examiners require more time to evaluate patents
that depart from the status quo and therefore their
prior experience.
Robustness Checks. We also examined the robust-
ness of our models to alternative specifications. First,
to determine whether our focus on patents granted

between 1976 and 2006 influenced our findings, we
reran our models on subsamples that began several
years later and ended several years earlier. Our find-
ings were similar to those presented here. Second, as
noted before, the CD5 and mCD5 indexes are unde-
fined when neither a focal patent nor its predecessors
receive any citations after the focal patent’s issue, and
therefore we had to exclude these patents from our
models. To gain some insight into whether these exclu-
sions influenced our results, we estimated newmodels
where we set the CD5 and mCD5 indexes to 0. The
results appear in Models 9 and 10 (for the CD5 index)
and Models 15 and 16 (for the mCD5 index). Models
10 and 16 are identical to Models 9 and 15, with the
exception of an Imputed indicator variable that takes on
a value of 1 for the newly added patents. Once again,
the results are nearly identical to our preferredmodels.
3.3.3. Organization-Level Analyses. The preceding
analyses examined the relationships between impact
and the CDt and mCDt indexes and factors that are
known to have associations with the importance of
individual patents. In this section, we move to a higher
level of analysis to evaluate the ability of the CDt
and mCDt indexes to offer insight into patenting by
organizations. Aggregate adaptations of the CDt and
mCDt indexes may be useful in research considering
the sources and consequences of technological change
for organizations and industries.

Our analyses focus on U.S. utility patents issued to
the 110 most research-intensive American universities.
The data set covers a broad set of high- and low-impact
inventions and therefore serves as a useful setting in
which to examine the value of our approach for ana-
lyzing portfolios of patents. Research on the organi-
zational sources of important academic patents has
yielded mixed results. We believe that the ambigu-
ity in this line of work may stem from its reliance on
impact measures of technological importance. Below,
we demonstrate that, when analyzing portfolio-level
variation, the CD5 and mCD5 indexes offer insights
into the dynamics of academic patenting that are less
apparent in examinations of patent impact.

We consider four variations of the CDt and mCDt
indexes that we have adapted for use with patent
portfolios. We chose these four adaptations for their
diversity and conceptual appeal, not because they
exhausted the list of possible approaches. The first
measure, CDmean

5 , is the average CD5 index among
patents applied for by each university during year t+1.
This is a simple approach to evaluating the consoli-
dation or destabilization of multiple patents. Our sec-
ond measure, mCDscale

5 , is a more complex adaptation
of the mCD5 index that attempts to capture the overall
direction and magnitude of the effects of each univer-
sity’s patent portfolio on existing technology streams.
We compute themCDscale

5 measure as the product of the
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CDmean
5 and the total impact (Itotal5 ) of patents applied

for during year t +1. The third and fourth adaptations,
CDtotal−

5 and CDtotal+
5 , are complementary measures that

attempt to separately capture the effects of universities’
consolidating and destabilizing patents by counting
citations of patents with positive and negative values
on the CD5 index, respectively. Both the CDtotal−

5 and
CDtotal+

5 indexes are computed based on patents applied
for during year t + 1.
In what follows we briefly survey literature that

seeks to explain the scale and impact of academic
patenting. We then present our models of organiza-
tion-level patent importance. Although the findings
suggest interesting new directions for research on aca-
demic patenting and the economic value of university
R&D, we pay particular attention to the comparison
of effects across dependent variables in order to high-
light multiple possibilities for analyses using aggre-
gated versions of the CDt and mCDt indexes.

3.3.4. Research on Academic Patenting. In 1980,
Congress passed the Bayh–Dole Act, a law that allows
organizations that perform federally funded research
to file for patents and issue licenses on intellectual
property they develop. The act accelerated a trend
toward research commercialization on campus. Over
the last 30 years, academic patenting has increased dra-
matically. Some inventions have been highly lucrative
for the institutions that own them by generating new
products, companies, and even industries.
Proponents of Bayh–Dole call it “prescient” (Cole

1993) and herald the act’s importance in turning uni-
versity science into an engine of economic devel-
opment (Powell et al. 2007). In 2002, The Economist
(2002, p. 3) called the act “possibly the most inspired
piece of legislation enacted in America over the past
half century” and went on to attribute to it an impor-
tant role in “reversing America’s precipitous slide
into industrial irrelevance.” By the same token, crit-
ics of Bayh–Dole and commercialization bemoan the
“selling” of the university (Greenberg 2007), link
the act to the “corporate corruption” of academia
(Washburn 2005), and argue that proprietary research
diminishes universities’ scientific and public mission
(Krimsky 2004).
Hyperbole aside, both the economic benefits and

the dangers of academic commercialization are often
attributed to the type of inventions that universities
produce. For those with rosier views, it is the uni-
versity’s capability to generate unexpected, market-
creating inventions outside the channels of corporate
R&D that make academic inventions valuable. In the
terms we use here, the economic benefits of Bayh–
Dole rely in part on academic scientists’ propensity
to generate destabilizing inventions. Although critics
approach Bayh–Dole from a range of philosophical

starting points, one thread running through most neg-
ative appraisals is concern that attention to the com-
mercial value of academic ideas leads to capture by
corporate interests, and with it to university science
closely wedded to industry priorities. Put differently,
one significant concern about Bayh–Dole suggests
that, as research commercialization becomes more
widespread, both published and patented science will
tend to consolidate the status quo.

