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Abstract

The contact of an indenter of arbitrary shape on an elastically anisotropic half space is con-
sidered. It is demonstrated in a theorem that the solution of the contact problem is the one that
maximizes the load on the indenter for a given indentation depth. The theorem can be used to
derive the best approximate solution in the Rayleigh—Ritz sense if the contact area is a priori
assumed to have a certain shape. This approach is used to analyze the contact of a sphere and
an axisymmetric cone on an anisotropic half space. The contact area is assumed to be elliptical,
which is exact for the sphere and an approximation for the cone. It is further shown that the con-
tact area is exactly elliptical even for conical indenters when a limited class of Green’s functions
is considered. If only the first term of the surface Green’s function Fourier expansion is retained
in the solution of the axisymmetric contact problem, a simpler solution is obtained, referred to as
the equivalent isotropic solution. For most anisotropic materials, the contact stiffness determined
using this approach is very close to the value obtained for both conical and spherical indenters
by means of the theorem. Therefore, it is suggested that the equivalent isotropic solution pro-
vides a quick and efficient estimate for quantities such as the elastic compliance or stiffness of
the contact. The “equivalent indentation modulus”, which depends on material and orientation,
is computed for sapphire and diamond single crystals.
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1. Introduction

Indentation measurements are often performed on elastically anisotropic materials in
order to determine their elastic properties since indentation experiments are straightfor-
ward and are frequently the only way to study the mechanical behavior of a material.
Hard ceramic materials are sometimes used in calibration procedures for instrumented
indentation, because these materials can be indented entirely in the elastic regime
(Swadener and Pharr, 2001). These materials, however, are often highly anisotropic
elastically and this needs to be taken into account when analyzing experimental re-
sults. In particular, it would be useful to develop a simple algorithm or formula to
calculate the contact stiffness from the single-crystal elastic constants.

The anisotropic Hertzian contact problem was solved previously through use of dou-
ble Fourier transforms (Willis, 1966). Vlassak and Nix (1993) defined the indentation
modulus, M, of a general anisotropic material through the following equation:

daF 2
S:EZﬁM\/Z, ()

where F' is the applied load, U the approach of the two bodies, and A the projected
contact area. The indentation modulus generally depends on the shape of the indenter,
although it is independent of indenter geometry under certain conditions of crystal
symmetry (Vlassak, 1994). Taking advantage of a formalism developed by Barnett
and Lothe (1975), Vlassak and Nix (1993, 1994) obtained simple expressions for the
indentation modulus for a flat punch or when the contact area is known a priori to be
circular. Recently, this same approach was extended by Swadener and Pharr (2001) to
spherical and conical indenters. For isotropic materials and axisymmetric geometries,
M reduces to the plane-strain elastic modulus

E
1= )
independent of indenter shape. For general anisotropic materials, no such straightfor-
ward formula is available.

In this paper, we generalize a theorem due to Barber (1974), that provides a method
for determining contact area and compliance for isotropic materials (Barber and Billings,
1990). This theorem is shown to apply to a large class of anisotropic materials. The
theorem can be used to derive approximate solutions for punches of arbitrary shape. We
consider indentation by frictionless conical and spherical (or Hertzian) indenters. Using
the theorem, it is shown that the best approximate solution assuming a circular contact
area, is a first-order solution that is in essence an equivalent isotropic solution. If the
contact area is assumed to be elliptical, the Fourier expansion of the surface Green’s
function is required, and this expansion is found numerically using a method originally
proposed by Barnett and Lothe (1975). Finally, numerical results are presented for the
indentation moduli of sapphire and diamond single crystals.
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2. The Green’s function for an anisotropic half space

A convenient expression for the surface Green’s function was derived by Barnett and
Lothe (1975) using a technique based on the Stroh formalism for anisotropic materials.
Consider a coordinate system (x;;x;;x3). Let t be an arbitrary unit vector in an infinite
anisotropic medium, and let m and n be two vectors perpendicular to t, so that m;n;t
form a right-hand Cartesian system. We define the matrix B(t) as

2n

1
Bi(®)=By(®)= g5 [ {mm);; — (mn)om) ! (o)} do, 3)

where ¢ is the angle between m and some fixed datum in the plane perpendicular to
t (see Fig. la). Repeated indices imply a summation over the repeated index from 1
to 3. The matrices (ab) are given by

(ab)jk = aiCijkmbm 4

and Cjj, are the elastic stiffness coefficients of the anisotropic material given in the
coordinate system (x;;x,;x3). The matrix B depends only on the elastic constants of
the material and the direction t, is symmetric and positive definite.

