
Sliding thermoelastodynamic instability

BY L. AFFERRANTE
1, M. CIAVARELLA

1,* AND J. R. BARBER
2

1CEMEC-PoliBA—Centre of Excellence in Computational Mechanics,
V.le Japigia 182, Politecnico di Bari, 70125 Bari, Italy

2Department of Mechanical Engineering, University of Michigan,
Ann Arbor, MI 48109-2125, USA

Numerous mechanisms can give rise to instabilities and vibrations in sliding systems.
These can generally be characterized as either elastodynamic (e.g. ‘brake squeal’) or
thermoelastic. The time-scales of these processes differ considerably, so it is usual to
neglect coupling between them, i.e. to neglect thermal effects in elastodynamic analyses
and to use the quasi-static approximation in thermoelastic analyses. In the present
paper, we consider the potential coupling between them in the simplest possible
context—a thermoelastodynamic layer sliding against a rigid plane and constrained to
one-dimensional displacements. The results show that although the coupling is extremely
weak, it has a destabilizing effect on the natural elastodynamic vibration of the layer at
arbitrarily low sliding speeds. A numerical solution of the transient equations below the
quasi-static critical speed shows that an initial disturbance grows exponentially until
periods of separation develop, after which the system approaches asymptotically to a
steady state involving periods of contact and separation alternating at the lowest natural
frequency of the elastodynamic system. With increasing sliding speed, the proportion of
the cycle spent in contact is reduced and the maximum contact pressure increases.

It is important to note that neither a quasi-static thermoelastic analysis, nor an
elastodynamic analysis neglecting thermal expansion would predict instability in this
speed range. Similar instabilities due to thermoelastodynamic coupling are almost
certain to occur in more complex practical sliding systems such as brakes and
clutches, implying the need for the incorporation of these effects in commercial analysis
software. The proposed mechanism might also provide an explanation of reported
experimental observations of vibrations normal to the contact interface during frictional
sliding.

Keywords: thermoelastic contact; thermoelastic instability; squeal;
frictional vibrations
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1. Introduction

Instabilities in the sliding of elastic bodies are of interest in a wide range of
scientific and industrial applications, including, for example, the sliding of
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L. Afferrante and others2162
tectonic plates during earthquakes (Ben-Zion 2001; Rice et al. 2001), the
mechanism of sliding for rubber-like materials (Barquins et al. 1996), the
generation of noise and vibration in automotive brakes (Kincaid et al. 2003) and
stick-slip vibrations in machine tool slides and other linear positioning devices
(Popp & Rudolph 2004). These complex phenomena result from the interaction
between relatively simple physical processes, notably the elastic deformation of
the contacting bodies, the development of frictional forces at the interface
opposing the motion and the consequent generation of frictional heat.

Several distinct categories of instability are known to result from these
interactions. It has long been known that frictional vibrations can result if the
coefficient of friction is a decreasing function of speed or, in the case of stick-slip
vibrations, if the static coefficient exceeds the dynamic coefficient. However,
Martins et al. (1995) and Adams (1995) have shown that the steady sliding of
two elastic half planes can be unstable, even assuming the elementary Coulomb
friction law in which the frictional traction is proportional only to the local
normal contact pressure. The instability consists of the development of an
unstable sinusoidal perturbation in contact pressure which grows exponentially
with time as long as full contact and sliding conditions are maintained. This
mechanism applies also in more complex geometries and is one explanation of
‘squeal’ vibrations in automotive brakes (Moirot & Nguyen 2000). Another
category of instability is that associated with the unstable interaction between
frictional heating, thermoelastic distortion and contact pressure known as
‘thermoelastic instability’ or ‘TEI’ (Barber 1969; Dow & Burton 1972). In this
process, any perturbation in contact pressure causes a corresponding pertur-
bation in heating and hence thermal distortion, which exaggerates the initial
perturbation.