This tension has led many academic analysts to
assess the costs and benefits of university research
commercialization (Trajtenberg et al. 1997, Henderson
et al. 1998, Mowery et al. 2002). Two key themes in this
line of work emphasize the value of academic inven-
tions and the relationship between increases in the use
of proprietary science and the vitality of more funda-
mental research and training.

Researchers pursuing the former question express
concern over the relationship between the sources
and types of R&D funding that support academic
research and the impact of patented science on cam-
pus. Although the results of some studies conflict,
most find evidence that increases in the quantity of
academic patenting do not decrease its impact at the
campus level (Mowery et al. 2002). These studies also
suggest that connections with industry help academic
institutions to learn to patent up to a point. Owen-
Smith and Powell (2003) find a curvilinear (inverted
U-shaped) relationship between ties to biotechnology
firms and the impact of a university’s patent portfolio.
They attribute diminishing returns to the likelihood of
corporate capture of technology transfer priorities.

The relationship between academic (papers) and
proprietary (patents) research outputs has also been
much examined. Owen-Smith (2003) demonstrates that
patent flows are deeply intertwined with traditionally
academic inputs and outputs such as federal grants
and publications. Sine et al. (2003) find that academic
visibility in the form of article citations increases the
likelihood that patents will be licensed by industry. For
a set of life science patents issued to 89 university cam-
puses, Owen-Smith and Powell (2003) find a positive
relationship between the citation impact of life science
papers and the overall impact of a university’s patent
portfolio.

Sample. To determine whether the CDt and mCDt in-
dexes can offer any new insights into debates over
academic patenting, we collected data on a sample
of universities that mirror those studied in previous
research. We focus on the 110 most research-intensive
U.S. universities (Owen-Smith and Powell 2003) and
the 55,322 utility patents awarded to these institutions
between 1976 and 2010. Our sample includes every
institution that has ever ranked among the top 100
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nationally by federal obligations for science and engi-
neering research. After defining our sample, we cre-
ated a university × year panel with annually updated
variables for each institution.
Portfolio Importance. We considered six measures of
portfolio importance. The first two measures, vol-
ume (V total) and impact (Itotal5 ), capture the number of
patents applied for by (and ultimately granted to) each
university during year t + 1 and the total number of
citations received by those patents, respectively. Vari-
ants of these two measures have been widely used in
previous work on university patenting (Mowery and
Ziedonis 2002, Owen-Smith and Powell 2003). The last
of our six measures are the four portfolio variations on
the CDt and mCDt indexes discussed above: CDmean

5 ,
mCDscale

5 , CDtotal−
5 , and CDtotal+

5 . As in our earlier analy-
ses, all measures are computed using citations received
by patents in the first five years after being granted.
We frame the analyses we present here in terms of

groups of right-hand side variables that operational-
ize key concepts from the literature. In particular, we
attend to measures related to individual university lev-
els of experience with patenting, the sources of fund-
ing and support for their research, and their scientific
capacity.
Technology Transfer Experience Covariates. Prior
work reports mixed results about the effects of expe-
rience with patenting. On the one hand, more experi-
ence in the form of increasing patenting may help a
university to better identify potentially commercially
valuable inventions and thus higher impact patents.
On the other hand, experience may also be associated
with declines in impact, because universities looking
to develop strong patent portfolios pursue more incre-
mental inventions (Henderson et al. 1998). Wemeasure
each university’s experience with technology transfer
as the volume of Patents applied for during year t. We
also include a separate measure for Life sciences that
captures the proportion of recent patents applied for
by each university that fall within the NBER’s Drugs
category.
Industry Ties Covariates. Owen-Smith and Powell’s
(2003) observation that greater corporate engagement
leads to the capture of university technology transfer
efforts suggests that science supported by industrial
partners is likely to generate inventions that increase
the use of existing technologies. We thus propose that
industry support of university R&Dwill lead universi-
ties to pursuemore consolidating discoveries. Industry-
sponsored R&D (log) measures the dollar value, in
millions, of grants and contracts from corporations
to researchers on campus. This variable comes from
National Science Foundation (NSF) surveys of campus-
level R&D efforts available from the online WebCAS-
PAR database.15 Our second measure, Industry R&D

ties, captures formal R&D relationships with firms in
technology-intensive industries. The information on
R&D connections used to create this variable was con-
tent coded from Securities and Exchange Commission
filings made by a sample of 634 publicly traded firms
in high-technology sectors (see Buhr and Owen-Smith
2010, Owen-Smith et al. 2015).