Now, consider an anisotropic half space with its surface through the origin of the
coordinate system (Fig. 1b). The orientation of the boundary of the half space is
arbitrary with respect of the coordinate system and is characterized by the direction
cosines (a;; op; 3 ) of the normal to that boundary. If a concentrated unit load is applied
at the origin and perpendicular to the boundary of the half space, the displacement,
w(y), in the direction of the load of a point P in the surface of the half space is given
by the following Green’s function (Vlassak and Nix, 1994):

_ 1 (Y _ o)
= sy [ () = =7 ®

where y is the position vector of P. Thus, the displacement of any point in the surface
of a half space under the influence of a point load is inversely proportional to the
distance, r, to the point load. The angle-dependent part of the surface Green’s function,
h(0) can be readily calculated through numerical integration as indicated by Eq. (3).
Since the surface Green’s function is periodic in 0, it is often useful to develop A(0)

w(y)

m

Fig. 1. (a) Schematic representation of the unit vectors used to define the matrix B(t) for an elastically
anisotropic half space. (b) Schematic representation of the vectors involved in the definition of the surface
Green’s function for an anisotropic half space. The vector (o1;a2; 03) is perpendicular to the surface of the
half space, vector y lies in the surface.
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as a Fourier series. In many cases, a few terms in the series are sufficient to obtain
adequate accuracy. In the remainder of this paper, 4(0) is considered a given for a
particular material and orientation.

3. A Rayleigh—Ritz approximation

Barber (1974) developed a technique for obtaining a Rayleigh—Ritz approximation
to the contact area and the load—indentation relation for the indentation of an isotropic
half space by an arbitrary indenter. He first showed that for a given indentation, the
exact contact area A, is that which maximizes the indentation force F—i.e.

F(4c) = max(F(4)), (6)

where 4 is the set of all possible areas (not necessarily connected) on the surface of
the half space. A Rayleigh—Ritz approximation can then be sought in a subset of areas
A, notably a set of areas for which F(4) is relatively easy to calculate. In the present
instance, an appropriate choice would be the set of all elliptical areas, parametrized by
major axis a, minor axis b and orientation ¢.

The function F(4) can be written down for any area 4 for which the solution of the
corresponding flat punch problem is known. Suppose the contact pressure distribution
pi(x,y) in area 4 causes a constant unit displacement u;(x, y) in 4 and a different
distribution p(x, y) produces u(x, y) also in 4. Applying Betti’s reciprocal theorem to
these two stress states, we obtain

[Zm@JW@yNA

://A p(x,y)ul(x,y)dA://A plx, y)d4d = F(4). (7)

Thus, the force F(4) can be written down as a convolution of the flat punch pressure
distribution p(x, y) and the function u(x, y) describing the shape of the indenting
punch. The contact pressure distribution for a flat elliptical punch is given by

Po

1) = (8)
P =) - )

for both isotropic and anisotropic half spaces, where pg is a constant. For the isotropic

case, unit indentation requires that

u

~ (1—v)bK(e)’ ©)

Po
where K(e) is the complete elliptic integral of the first kind and e = /1 — (b?/a?)
is the eccentricity of the ellipse. For the anisotropic material defined by the Green’s
function of Eq. (5), one finds

1

mbae, 9)’ 0

bo =
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where

" O+ )

we,p)= | ————m=

0o V1—e?cos?0
and ¢ is the angle between the major axis of the ellipse and the reference direction
for the function 4. The result of Eq. (6) was established by Barber (1974) only for the
case of isotropic materials, but the argument can be extended to generally anisotropic
materials provided they satisfy the condition that the maximum normal indentation at
the surface of the half space must occur in a loaded area. At the point of maximum
displacement, we must have

u  Qu
2 —

(11)

where V(Zz) is the two-dimensional Laplacian operator in the surface plane. This quantity
is invariant under coordinate transformation in the plane. The Green’s function defined
in Eq. (5) satisfies this condition at all points other than the origin if

h(0)
Vay (,,>

(18 10 h(0)
—(arz+rar+rzaez> ()
MO KO W) _

73 73 73

0 (13)
and hence
h'(0)+ h(0) <0 for all 0. (14)

If this condition is satisfied, it follows from superposition or convolution that Eq. (12)
will be satisfied at all unloaded points for a more general distribution of normal pressure
on the half space. Eq. (14) is a necessary condition for the maximum displacement to
occur outside of the contact area. Thus,

H'(0)+ h(0) =0 for all (15)

is a sufficient condition for the maximum to occur within the contact area. Many
naturally occurring anisotropic materials satisfy Eq. (15) and hence permit Barber’s
method to be used to determine a Rayleigh—Ritz approximation for the general inden-
tation problem. !