Both frictional instabilities and TEI can be analysed using linear perturbation
methods, leading to a characteristic equation for the exponential growth rate of
an initial perturbation. In the discrete (e.g. finite element) formulation, this takes
the form of a linear eigenvalue problem for the growth rate (Yi et al. 2000; Yi &
Barber 2001). However, no one has so far considered the possible interaction
between the two mechanisms of instability. Thermoelastic deformations are
neglected in the analysis of frictional instabilities and the quasi-static
approximation is used in the analysis of TEI. Some justification for this
‘decoupling’ of the two phenomena is provided by the widely divergent time-
scales involved. Thermoelastic instabilities occur on the rather slow time-scale of
thermal diffusion, whereas elastodynamic processes are governed by the elastic
wave speeds in the materials.

In caliper disc brakes, the typical unstable TEI mode involves a set of equally
spaced hot spots around the disc and as these pass through the brake pads, they
can cause mechanical vibration known as ‘hot judder’. However, this is analysed
as a ‘one-sided’ interaction. The TEI problem is assumed to be quasi-static,
which then merely serves to define the excitation for a dynamic analysis.

It would clearly be much more satisfactory to develop an analysis of the
coupled problem including both elastodynamic and thermoelastic effects in the
same perturbation analysis. If the conventional uncoupled wisdom is justified, we
should then be able to classify the resulting eigenfunctions into TEI modes and
elastodynamic modes.
Proc. R. Soc. A (2006)
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Figure 1. An elastic layer bounded to a rigid body at xZ0 and sliding against a rigid plane surface
at xZh.
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In the present paper, we initiate this investigation by considering the simplest
possible system comprising a one-dimensional elastic layer bonded to a rigid half
space and sliding against a second rigid half space. We shall find, surprisingly,
that though the modes can in fact be classified in this way, the extremely weak
coupling between the two mechanisms destabilizes the elastodynamic natural
vibration modes, causing the system to be unstable at arbitrarily low speeds.
2. Problem statement

Figure 1 shows an elastic layer 0!x!h which is bonded to a stationary rigid
plane A at xZ0. A second rigid body B moves to the right at velocity V and its
plane surface makes sliding contact with the layer at xZh. Wear of the sliding
bodies is assumed to be negligible. The undeformed thickness of the layer at
temperature T(x)Z0 is assumed to exceed h by a small amount (D so as to
ensure an initial contact pressure at the interface, where Coulomb friction
conditions are assumed with a coefficient of friction f. We also assume that body
A is maintained at temperature TZ0 and that the sliding body B is a non-
conductor, so that all the heat generated by friction flows through the layer. We
restrict attention to the one-dimensional plane strain problem, so the only non-
zero displacement is ux.

These conditions can be summarized in the boundary conditions

ux Z 0; T Z 0; at x Z 0; ð2:1Þ

ux ZKD; K
vT

vx
ZKfVsxx ; at x Z h; ð2:2Þ

where sxx is the tensile stress in the layer and K is the thermal conductivity.
The governing equations are the heat conduction equation

v2T

vx2
K

1

k

vT

vt
Z 0; ð2:3Þ
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the equation of motion

vsxx
vx

Kr
v2ux
vt2

Z 0 ð2:4Þ

and the one-dimensional plane strain Hooke’s law

sxx Z
2mð1KnÞ
ð1K2nÞ

vux
vx

K
2mð1CnÞaT

ð1K2nÞ ; ð2:5Þ

where m, n, r, k, a are, respectively, the modulus of rigidity, Poisson’s ratio,
density, thermal diffusivity and coefficient of expansion for the material of the
layer and t is time.
(a ) Dimensionless formulation

A convenient dimensionless formulation can be developed by defining the
quantities