Government Ties Covariates. Levels of support from
the National Science Foundation (NSF), the National
Institutes of Health (NIH), and the Department of
Defense (DoD), the nation’s premier funders of basic
science, should yield research that is less connected
to existing industrial needs. Thus, more federal grants
and more patents derived from them should be associ-
atedwith destabilizing inventions.We track the level of
support (in millions of dollars) that flows to campuses
from federal science agencies with three variables,NSF
grants (log), NIH grants (log), and DoD grants (log).
Federal grant measures were extracted from the NSF’s
WebCASPAR database.

Broadly speaking, if the process bywhich federal sci-
ence agencies apportion R&D support is more likely to
fund research focused on academic concerns divorced
from the needs of industry, then campuses that per-
form more federally funded research and those whose
patents emerge from federally funded projects should
produce more destabilizing patents. Likewise, because
corporate R&D funding is presumably linked to spon-
sors’ proximate, market-driven goals, we expect cam-
puses that pursue more industrially funded R&D to
produce patents that consolidate the use of existing
technologies. Although any source of external support
seems likely to yield higher-impact patents, we antici-
pate that industrial connections will be associated with
consolidating inventions, while public sector funding
will lead to more destabilizing ones.

Scientific Capacity Covariates. Although existing
measures of publication impact suffer from many of
the same limitations as the patent citation indexes we
critique above, we use them to provide some sense
of the relationship between high-impact public and
important proprietary science. We follow two lines of
reasoning. Noting first with Sine and colleagues (2003)
that articles confer a “halo effect” on associated aca-
demic patentswhile advertising their value to potential
licensees, we expect both the volume and impact of
academic science to be associated with higher-impact
patent portfolios. To the extent that highly-cited papers
generate scientific attention because they report novel,
basic-science discoveries that are far removed from the
current concerns of industry, we would expect higher-
impact publications to be associated with more desta-
bilizing inventions.

We use the count of Scientific articles published in
the preceding year to index the volume of academic
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research on campus. In addition, we include a measure
of the citation Impact factor of those articles as a proxy
of the visibility and quality of a campus’s published
research. Both measures are drawn from the Institute
for Scientific Information’s (ISI) University Indicators
Database.
Statistical Approach. Four of our measures of patent
importance—V total, Itotal5 , CDtotal−

5 , and CDtotal+
5 —are

counts that take on only nonnegative integer values.
To capture time-invariant heterogeneity among uni-
versities, account for overdispersion, and match the
approach taken in earlier research (Owen-Smith and
Powell 2003), we model Itotal5 , CDtotal−

5 , and CDtotal+
5 using

a conditional fixed-effects negative binomial specifica-
tion (Hausman et al. 1984). Our model of V total also
uses a negative binomial specification, but because it
includes a lagged dependent variable, we use random
instead of fixed effects.16 Finally, to model CDmean

5 and
mCDscale

5 , we use a fixed-effects OLS specification. All
models include indicator variables for calendar year.
3.3.5. Organization-Level Results. Table 6 presents
descriptive statistics and correlations for all variables
used in these analyses. Table 7 reports results from a
fully specified model for each one of our dependent
variables. Nested specifications are available from the
authors.
Consider the first two columns of Table 7 (Models 17

and 18), which present estimates for patent volume
(V total) and impact (Itotal5 ). The results of these models
are broadly consistent with prior findings. Universi-
ties that have greater prior experience with patent-
ing (Patents) produce more and higher impact patents.
A greater focus on Life sciences patenting, however, is
associated with diminished patent impact. This may
be the case because, unlike physical science and engi-
neering technologies, the most sought-after life science
patents are those that offer exclusive protection for
potential drug candidates. Such patents are typically

Table 6. Descriptive Statistics and Correlations

Variable Mean SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. Patents/volume (V total) 28.85 27.76 1.00
2. Impact (Itotal5 ) 107.93 164.16 0.74 1.00
3. CDmean

5 0.10 0.12 −0.06 0.02 1.00
4. mCDscale

5 10.94 19.34 0.56 0.81 0.30 1.00
5. CDtotal+

5 59.39 99.31 0.69 0.95 0.07 0.83 1.00
6. CDtotal−

5 43.30 70.18 0.68 0.90 −0.04 0.66 0.74 1.00
7. Life sciences 0.48 0.21 −0.05 −0.17 0.15 −0.04 −0.20 −0.11 1.00
8. Industry sponsored 2.30 0.89 0.44 0.30 −0.10 0.20 0.27 0.29 0.02 1.00