! This proof can be extended to a larger class of anisotropic materials by defining a general linear co-
ordinate transformation through X = Ax + By; ¥ = Cx + Dy. In the new space so defined, it is clear that
the inverse dependence of Green’s function Eq. (5) on r will be preserved, so that w = H(¢)/R, where
R =+X2+Y? and ¢ has a one-to-one correspondence with 0. If the transformation constants A;B;C;D
can be chosen so as to make the transformed function H(¢) satisfy Eq. (15), we can conclude that the
maximum displacement in the transformed space must occur in a loaded region and hence so must that in
the untransformed space.
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Assuming Eq. (15) is satisfied for the elastic material, the force F(A4) required to
establish an elliptical contact area can be written down from Egs. (7) and (8) as

_ pou(x, y)dxdy
F(A)—//\/W G0 (16)

where pg is given by Eq. (9) for isotropic and Eq. (10) for anisotropic materials. The
best elliptical fit to the actual contact area is then obtained by minimizing F(A4), by
enforcing the conditions
OF oF OF
Oa ob Gl

(17)

4. Solution for conical indenters

If the half space is indented by a circular cone, the displacement imposed by the
indenter is given by

u(x,y)=U — C\/x2 + 2, (18)

where U is a rigid body displacement and C is the cotangent of the cone angle. If the
contact area between half space and indenter is assumed to be elliptical, an approximate
solution can be derived using Barber’s theorem. Substituting u(x, y) into Eq. (16) yields
the following expression for the load on the indenter:

U — Cy/x?

F(A)fpo// PP rdy. (19)
V1= (2/a?) = (y2/b?)

To simplify the integration in Eq. (19), we perform a change of variables

6:{, n:X x=af, y=by, dx=adf, dy=bdy,
a

b b
which converts the domain of integration into the unit circle 4; and we find
222 b2 2
F(a,b,0) = poab// AV Gean, (20)
A V 1 - 62
Changing to polar coordinates,
E=pcosh, n=psinb, 21)
results in
2n 1
Uu-c¢ 2 cos? 0 + b? 0
F(a,b,¢) = poab / / pVa cos’ 0+ b2 sin’ pdpdo. (22)
o Jo V1= p?

Evaluation of these integrals is tedious, but routine and finally yields the following
result:

2Ua — Ca’E(e)

F(a,b,p) =npoab(QU — CaE(e)) = 2e.0)

(23)
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where E(e) is the complete elliptic integral of the second kind and where Eq. (10) has
been used to eliminate py. For the conical indenter, dimensional considerations show
that the contact area must retain the same eccentricity and orientation for different
values of the rigid-body displacement U and that the characteristic length scale a of
the contact area must vary linearly with U. This is readily shown to be the case, if
the contact area is characterized by the major axis @ and the dimensionless parameters
e and ¢. Taking into account Eq. (23), the first equation in (17) reduces to

U — CaE(e) =0, (24)

confirming that a indeed varies linearly with U. Using Eq. (24) to eliminate a from
Eq. (23) finally results in

UZ
Cole, p)E(e)
Thus, the solution for the conical contact is obtained by choosing the parameters e and
¢ that minimize the product a(e, p)E(e). The contact stiffness for a cone on a half
space is then given by
_dF 2 y 1
S dU Vo ale, p)(1 — e2)1/4’
where we have used the definition of e and the expression for the surface area of an
ellipse, A = mab. Comparing this expression with Eq. (1) shows that the indentation
modulus of the half space is given by