xZ
x

h
; û Z

ux
h
; tZ

kt

h2
; ŝZ

ð1K2nÞsxx
2mð1KnÞ ; T̂ Z

að1CnÞT
ð1KnÞ ; ð2:6Þ

in which case equations (2.1)–(2.5) reduce to

û Z 0; T̂ Z 0; at xZ 0; ð2:7Þ

û ZKD̂;
vT̂

vx
ZKV̂ ŝ; at xZ 1; ð2:8Þ

v2T̂

vx2
K

vT̂

vt
Z 0; ð2:9Þ

vŝ

vx
Kg2 v

2û

vt2
Z 0; ð2:10Þ

ŝK
vû

vx
CT̂ Z 0; ð2:11Þ

where the dimensionless parameters

D̂Z
D

h
; V̂ Z

2mað1CnÞfVh
Kð1K2nÞ ; gZ

k

ch
ð2:12Þ

and

cZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mð1KnÞ
rð1K2nÞ

s
ð2:13Þ

is the dilatational wave speed in the layer material. The parameter D̂ is the initial
compressive strain in the layer and V̂ is a dimensionless sliding speed similar in
form to that which arises in quasi-static TEI formulations (Joachim-Ajao &
Barber 1998). The parameter g can be interpreted as the ratio between the time-
scales for elastic wave propagation and for thermal diffusion. The ratio k/c has
dimensions of length and for most materials it is extremely small. Some typical
values are 1.8 nm (steel), 23 nm (copper), 11 nm (aluminium), 0.8 nm
(aluminium oxide). It follows that g/1 unless the layer is extremely thin.
Proc. R. Soc. A (2006)
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(b ) Steady-state solution

If a steady state exists, the temperature must be a linear function of x and the
stress must be constant. Elementary calculations then show that

ŝZK
2D̂

ð2KV̂ Þ
: ð2:14Þ

The contact traction must be compressive, so only negative values of ŝ are
acceptable, showing that a steady state exists if and only if V̂!2. For higher
sliding speeds, we anticipate that the contact pressure will grow without limit,
causing the system to seize (Ciavarella et al. 2003).
(c ) Perturbation analysis

Following Burton et al. (1973) and Barber et al. (1980), we investigate the
stability of the steady state by considering the possibility that a small
perturbation in the temperature and displacement fields can grow exponentially
with time. Thus, we write

T̂ðx; tÞZ T̂0ðx; tÞCQðxÞebt; ð2:15Þ
ûðx; tÞZ û0ðx; tÞCUðxÞebt; ð2:16Þ
ŝðx; tÞZ ŝ0ðx; tÞCSðxÞebt; ð2:17Þ

where T̂0; û0; ŝ0 represent the unperturbed solution, which satisfies (2.7)–(2.11)
with appropriate initial conditions. Substituting (2.15)–(2.17) into (2.7)–(2.11),
we find that the perturbation must satisfy the equations

d2Q

dx2
KbQZ 0; ð2:18Þ

dS

dx
KðgbÞ2U Z 0; ð2:19Þ

SK
dU

dx
CQZ 0; ð2:20Þ

with homogeneous boundary conditions

U Z 0; QZ 0; at xZ 0; ð2:21Þ

U Z 0;
dQ

dx
C V̂S Z 0; at xZ 1: ð2:22Þ

Equation (2.18) with boundary condition (2.21)(ii) has the solution

QZC1 sinhðx
ffiffiffi
b

p
Þ; ð2:23Þ

where C1 is an arbitrary constant. We can then use (2.20) and (2.23) to eliminate
S in (2.19), obtaining

d2U

dx2
KðgbÞ2U ZC1

ffiffiffi
b

p
coshðx

ffiffiffi
b

p
Þ: ð2:24Þ

The general solution of this equation is

UðxÞZ C1 coshðx
ffiffiffi
b

p
Þffiffiffi

b
p

ð1Kg2bÞ
CC2 expðgbxÞCC3 expðKgbxÞ: ð2:25Þ
Proc. R. Soc. A (2006)
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The boundary conditions (2.21)(i) and (2.22)(i) can then be used to determine the
constants C2, C3 in terms of C1, giving

C2 ZK
C1½expðKgz2ÞKcoshðzÞ�
2zð1Kg2z2Þsinhðgz2Þ ; C3 Z

C1½expðgz2ÞKcoshðzÞ�
2zð1Kg2z2Þsinhðgz2Þ ; ð2:26Þ

where

z Z
ffiffiffi
b

p
: ð2:27Þ

For the remaining boundary condition (2.22)(ii), we eliminate S using (2.20) and
then substitute for U, Q from (2.23) and (2.25) with (2.26), to obtain the
characteristic equation

V̂ Z
ð1Kg2z2ÞcoshðzÞsinhðgz2Þ

g½coshðgz2ÞcoshðzÞK1Kgz sinhðzÞsinhðgz2Þ� : ð2:28Þ

The zeros of (2.28) define the eigenvalues, b, at which non-trivial perturbations of
the form (2.15)–(2.17) can exist.
(d ) Limiting cases

We have already remarked that in many cases g/1, implying that the time
required for an elastic wave to traverse the layer is very short compared with the
time-scale of the heat conduction process. In such cases, it is conventional to
assume that quasi-static conditions can be assumed, equivalent to setting gZ0.
We then obtain

V̂ Z
z2 coshðzÞ
coshðzÞK1

; ð2:29Þ

and the stability boundary corresponds to the passage of a real zero through the
origin zZ0 when V̂Z2.