R&D (log)
9. Industry R&D ties 0.34 0.75 0.38 0.26 0.02 0.24 0.24 0.23 0.15 0.19 1.00

10. NSF grants (log) 0.65 1.27 0.42 0.32 −0.10 0.22 0.32 0.27 −0.41 0.29 0.16 1.00
11. NIH grants (log) 0.67 1.32 0.44 0.20 0.04 0.23 0.18 0.20 0.49 0.38 0.35 0.11 1.00
12. DoD grants (log) 0.63 1.42 0.43 0.34 −0.09 0.25 0.33 0.30 −0.28 0.44 0.22 0.63 0.22 1.00
13. Scientific articles 1,919.69 1,179.77 0.62 0.38 −0.01 0.37 0.36 0.35 0.10 0.52 0.48 0.51 0.65 0.47 1.00
14. Impact factor 21.87 10.12 0.15 0.33 0.30 0.47 0.33 0.27 0.30 −0.11 0.17 −0.27 0.25 −0.16 0.10 1.00

licensed exclusively and do not rely on suites of com-
plementary intellectual property for their application.

Perhaps unsurprisingly, universities that produce
more Scientific articles and higher-impact (Impact factor)
research publications also develop more and higher-
impact patents. Connections to corporate partners in
the form of Industry-sponsored R&D (log) and research-
based university–industry alliances (Industry R&D ties)
suggest more interesting associations. Increased indus-
trial funding is modestly associated with more and
higher-impact patenting, but campuses with more cor-
porate alliances patent less, and this type of corporate
connection has no significant relationship with patent
impact.

By the same token, increases in research funding
from key public sources (NSF grants (log), NIH grants
(log), and DoD grants (log)) demonstrate largely pos-
itive relationships with patent volume and impact.
The cross agency funding differences in these mod-
els warrant further scrutiny, but we expect that they
have much to do with the relative proportion of each
funding source in a university’s portfolio of research
support and the distinctive fields in which different
agencies concentrate their grant making.

Model 19 regresses these same variables on the
average CD5 index (CDmean

5 ) for a given university.
Just one variable, the impact factor of published sci-
entific articles, offers any explanatory purchase on
this dependent variable, and that effect is marginal.
Although the suggestion that higher-visibility scien-
tific portfolios are associated with more destabiliz-
ing patents is in accord with some of the patent-level
findings we present in the prior session, the lack of
robust relationships in Model 19 implies that an aver-
age CD5 index might not be the best aggregate mea-
sure for analyzing the kinds of diverse, decentralized
patent portfolios that are commonplace on university
campuses.
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Table 7. Regression Models of University Patenting

Model 17 Model 18 Model 19 Model 20 Model 21 Model 22
V total Itotal5 CDmean

5 mCDscale
5 CDtotal+

5 CDtotal−
5

Technology transfer experience
Patents 0.007∗∗∗ 0.007∗∗∗ −0.000 −0.219∗∗ 0.007∗∗∗ 0.010∗∗∗

(0.001) (0.001) (0.000) (0.065) (0.001) (0.002)
Life sciences −0.177 −0.543∗ 0.015 −8.831∗ −0.490∗ −0.777∗∗

(0.127) (0.214) (0.068) (4.364) (0.242) (0.274)
Industry ties

Industry-sponsored R&D (log) 0.051† 0.118∗ 0.019 −3.540∗ 0.166∗∗ 0.090
(0.029) (0.050) (0.012) (1.520) (0.053) (0.063)

Industry R&D ties −0.032∗∗ −0.005 0.001 −2.051∗ 0.006 −0.027
(0.012) (0.023) (0.005) (0.904) (0.028) (0.035)

Government ties
NSF grants (log)(centered) 0.061∗ −0.024 0.006 3.163† 0.035 −0.057

(0.026) (0.043) (0.011) (1.710) (0.048) (0.054)
NIH grants (log)(centered) 0.167∗∗∗ 0.131∗ 0.016 4.351† 0.212∗∗ 0.103

(0.039) (0.061) (0.025) (2.376) (0.067) (0.071)
DoD grants (log)(centered) 0.019 0.093∗∗ 0.002 2.642∗∗ 0.047 0.100∗

(0.016) (0.033) (0.007) (0.786) (0.034) (0.043)
Scientific capacity

Scientific articles 0.000∗∗∗ 0.000† −0.000 −0.021∗∗∗ 0.000 0.000∗
(0.000) (0.000) (0.000) (0.006) (0.000) (0.000)

Impact factor 0.018∗∗∗ 0.028∗∗∗ 0.002† 0.902∗∗ 0.028∗∗∗ 0.009
(0.003) (0.006) (0.001) (0.274) (0.006) (0.007)

University fixed effects No Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Constant 1.714∗∗∗ −19.452 0.029 39.160∗ −18.873 −20.341