1
Moy = ——————.
T ae, p)(1 - €)1

It should be noted that the solution obtained by minimization of Eq. (25) is ap-
proximate in character because the contact area between indenter and half space is
assumed to be elliptical. Swadener and Pharr (2001) recently discussed the problem
of axisymmetric conical indenters. They suggested that the contact area is exactly el-
liptical for a general anisotropic material. It is shown in Appendix 1 that the pressure
distribution used by these authors results in an indentation that varies linearly with dis-
tance along any straight line radiating from the apex, but that the cross-section of the
indentation—i.e., the intersection of the deformed surface with a horizontal plane—is
circular only if the anisotropic Green’s function of Eq. (5) is of the restricted form
hO)=ho+ he cos(20) + hy sin(20), where hg, h.y, and hy are constants. The pressure
distribution assumed by Swadener and Pharr (2001) does not define the exact solution
of the problem for more general anisotropic materials. Hence, the current approach
based on Barber’s theorem is preferable over the solution presented by Swadener and
Pharr, since it provides the best solution in the Rayleigh—Ritz sense.

F(e,p)= (25)

S

(26)

(27)

5. The best circular approximation for a conical indenter

An even simpler approximate solution for conical indenters appropriate for weakly
anisotropic materials is obtained if the contact area is restricted to a circular area of
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radius a. In this case, the orientation angle ¢ is arbitrary and the eccentricity vanishes,
so that

(0.0) = [ h0)d0 =, (28)
0

where £ is the first, O-independent term in a Fourier series representation of the
function A(0). Egs. (25) and (28) then lead to the following simple expression for the
force on the indenter:

202 Ca?
Fla)= ——=— 2
(@)= 2 Che = 20y (29)
since E(0) = m/2. The indentation modulus of the half space is then given by
1
Megy = —. 30
= (30)

Thus, if the contact area is assumed to be circular, the indentation modulus depends
only on the first-order term of the Fourier series expansion of Green’s function. This
result can be generalized for indenters of arbitrary shape as discussed in the next
section.

6. The equivalent isotropic solution for general indenters

If a circular contact area is assumed, a=b, e=0, and Eq. (16) is greatly simplified,
not just for conical indenters, but also for indenters described by the general shape
function f(x, y):

1
) — // u(x, y)dxdy
nba(e, @) JJ4 /1 — (x2/a®) — (y2/b?)

1 // U— f(x,y)dxdy G1)
where r=1+/x2 + »2, and a(e, ¢) has reduced to mhy. This equation simply expresses that
“the best circular approximate solution in the Rayleigh—Ritz sense corresponds exactly
to the solution for an isotropic half space, if 1/mhy is taken as the equivalent isotropic
indentation modulus, where /g is the first term of the Fourier expansion of the surface
Green’s function 4(0) of the anisotropic solid”. This definition of indentation modulus
coincides with that given by Vlassak and Nix (1994) and is in effect that for a flat punch
with a circular cross-section. If the geometry of the indenter is axisymmetric, the best
circular solution in the Rayleigh—Ritz sense is the exact solution for the corresponding
isotropic material.

For the general non-axisymmetric contact problem, two types of approximation can
be made. First, one can assume that the contact area is circular as discussed in the
previous paragraph. In this case, terms of higher order than one in the Fourier expansion
of the Green’s function do not contribute to the solution. Alternately, one can truncate
the Fourier expansion after the constant term, and allow for elliptical contact areas
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(an alternative, non-elliptical solution is also possible using the Fabrikant method as
exposed in Barber and Billings, 1990). This solution is referred to as the equivalent
isotropic solution. Since the equivalent isotropic solution is more general than the solu-
tion assuming a circular contact area, it is also more accurate, especially for indenters
with an elongated geometry. It degenerates to the solution with the circular contact
area if the indenter geometry is axisymmetric. The equivalent isotropic solution for ax-
isymmetric indenters is completely determined by the indentation modulus defined in
Eq. (30). Using the equivalent isotropic approximation, the Barber and Billings (1990)
procedure can be applied to any indenter geometry of interest.

In the general anisotropic solution with an elliptical contact area, all terms of the
Fourier expansion for A4(0) are required in order to maximize F(4). In the next section,
two specific examples are discussed, i.e., indentation of sapphire and diamond by an
axisymmetric cone and by a spherical indenter, and the results are compared to the
equivalent isotropic solution. A more detailed analysis of the spherical contact problem
is presented in Appendix 2.