Another limit of some interest is that in which thermal effects can be
neglected, for example if the coefficient of expansion a/0, giving V̂Z0 for all
finite sliding speeds. In this case, equation (2.28) reduces to

ð1Kg2z2ÞcoshðzÞsinhðgz2ÞZ 0; ð2:30Þ
and it has two distinct sets of zeros. The factor cosh(z)Z0 when zZ ið2nC1Þp=2
and n is an integer, corresponding to bZKð2nC1Þ2p2=4 and hence to
exponentially decaying solutions of the heat conduction equation with mixed
homogeneous end conditions. However, sinhðgz2ÞZsinhðgbÞZ0 when gbZ inp,
corresponding to oscillatory solutions which define undamped elastodynamic
oscillations of the layer with fixed–fixed end conditions.
(e ) Zeros of the characteristic equation

Equation (2.28) can be written in the symbolic form

V̂ ZFðg;f;jÞ; ð2:31Þ
where bZz2ZfC ij. Thus, fhReðbÞ represents the exponential growth rate
of the disturbance and jh ImðbÞ the frequency of the associated oscillation. We
are particularly interested in the effect of V̂ on f, since the system is unstable if
there exist any zeros with fO0. The dimensionless sliding speed V̂ must be real,
Proc. R. Soc. A (2006)
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so (2.31) requires that

ReðFðg;f;jÞÞZ V̂ ; ð2:32Þ
ImðFðg;f;jÞÞZ 0: ð2:33Þ

For a given value of g, the zeros of equation (2.28) can be determined
parameterically by (i) selecting a value of f, (ii) solving (2.33) for j and then (iii)
substituting f;j into (2.32) to determine V̂ .

Figure 2 shows the relationship between V̂ and ReðbÞ for gZ10K1 and 10K2. In
each case, one real zero and one complex zero is identified. Note that the real zero
passes into the complex plane at the value V̂Z2, exactly as in the limiting case
gZ0. This is to be expected, since a real zero with ReðbÞZ0 involves no
variation of the stress or temperature perturbations (2.15)–(2.17) in time and
hence the acceleration terms in the governing equations make no contribution.
Thus, the elastodynamic properties of the system have no effect on the stability
boundary, if this is determined by a real zero.

However, figure 2 uncovers the surprising conclusion that complex zeros exist
with positive real parts for all values of V̂O0, showing that the system is
unstable for all sliding speeds. In the complex plane, zeros on the imaginary axis
representing undamped elastodynamic oscillations of the layer move into the
unstable half plane as V̂ is increased from zero. This complex root persists for
arbitrarily small finite values of g, and in fact hardly any further change occurs
in the plot of figure 2 for g!10K2.
Proc. R. Soc. A (2006)



L. Afferrante and others2168
3. Numerical study of the transient problem

The results of §2 show that arbitrarily small amounts of thermoelastodynamic
coupling are sufficient to cause undamped oscillatory states to grow with time.
The problem remains linear as long as contact is maintained at the sliding end of
the rod, so we must conclude that these perturbations will continue to grow
exponentially until they are of sufficient amplitude to cause periods of separation.
It is clearly of interest to determine what will be the behaviour of the system in
the subsequent nonlinear (or more precisely, piecewise linear) phase of the
process. To explore this more fully, the finite-difference method was employed to
develop a transient solution for the system. The details of the algorithm are
presented in appendix A.