(0.142) (558.273) (0.070) (15.651) (427.032) (909.797)
N 1,270 1,265 1,006 1,006 1,265 1,265
R2 0.136 0.384
Universities 109 108 108 108 108 108
Log-likelihood −4,309.140 −4,239.365 870.336 −3,876.887 −3,707.129 −3,465.603

Note. Standard errors are in parentheses.
†p < 0.1; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

In contrast, Model 20 offers what we believe to
be the clearest and most compelling example of an
aggregate version of our measures. mCDscale

5 weights
a standard forward citation measure of impact for a
group of patents by the CDmean

5 index. Comparing these
results with those in Model 18 is thus illustrative of
the benefits to be gained by incorporating the kinds
of structural measures we propose into the analysis
of portfolios of patents. Note first that, although high
volume patenting (Patents) and publishing (Scientific
articles) are both associated with increases in patent
impact (Model 18), the same measures are associated
with higher-impact patents that consolidate the status
quo of their technology streams (Model 20). Univer-
sities that produce higher-impact portfolios of articles
(Impact factor), however, also develop higher-impact
patents that do more to destabilize the status quo.
Perhaps most tellingly, however, both measures

of engagement with corporate partners (Industry-
sponsored R&D (log) and Industry R&D ties) are strongly
associated with patenting that consolidates existing

technology trajectories. In contrast, increases in fund-
ing from all three sources of public research support
(NSF grants (log), NIH grants (log), and DoD grants
(log)) are linked to more destabilizing patent port-
folios. This analysis holds potential lessons for both
defenders of and detractors from Bayh–Dole. For the
former, the implications are clear: the post–Bayh–Dole
wave of university inventions depends on the founda-
tion of academically important, publicly funded sci-
ence. Thus, to preserve their economic contributions,
the academic character of university science should be
encouraged. For the latter, it appears that tighter indus-
trial connections yield patents that reinforce existing
technical arrangements, a finding that should deepen
concerns about the long-term effects of commercializa-
tion on universities, their research, and ultimately their
economic contributions.

Finally, turn your attention to Models 21 and 22,
which examine variables that take a different approach
to aggregation. Here we use the patent-level CD5 index
to differentiate between patents that destabilize or con-
solidate the use of existing technologies.We then calcu-
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late the forward citation impact for those patents. Both
models offer less clear signal than Model 20, but some
interesting features are apparent. Most notably, the
coefficients for variables that capture scientific capac-
ity (Scientific articles and Impact factor) in these two
models are consistent with the findings we reported
for our mCDscale

5 index. A higher volume of scientific
papers is associated with higher-impact consolidating
inventions (Model 22, CDtotal−

5 ). In contrast, a higher-
impact portfolio of scientific publications is associated
with a more broadly used portfolio of patents that
destabilize the use of the technologies on which they
build (Model 21, CDtotal+

5 ).
When considered holistically, these models suggest

that there is value in pursuing more aggregate forms
of our measures, but more research is needed. To our
eyes, the admittedly schematic findings presented in
Table 7 imply that, for organizations like universities
that pursue research across many fields with multi-
ple goals and partners, an integrated measure such as
mCDscale

5 offers significant purchase.We suspect that the
kinds ofmeasureswe created forModels 21 and 22may
be more adapted to studying the effects of changes in
technologymanagement andR&Dpractices for organi-
zations, such as smaller firms, that pursuemore explic-
itly destabilizing or consolidating invention goals in
a more homogeneous range of fields. Regardless, the
additional analytic flexibility that comes with our
network-based measurement approach may yield div-
idends when applied to more specific examinations of
technology strategy and its effects.

4. Discussion
We began this article with a quote from Schumpeter.
That insight served as a stepping stone for two gen-
erations of research that views creative destruction
as a motor for economic and social transformation.
Although Schumpeter and others observe that what
makes a technology important is the nature and extent
of its use, quantitative evaluations of how, precisely, the
use of new technologies strengthens or challenges the
status quo have remained elusive. The purpose of this
article has been to propose and evaluate measures—
the CDt and mCDt indexes—that capture the effects
that new inventions have on the use of their predeces-
sors. Our approach differs from prior efforts by oper-
ationalizing the distinction between technologies that
are valuable because they break from current stan-
dards and those whose value derives from reinforcing
the trajectories from which they spring.
The CDt index has several attractive features that

maymake it useful for future research. By treating new
technologies as additions to evolving networks, the
measure makes use of theoretically important struc-
tural information on second-order forms of impact

that are overlooked by existing approaches. These net-
work underpinnings also make the CDt index natu-
rally suited to dynamic analyses over the course of
a particular technology’s existence. Our method also
offers a continuous and valenced characterization of
an invention’s impact, which allows for clear, qualita-
tive distinctions while also recognizing that the con-
solidating or destabilizing character of technologies is
often a matter of degree. Moreover, because the value
of the CDt index can vary over time for a single patent,
the measure allows for the possibility that some impor-
tant proportion of the effect that a new invention has
is determined ex post in the context of its use rather
than ex ante in the context of its discovery. Finally, by
incorporating an impact weight into the CDt index, it
is possible to obtain an indicator (the mCDt index) that
characterizes both technologies that are major depar-
tures from the status quo and those that reinforce but
offer substantial improvements over existing technolo-
gies. Together, these indexes capture the positive and
negative dimensions of technological change.