7. Application

The theorem discussed in the first part of this paper will now be applied to the
indentation of single-crystalline sapphire and diamond. Sapphire is commonly used in
instrumented indentation experiments for calibration of the indenter tip shape (Oliver
and Pharr, 1992). Since sapphire is anisotropic, it is essential to use the correct inden-
tation modulus to obtain an accurate calibration of the indenter shape. The point group
of sapphire is 3m and single-crystalline sapphire has six independent elastic constants.
The adiabatic elastic constants were measured by Wachtman et al. (1960) and are
as follows: (Cyy, Cs3, Cusq, C12,C13,C1a) = (496.8,498.1,147.4,163.6,110.9, —23.5) GPa,
where the x; and x3 axes are aligned with the a- and c-axis of the crystal, respectively.
The elastic constants under isothermal conditions, which are more relevant to most
indentation experiments, differ from the adiabatic values by less than 1%.

Fig. 2 shows the indentation modulus of single-crystalline sapphire calculated from
the equivalent isotropic solution using Eq. (30). Since the indenter is assumed to be
axisymmetric, the shape of the contact area is circular. At this level of approximation,
the indentation modulus coincides exactly with that for a flat circular punch. The
indentation modulus is plotted as a function of the angle between the surface normal
and the sapphire basal plane. Three cases are considered: the surface normal lies in the
a—c crystal plane («=0), the surface normal lies in the plane through the c-axis making
an angle of —30° with the a—c plane (o« = —30°), and the surface normal lies in the
plane through the c-axis at an angle of +30° with the a—c plane («=+30°). According
to Wachtman et al. (1960), directions in the latter two planes show extreme values of
Young’s modulus and one can reasonably expect extreme values for the indentation
modulus as well. This is indeed borne out in Fig. 2 where the indentation modulus
takes on extreme values for directions with o« = —30° and +30°. It should be noted,
however, that the orientations of the extremes do not coincide exactly with those for
Young’s modulus. The maximum variation of the indentation modulus with orientation
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Fig. 2. Indentation modulus of single-crystalline sapphire for a circular contact area.

is approximately 5% and the indentation modulus for the basal plane, which is most
commonly used for indentation calibration purposes, is 432 GPa.

Fig. 3 depicts the indentation moduli of sapphire for conical and spherical indenters
calculated from the general anisotropic solution assuming the contact area is elliptical.

These are exact results for both spherical and conical indenters. The difference be-
tween the indentation modulus for conical and spherical indenters is less than 0.03%
and it is nearly impossible to distinguish both curves in Fig. 3. The results are in
very good agreement with data presented by Swadener and Pharr (2001). A compari-
son of the results in Figs. 2 and 3 shows that the difference between the indentation
modulus for a conical or a spherical indenter and that for a flat punch with a circular
cross-section is extremely small. The error involved in using the flat punch solution
is at most 0.1%, which is in general significantly smaller than the uncertainty in the
elastic constants.

Figs. 4a and b show the ratio a/b for indentation with a conical and a spherical
indenter, respectively. The degree of eccentricity of the contact areas is small for all
orientations, and somewhat larger for cones than for spheres in agreement with an
observation made by Swadener and Pharr (2001). The results for & = —30° and +30°
agree very well with the results presented by these authors, but there is a rather large
discrepancy for o =0. The results for «=0 plotted in Figs. 4a and b are in line with the
symmetry properties of the Green’s functions for these orientations. The contact area
for indentation in the basal plane is circular and the indentation modulus is independent
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Fig. 3. Indentation modulus of single-crystalline sapphire for conical or spherical indentation. The difference
between the moduli for the two types of indenter is too small to be distinguished on the graph.

of o The ratio a/b presented in Fig. 4a also agrees very well with Eq. (A.19), which
gives the aspect ratio if the Green’s function is truncated after the first-order terms.

Fig. 5 depicts the orientation of the contact ellipses for conical and spherical inden-
ters, respectively. Note that the orientation of the contact ellipse is exactly the same
for both conical and spherical indenters as pointed out by Swadener and Pharr (2001).
Since the planes at «=—30° and +30° are mirror planes in sapphire, symmetry requires
that one of the main axes of the contact ellipse lie in the mirror plane, i.e., ¢ = 0°
or 90°. The plane at o =0, on the other hand, has no particular symmetry properties
other than a twofold axis perpendicular to the c-axis, and the inclination of the contact
ellipse can accordingly take on any value between 0° and 180°. Note that the contact
ellipse for a surface perpendicular to the a-axis is not aligned with the c-axis. Since
sapphire has a center of symmetry, the orientation of the contact ellipse for a surface
perpendicular to the a-axis is reversed.