The initial condition was taken to be quiescent with initial temperature
everywhere zero, i.e.

vû

vt
ðx; 0ÞZ 0; T̂ðx; 0ÞZ 0: ð3:1Þ

It then follows from (2.8)(i), (2.10) and (2.11) that

ŝðx; 0ÞZKD̂: ð3:2Þ
The problem so defined is one of ‘receding contact’ as defined by Dundurs &
Stippes (1970) and extended to thermoelastic contact by Joachim-Ajao & Barber
(1998). It follows that all the physical quantities are linearly proportional to the
only non-zero parameter D̂ and that the time history of periods of contact and
separation is independent of this parameter. Realistic values of D̂ are small, since
this represents the initial axial compressive strain in the layer, but in view of the
linearity of the system, we select the condition D̂Z1, since results for other
values may then be easily extracted by a linear scaling.

The results are qualitatively different depending on whether V̂ is greater or
less than the TEI critical speed V̂ crZ2. For V̂O2, the quasi-static analysis has
no steady state, since (2.14) predicts physically unrealistic tensile contact
stresses and the perturbation analysis predicts a contact pressure that grows
monotonically without limit. This phenomenon has been reported before in
quasi-static TEI systems (Heckmann & Burton 1979; Ciavarella et al. 2003) and
is known as ‘thermoelastic seizure’. For the elastodynamic solution in this speed
range, two perturbation modes are unstable, one corresponding to a real growth
rate and one to a complex growth rate, as shown in figure 2. The transient
response therefore exhibits exponentially growing oscillations superposed on
monotonic growth and the detailed behaviour depends on the relative magnitude
of these terms. Figure 3 shows the evolution of the dimensionless contact
pressure p̂ðtÞZKŝð1; tÞ as a function of t, for gZ10K1 and V̂Z5; 10. For
V̂Z10, the monotonic growth (real root) dominates and the contact pressure
increases without limit without loss of contact, though the oscillation can be seen
clearly in figure 3. However, for V̂Z5, the amplitude of the oscillatory term
grows sufficiently to cause p̂ to fall to zero and the subsequent behaviour involves
alternating periods of contact and separation. In this phase, contact is governed
by the classical unilateral contact conditions of non-negative gap and non-
negative contact pressure. No special treatment is required for the impact
condition at the end of a separation period, since the resulting discontinuity of
local velocity leads only to a corresponding discontinuity in contact pressure, not
Proc. R. Soc. A (2006)
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to a singularity. The long time behaviour for V̂Z5 involves a series of impacts in
which both the maximum contact pressure and the time-averaged mean pressure
increase without limit, leading to a state of ‘oscillatory seizure’.

More interesting from an engineering perspective are speeds in the range
0!V̂!2, in which the quasi-static solution predicts a monotonic transition to
the steady state (2.14), but the elastodynamic solution predicts unstable growing
oscillations. Figure 4 shows the elastodynamic evolution of the dimensionless
contact pressure for gZ10K1 and V̂Z1. The transient results show an initial
trend similar to the quasi-static prediction, but also have a superposed oscillation
whose amplitude grows exponentially with time. Eventually, the contact
pressure falls to zero and the system undergoes alternating periods of contact
and separation, as shown in figure 4a.

In this speed range, separation has a stabilizing effect on the process, which
then tends asymptotically to a limit cycle. Figure 4b shows the envelope of the
maximum pressure reached in each cycle (and is a continuation of the dotted line
indicated in figure 4a to larger values of t).

Figure 5 shows three cycles of the fully established limit cycle for V̂Z1. Note
that the contact pressure exhibits a rapid (but not discontinuous) rise at the
beginning of the impact and a slower decay. The period between successive
impacts was found to be independent of V̂ and given by t0Z0:2 for gZ10K1.
This is of course to be expected, since it represents the time taken for a pressure
wave to propagate across the layer and be reflected back to the interface. This
criterion leads to the more general result t0Z2g.

(a ) Effect of speed

Similar results were obtained for other speeds in the range V̂!2, where the
quasi-static solution is stable. As the sliding speed is increased, the maximum
contact pressure pmax during the contact phase of the limit cycle increases
Proc. R. Soc. A (2006)
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substantially, as shown in figure 6a. However, the contact period tc decreases, so
the average contact pressure over the contact/separation cycle increases much
more slowly, as shown in figure 6b. For comparison, we also show in this figure
the steady-state contact pressure predicted by the quasi-static analysis (2.14).
The two curves are quite close until we approach the quasi-static critical speed,
implying that the limit cycle represents a nonlinear oscillation about the quasi-
static solution.