In addition to their methodological benefits, the CDt
and mCDt indexes may also help to facilitate theoreti-
cal development in some areas by clarifying conflicting
empirical findings. For more than three decades, schol-
ars have engaged in heated debates over the impli-
cations of increasing commercial engagement for the
nature and quality of university science. Although
patents are a potentially valuable source of data for
adjudicating among competing views, empirical inves-
tigations using forward-citation-based measures of
impact have been inconclusive. Using the CDt and
mCDt indexes, we found consistent evidence that while
increases in federal support for academic research
appear to push universities to create technologies that
destabilize the status quo, increases in commercial ties
are associated with university research that consoli-
dates existing technology streams.

The indexes we propose are not without limita-
tions and more remains to be done. Most broadly,
our approach rests on the assumption that relevant
nodes (patents) and ties (citations) can bemeaningfully
identified, and that the network under investigation
evolves in some way. Many settings in which inven-
tion occurs meet these criteria. However, in certain
cases (for instance, where change is largely propelled
by exogenous influences), the value of the approach
will be limited. Our indexes are also limited because
they are undefined when a focal invention and its pre-
decessors are never cited by subsequent technologies.
In the context of U.S. patents, we found that these
kind of inventions are rare, occurring in 3% of cases
when the CDt and mCDt indexes are measured five
years after the focal patent’s issue year. Nevertheless,
inventions of this sort may still influence technologi-
cal change (for instance, by leading inventors to believe
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a particular field has been saturated) and therefore
diverting attention from components that were in exis-
tence before its introduction. A related limitation is
that, even when our indexes are defined, they may
be biased for inventions that offer improvements over
some existing technologies but use entirely new meth-
ods and therefore do not build on those technologies,
perhaps by using methods from a different domain.
Clarifying these effects, both conceptually and with
respect to measurement, is an exciting opportunity for
future research.
Our analyses did not explore the possibility that

some inventionsmight simultaneously consolidate and
destabilize the use of predecessors in different technol-
ogy streams. This phenomenon could occur if a par-
ticular invention made its antecedents more valuable
for one community of users, but less so for others.
Such patterns of alternating consolidation and desta-
bilization may prove useful in identifying instances
where a technology fails to cite the predecessors it
most strongly destabilizes. When a new technology
is based on a totally different set of mechanisms,
for instance, we might not see destabilization on our
measure for several patent generations. Our example
of the Axel patent, which cited no examples of the
chemistry-based drug discovery methods it eventu-
ally supplanted, offers a case in point. The same effect
might also be present in cases where usage patterns
change over the course of a technology’s life cycle.

Finally, our empirical analyses suffer from some lim-
itations common to all research that relies on archival
data like patents. For instance, many important inven-
tions are never filed with the USPTO, although, as
critics suggest, many mediocre new technologies pass
through the examination process and are awarded
patent protection. Business and legal strategies may
create additional noise or bias in the data through the
intentional omission of legitimate citations or the inclu-
sion of irrelevant references (Alcácer et al. 2009).

Although not without limitations, we believe that
the CDt and mCDt indexes may help to expand
research in multiple areas. Below, we address some im-
plications of our approach where it is likely to be most
useful.

4.1. Social Networks
The indexes we propose may help to generate new
insights in research on social networks and invention
(Burt 2004, Obstfeld 2005). A persistent challenge in
this area has been to distinguish between the effects
of more open, unconstrained social network configu-
rations and more closed or cohesive structures. Some
current findings suggest that the former aremore effec-
tive for generating novel ideas whereas the latter are
more suited for mobilizing collaborators around the
often difficult work of development, but other research

points to the importance of more complex, hybrid
network arrangements (Fleming et al. 2007, de Vaan
et al. 2015). Rather than reflecting differences in the
effects of particular social network structures and the
need to consider more complex configurations, how-
ever, the conflicting findings in this area may stem
from noisy outcome indexes that mask fundamental
differences between network positions that facilitate
destabilizing ideas and those that support inventions
that are more consolidating in nature. Closed groups
of inventors with many overlapping, cohesive rela-
tionships, for instance, may collectively have deeper
knowledge of a technological domain and therefore
be especially suited for developing ideas that consol-
idate a trajectory. Alternatively, inventors who search
through networks of otherwise disconnected contacts
may leverage their vision advantage to pursue more
fundamental insights that destabilize existing techno-
logical arrangements.