Indenter tips used in depth-sensitive indentation experiments are usually fabricated
from diamond single crystals because of their large stiffness. When analyzing experi-
mental results obtained with these indenters, a correction is made to the measurements
in order to account for the finite stiffness of the diamond tip. This correction is small
for compliant materials, but can be quite significant when testing stiff materials. Since
diamond is anisotropic, it is important to take into account the orientation of the di-
amond tip when making this correction. Fig. 6 shows the indentation modulus for
single-crystal diamond as a function of orientation. The elastic constants used in the
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Fig. 4. (a) Variation of the ratio of the major axes of the contact ellipse with surface orientation for conical
indentation of a sapphire single crystal. (b) Variation of the ratio of the major axes of the contact ellipse
with surface orientation for spherical indentation of a sapphire single crystal.
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Fig. 5. Variation of the inclination of the contact ellipse with surface orientation for conical and spherical
indentation of a sapphire single crystal. The inclination is defined as the angle between the a-axis of the
ellipse and the intersection of the surface of the half space with the basal plane. The difference between the
two types of indenter is too small to be distinguished on the graph.

calculation are the adiabatic constants reported by McSkimin and Bond (1972) and are
given by (Ciy, Ci2, Caq) = (1079, 124,578) GPa, where the coordinate axes are aligned
with the cube axes of the crystal. The calculations are depicted for a conical contact,
but the results are indistinguishable from those for spherical indenters. The indentation
modulus takes on its maximum value (1165 GPa) when the surface of the half space
is an octahedral plane, and its minimum value (1126 GPa) when the surface is a cube
plane.

8. Conclusions

We have extended a theorem on the indentation of isotropic materials originally
due to Barber (1974) to elastically anisotropic materials. According to this theorem,
the exact contact area between an indenter of arbitrary shape and a half space is that
which maximizes the indentation force for a given indentation depth. The theorem is
used to derive an approximate solution for the indentation of an elastically anisotropic
half space by a cone, and a simple method is proposed to determine the orientation
and the eccentricity of the contact area between indenter and half space.
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Fig. 6. Variation of the indentation modulus of single crystal diamond with orientation for surfaces belong-
ing to the [110] zone. The angle is measured between the surface normal and the [110] direction. The
calculations were performed for conical indentation.

The problem is further simplified through definition of the equivalent isotropic solu-
tion where the surface Green’s function of the solid is replaced by the first term of its
Fourier expansion. The indentation modulus for axisymmetric indenters is then given
by 1/mhy, independent of the actual shape of the indenter. Numerical results show that
for a large class of anisotropic materials use of the indentation modulus so defined is
indeed justified as long as the indenter is axisymmetric. This definition coincides with
the indentation modulus defined earlier by Vlassak and Nix (1994) for flat punches and
greatly simplifies the calculation of the contact stiffness of an indenter on an anisotropic
half space.

The indentation moduli of single-crystalline sapphire and diamond were calculated
for a number of surface orientations using the new approach. Results are in good
agreement with previously published data and with the exact solution obtained for a
conical contact if the Green’s function is truncated after the first-order terms.
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Appendix A. Indentation of an anisotropic half space by a rigid cone

The normal surface displacement u, at the point Q(x, ) inside the contact area due
to a pressure distribution p(x’, ") is

s B
v, — / / Gy (O + @) dr do, (A1)
0 A

where ¢ is the angle between the x-axis and the reference direction for the Green’s
function h(0), 4, B are the points where a line through QO inclined at angle 0 intersects
the edge of the contact area, and r is the distance between the points Q(x,y) and
P, ).

Following Swadener and Pharr (2001), we consider the case where p(x’,3’) is of
the form

x/2 y/2 —172
p(x, )= pocosh ™" | = + == , (A2)
a b

acting over the ellipse (x’z/az) + 2/bz) < 1. From geometrical considerations, we
have
X' =x—rcosl, y =y—rsinl. (A3)

Substituting Egs. (A.2) and (A.3) into Eq. (A.1) and performing the inner integration,
we obtain

T h(0+ ¢)do
u,(x, y) = nab py .
0 \/b2c0520+a2sin 0

[T [sin(0 — $)|A(0 + @) dO
p/o >9

A4
b2 cos? 0 + a2 sin® 0 (A4)

where p, ¢ are the polar coordinates of O—i.e.,

xX=pcos¢, y=psing. (A.5)