4.2. Industries and Firms
The CDt and mCDt indexes may also be useful for
understanding industry evolution and its implications
for firms (Nelson and Winter 1982; Tushman and
Anderson 1986; Benner 2007; Sosa 2009, 2011). For
instance, recall our brief discussion of two related tech-
nologies identified in Table 2: the scanning tunneling
microscope (STM) and the atomic force microscope
(AFM). The STM was highly destabilizing because of
its major break with the technological standards in
place at the time of its introduction. By contrast, the
AFM was only moderately destabilizing because it
built on and expanded the technological base created
by the STM. Yet the AFM has proven to be more impor-
tant to the development of nanotechnology. Abstract-
ing from this dynamic, one may hypothesize and use
our indexes in tandem with qualitative and historical
case data to examine the possibility that, in emerging
sectors like nanoscale materials or tissue engineering,
early inventions will be the most likely to challenge
the incumbents’ capabilities, whereas later discoveries
may enhance them as the technologies (and related
organizations, networks, and markets) mature.

The ability to distinguish between inventions that
consolidate and those that destabilize the use of exist-
ing technologies may also be valuable for examining
a range of questions of relevance to technology strat-
egy. For instance, consider debates over the effect of
market power on incentives to develop new technolo-
gies. Much like research on social networks, this liter-
ature has produced conflicting theoretical arguments
and empirical findings (Gilbert 2006, Ahuja et al. 2008).
Although some contend that incumbents should pur-
sue inventions in order to maintain their positions, oth-
ers argue the opposite and claim that incentives are
depressed due to lack of competition. Ahuja and col-
leagues (2008, p. 8) note that empirical efforts to resolve
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this debate have been challenging, “since the main
effects are countervailing.” To the extent that incum-
bents may differ with respect to the aims of their R&D
efforts in relation to existing technology streams, the
measures we propose could help to disentangle some
of these countervailing effects.

4.3. Science Policy
In recent years, efforts to develop evidence-based sci-
ence policy measures have triggered extensive work
in what has come to be called the “science of science
policy” (Lane 2010, Fealing et al. 2011, Powell et al.
2012). Among other concerns in this burgeoning field
is the question of how to support, identify, and eval-
uate transformative research. We submit that variants
of the CDt and mCDt indexes might help to document
the transformative effects of different collaborative or
funding models by, for instance, associating differing
levels of interdisciplinarity or scientific team structure
with the production of more or fewer findings that
enhance or replace existing knowledge bases. Our find-
ings about the differing implication of higher-impact
university and corporate patents for established tech-
nological arrangements and the tendency of federally
funded grants to generate more destabilizing inven-
tions offer cases in point. Funders and performers of
such research are under increasing political pressure
to explain and justify their work in terms of its eco-
nomic impact. However, findings like those we explore
here suggest the importance of more fundamental, aca-
demic research as a means to open new technological
trajectories. As such, the CDt and mCDt indexes may
offer a more effective means to evaluate the technologi-
cal significance of scientific discoveries in a fashion that
justifies novel funding approaches at the federal and
state levels. The findings we present in regard to the
disparate effects that industrial and public R&D find-
ings may have for different types of academic patent-
ing, and the suggestion that support from different
agencies is associated with different types of research
outcomes, offer cases in point.

4.4. Geography and Space
The method we propose could also be of use in ongo-
ing work on the causes and consequences of regional
industrial agglomeration. Competition is stiffer within
established clusters than outside them (Stuart and
Sorenson 2003, Whittington et al. 2009). Work has doc-
umented the different roles that physical proximity to
universities and other firms and geographically local
versus distant ties play in the inventive performance
of biotechnology companies (Owen-Smith and Powell
2004, Whittington et al. 2009). Both lines of work have
suggested that location in vibrant regions forces firms
to compete more vigorously to succeed, but research
in this area has not attempted to distinguish among

the types of inventions made by geographically clus-
tered and geographically remote organizations. Adapt-
ing insights on social isolation and creativity (Taylor
andGreve 2006, Singh and Fleming 2010), onemay pre-
dict that firms located in “second-tier” regions (Mayer
2011) or outside established clusters entirely are bet-
ter positioned to generate inventions that destabilize
existing streams of technology, whereas those in closer
proximity to industry peers are well suited towork that
consolidates and reinforces them. The ability to char-
acterize regions along these dimensions may be valu-
able for managers and urban planners, in addition to
researchers (Bettencourt et al. 2007).

At a more microlevel, our finding of a greater ten-
dency for distributed teams of inventors to create
inventions that consolidate the status quo suggests that
geographic diversity may help collaborators to per-
form better in some respects while also challenging
their ability to create truly destabilizing new technolo-
gies. Existing studies of team-based research suggest
that this could be the case, but pure impact mea-
sures lack the ability to distinguish among such claims.
If, as some research on scientific and technical teams
suggests, distance increases coordination challenges
(Cummings and Kiesler 2005), then it may be that
dispersed teams are more effective in pursuing addi-
tions to existing technological trajectories. In contrast,
if serendipity is an important contributing factor for
destabilizing discoveries and face-to-face interactions
are a keymechanism for its recognition, then dispersed
teams may be at a substantial disadvantage when it
comes to making more destabilizing inventions (Kabo
et al. 2014).

4.5. Beyond Technological Change
Finally, consider some possible uses of our dynamic
network approach far afield from technological
change. The CDt and mCDt indexes might be adapted
to studies of the evolving link structure of the World
Wide Web, where new pages will cite and be cited
by others. Similarly the evolving structure of citations
among judicial decisions that comprise an important
aspect of U.S. law might be examined in these terms.
Rather than measuring the effects of new technologies,
this family of indexesmight offer new insight intomore
political and cultural questions involving the dynamics
of political polarization in the blogosphere, the evo-
lution of management fads and fashions, the visibil-
ity of music artists and genres, the commercial and
critical impact of films, and the larger legal implica-
tions of new court decisions. Evolving network data on
relationships of deference among entrants and incum-
bents in different substantive domains are becoming
more available and are potentially valuable for research
questions in multiple fields.
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Endnotes
1Nevertheless, patent data have limitations. For example, inventors
may not seek patent protection for their ideas. Moreover, the patent
examination process has been criticized by observers who argue that
the USPTO grants many patents that fail to meet the legal require-
ments of novelty and nonobviousness (Jaffe and Lerner 2004, Lemley
and Sampat 2008). Firms may have strategic reasons for omitting
citations, and examiners may fail to add these during their reviews
(Alcácer et al. 2009).
2Although we do not include them in these diagrams, we also recog-
nize and integrate into our measure the likelihood that later inven-
tions will cite the focal patent’s predecessors without citing the focal
patent itself.
3Code for calculating the CDt and mCDt indexes along with values
for U.S. patents are available at http://www.cdindex.info.
4More nuanced approaches could, for example, determine the val-
ues of W according to the issue date of i such that older citations
have greater or lesser influence over the measure, or by differentially
weighting citations made by examiners and patent applicants.
5Our focus on types of nodes and binary relations among them dis-
cards some structural data. We address these issues more in Online
Appendix A, where we introduce variations on the CDt and mCDt

indexes that allow for multiple focal patents.
6We identified government interest patents by extracting and coding
information contained in the GOVT, GOVINT, and related fields of full-
text patent documents, available from the USPTO.
7 In unreported comparisons, we found few substantial differences
in the distribution of the CD5 index across broad (NBER) technology
categories. Computers patents (including software), however, appear
to have less influence in terms of either consolidating or destabilizing
the status quo than other classes have.
8By convention, we refer to these patents using the last names of
their authors. The inventors’ full names are, respectively, Stanley N.
Cohen and Herbert W. Boyer, Richard Axel (with Michael H. Wigler
and Saul J. Silverstein), and Kary B. Mullis. Each of these patents
covers what was to become a fundamental method for research in
many fields of biology and the biotechnology industry. Cohen and
Boyer established the fundamental technique of gene splicing. Axel
and colleagues developed a method to insert genes into cells in
order to turn them into protein “factories.” Mullis invented an effi-
cient method to produce large amounts of DNA from very small
samples.
9The alternative version of the CDt index presented in Online
Appendix A may prove useful for estimating the effects that patent
families have on their technological predecessors.

10This calculation does not account for possible right truncation due
to delays between patent application and grant years and may also
be inflated because of increases in the frequency of patenting and
citation over time. In Online Appendix B, we present exploratory
models that attempt to adjust for these and other factors. The results
are similar.
11Patent 5,084,082 is owned by DuPont.
12The PageRank patent also differs from Monsanto in that its back-
ward citations come from a more diverse base of organizations,
as would be anticipated for amore destabilizing invention. The seven
predecessors cited by the patent are owned by a total of four differ-
ent corporations and one university, none of which are Stanford or
Google.
13One important question is whether or not the Axel patent’s high
CD5 index of 0.95 could stem from the fact that it only cited two
pieces of predecessor patents. There is a modest negative correlation
(r �−0.17, p < 0.001) between the number of citations of predecessors
and a patent’s CD5 index. However, some association between the
number of predecessors cited and the CD5 index is anticipated as
novel inventions should have fewer predecessors available on which
to build.
14We thank Bhaven Sampat for sharing the data on USPTO examin-
ers that made these analyses possible.
15http://ncsesdata.nsf.gov/webcaspar/.
16The results are similar if we drop the lagged term (Patents) and
estimate the model using conditional fixed effects.
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