The first term in Eq. (A.4) represents a rigid body displacement and the second is a
linear function of p, the multiplier of which is a function of ¢. This will represent the
indentation due to an axisymmetric cone if and only if the integral

)= /0 [sin(0 — @)|A(0 + @) do

b2 cos? 0 + a?sin® 0

(A.6)

is independent of ¢ for all ¢. This integral can be evaluated by expanding the functions
|sin(0 — ¢)| and A(0+ @) as Fourier series. Maxwell’s reciprocal theorem requires that
the Green’s function must satisfy the condition /(0 + n) = Ah(0) and hence the Green’s
function can be expanded as a Fourier series in terms of the angle (20) as

h(0)=hy + > haycos(2n0) + > hy sin(2n0). (A.7)

n=1 n=1
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It follows directly that

0+ @)=ho+ Z [Aen cos(2n) + hy, sin(2ng)] cos(2n0)

n=1

+ Z [hgu cos(2nep) — he, sin(2ne)] sin(2n0). (A.8)

n=1

We also obtain

(A9)

Isin(0 — )] = % B Z [cos(2m0)cos(2mf}312+_511n(2m9) 51n(2m¢)]

m=1

Using Gradshteyn and Ryzhik 3.613, we can show that

/" cos(2,60)do _n<a—b>f
o b2cos?l+a?sin0 ab\a+b)’

. o
/ sm(210)d0‘ _—0 >0 (A.10)
o b?cos?0+ a?sin” 0

and hence

/” cos(2n0) cos(2m0)dl =
o b2cos?0+ a?sin’0 2ab

a—bh |m—n| . a—b m+n
a+b a+b ’
a—b |m—n| (a- b m-+n
a+b a+b ’
" sin(2n0) cos(2m0)d0 (7 cos(2n0)sin(2m0) dO
o b2cos? 0+ a?sin 0 o b2cos? 0+ a?sin® 0

/” sin(2n0) sin(2m0)d0 =«
o b2cos? 0+ a?sin® 0 ab

=0. (A.11)

Substituting Eqs. (A.8) and (A.9) into Eq. (A.6) and using Egs. (A.11), we can eval-
uate the function /(¢) as

((b)_i_i a+b 4m? — 1

2hy  4hy = [a—b\" cos(2map)
ab

2 & —bY'
7b z:: hu«, COS(ZT’Z([)) + hsn 51n(2n(p)] ( + b)

2 A [Ben c08(2nQ) + hy, sin(2ng)] cos(2me)
ab Z Z 4m? — 1

m=1 n=1
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a—b |m—n| a—b m+n
(a + b) + (a + b)
[Agn cOS(2np) — hey sSin(2ng)] sin(2me)
ab Z Z 4m? — 1

m=1 n=1

a—b |m—n|7 a—b m+n

a+b a+b '
It is not generally possible to choose b/a and ¢ to make /(¢) independent of ¢. For
example, in the simple case

h(0) = ho + hea cos(40), (A.12)
we obtain ¢ =0 by symmetry, and

2h0 | 2he (a—b > 4hg (a—b\ cos2¢)  2h; cos(2¢)
ab \a+b ab \a+b 3 ab 3

a—>b n a—b\’
a+b a+b
a—b m—2+ a—h m+2
a+b a+b '

The terms for m > 2 will be zero if and only if

1(¢)=—r

4h0 a—b\" cos(2me)
ab a+b 4m? — 1

 2hey o cos(2mp)
ab ! 4m? — 1

m=

a—b\"7? [(a—b\ = 2k
=— Al
<a+b> +<a+b> Ty (A.13)
whilst the cos(2¢) term will be zero only if
a—b\" 2k
1 — ) =——. A.14
* (a—i—b) hea ( )

These two equations cannot be satisfied simultaneously by any choice of b/a. There is
an exact solution, however, if 4(0) is given by

h(0) = ho + he1 cos(20) + hyy sin(20), (A.15)

since in that case m > n for all the non-zero terms and

2h0

I(d))— — + 2 [h 1¢08(2¢) + hy sin(2¢)] ( +Z>

24 & (a - b)m cos(2m¢p) 2B (a - b)m sin(2m¢) (A.16)

cabi=\a+b) 4m*—1 ab‘=\a+b) 4m>—1’
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(i5) +(:78)
(1) (553

The function /(¢) will be independent of ¢, if the aspect ratio b/a and the orientation
¢ are chosen such that 4 = B = 0. It is always possible to choose the reference axis

for 2(6) such that hg =0, in which case B=0 is satisfied by the choice of ¢ =0. The
remaining condition 4 = 0 then gives

a—b\"" . a—>b
a+b a+b
with solution

b ho + hey
- = . A.19
a \ ho—ha ( )

For many materials the higher-order Fourier terms are small and this expression is
a useful approximation to the eccentricity. In principle, the solution obtained by the
Rayleigh—Ritz argument is preferable as an approximation, since it takes into account
the full function 4(0). For the materials discussed in Section 7, however, the difference
in b/a calculated using the two approaches is on the order of 0.03% or less.

where

A =2hy + [he1 cos(29) + hy sin(2¢)]

>

B = [hy1 cos(2p) — hey sin(2¢)]

. (A.17)

2hy + hey =0 (A.18)

Appendix B. Indentation of an anisotropic half space by a rigid sphere

The Rayleigh—Ritz analysis for a spherical indenter proceeds exactly as in the conical
case, except that the function u(x, y) of Eq. (18) is replaced by

u(x, y)=U — C(x* + ). (B.1)
Following the same steps as before, the equivalent of Eq. (22) becomes
2 pl 20,2 2 2 «in2
U-C 0+b 0
F(a,b, @) = poab / / ( pla °°IS J; S0P 4 d0 (B2)
o Jo —p

and this is easily evaluated as
2a(U — C(a® + b*)/3)

F(a,b, @) =2npoab(U — C(a* + b*)/3) = (B.3)
(e, @)
We now change variables to a, e, and ¢ using »*> = a*(1 — ¢*) and hence
2a(U — Ca*(2 — e?)/3
Fla,e,g)= 24U = Ca@ = ¢)3) (B4)

(e, @)
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The condition 0F/0a = 0 then results in
U—Ca*(2 —e*)=0. (B.5)

Using this condition to eliminate a yields
432

30(e.p)y/C2 — )

Since it was shown by Willis (1966) that the contact area for a spherical indenter is
elliptical, Eq. (B.6) is an exact result. The eccentricity and orientation of the contact
area is determined by minimizing the function

e, )V/(2 — €2). (B.7)

The indentation modulus for a spherical indenter can be found from Egs. (B.6), (B.5)
and (1) and is given by

1
" wep)(1— )

Note that this is the same expression as for the conical indenter. The exact numerical
values of the indentation moduli are slightly different, however, since the eccentricity
and orientation for a conical contact is found by minimizing a(e, @ )E(e) instead of Eq.
(B.7).

It is instructive to consider the simple case where the Green’s function 4(6) contains
only two terms:

F(a,e, @)=

(B.6)

(B.8)

h(0) = hy — he cos(20). (B.9)
Symmetry demands that the contact area be aligned with the axes 0 =0, /2. As a
result, we can set ¢ =0 and evaluate
™ hy — hey cos(26)

o(e) = —_
e) 0o V1—e?cos?0

do = h()OC()(e) - hclfx2(€), (BIO)

where
/“ do " cos(20)do
oy = —_— . o= —_—
o V1—e?coszl 0o V1 —e?cos?l

It then follows that the eccentricity in the Hertzian case is determined by the equation
a A
ho=—(20(e)V/2 —ez)—hclé(ag(e)\/Z — =0 (B.12)

and we can solve this equation inversely by writing

e _ (9/3e)(%(e)v2 — é?) (B.13)

ho — (0/de)(oa(e)V2 — €2)

In effect, this equation defines the ratio of the ‘anisotropic’ term /. to the isotropic
term /i required to generate a contact area of prescribed eccentricity e.

(B.11)
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Fig. 7. The ratio h.j/hg as a function of the eccentricity of the contact area e.

A similar argument for the conical indenter leads to the condition

he _ (9/3e)(n(e)E(e)) B
ho  (0/0e)(o2(e)E(e))
These two expressions are plotted in Fig. 7 as a function of e. Two features of this
figure are significant: A fairly small degree of anisotropy (A.1/hg) causes significant
eccentricity of the contact area and the eccentricity is significantly larger for conical
indentation than for indentation by a sphere.
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