Figure 7a shows the length of the initial transient period tt, defined as the time
required for the maximum contact pressure to read 99% of its steady-state value.
For comparison, we also show the time it would take to reach this value if the
initial exponential growth were sustained throughout the process. This value,

t1 Z ln
p̂max

p̂ð0Þ

� �
ReðbÞ; ð3:3Þ
Proc. R. Soc. A (2006)
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is typically about 0:3tt as defined above. Also, in figure 7b, we show the duration
of the contact period tc in the steady state as a function of V̂ .

After each contact period, a predominantly compressive wave propagates
across the layer and is reflected at the fixed support without change in form.
However, during the separation period, heat flows out of the layer at the support
xZ0, but there is no corresponding heat input at the sliding interface. The
corresponding thermoelastic contraction implies that by the time the reflected
wave has just reached the sliding end, there is a non-zero gap and hence the first
part of this wave will reflect from the traction-free end as a tensile wave until
sufficient motion occurs to close the gap. Figure 8 shows the form of the pressure
wave in the steady state for V̂Z1 and a small tensile precursor region is clearly
visible.
4. Discussion

The results of this simple example demonstrate that a form of thermoelastody-
namic instability can occur at arbitrarily small speeds and, in particular, below
the quasi-static TEI critical speed. In fact, although the instability mechanism
depends on thermal expansion, the resulting vibration has more in common with
the phenomenon of brake squeal, since the thermomechanical coupling here
destabilizes the natural modes of the dynamic system, rather than establishing a
new modal set, as in conventional TEI analyses. It is therefore tempting to refer
to this phenomenon as ‘hot squeal’.

This mechanism of instability has not been identified previously in the
literature and it immediately prompts the question as to whether its effects might
be experimentally observable. Anyone who has conducted experiments on
systems involving sliding friction can attest to the fact that they are almost
invariable noisy (Duffour & Woodhouse 2004), but many competing models have
been proposed to account for this vibration, notably the reduction of friction
Proc. R. Soc. A (2006)
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coefficient with increasing sliding speed (Johnson 2001), the ‘sprag’ effect (Spurr
1961) and mode coupling due to structural anisotropy and the three-dimensional
Coulomb friction law (Moirot & Nguyen 2000). We should emphasize that none
of these effects are active in the present idealized model, which would be stable at
all speeds in the absence of thermal expansion.

A common feature observed in most experimental investigations of frictional
vibrations is motion of the system in the direction normal as well as tangential to
the sliding interface. This effect was first emphasized by Tolstoi (1967), who
attributed it to the dynamic effect of sliding over a rough surface. More recently
Martins et al. (1990) demonstrated theoretically that normal vibrations can
cause frictional (tangential) vibrations, but they were unable to propose a
justification for the occurrence and persistence of the normal vibration, on the
grounds that an arbitrarily small amount of normal damping would be sufficient
to suppress it. Tolstoi showed experimentally that an adequate level of normal
damping alone was sufficient to suppress frictional vibrations and that when this
was done, the coefficient of friction ceased to exhibit a decrease with sliding speed
(at least in the slow speed range of his experiments).
Proc. R. Soc. A (2006)
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The mechanism identified in the present paper provides a plausible
explanation for the persistence of self-excited normal vibrations and also predicts
that the amplitude of these vibrations increases with sliding speed—a result that
is consistent with Tolstoi’s experimental results. Tolstoi also argues that the
mean separation of the surfaces would increase with sliding speed, on the grounds
that the impulses at asperity interactions would increase in magnitude and have
a component in the normal direction due to the local surface slope. With the
present mechanism, no such argument is necessary to explain an increase in
mean separation, since it follows immediately as a consequence of an increase in
the amplitude of the contact vibration with speed.
5. Conclusions

In this paper, we have identified a new and simple mechanism for the occurrence
of frictional vibrations, in which thermomechanical coupling destabilizes the
lowest mode of natural vibration. This instability mechanism is distinct from
that known as TEI, as established, for example, using the HOTSPOTTER software
(Yi & Barber 2001). The transient behaviour is characterized by a flutter
instability at a frequency close to the first natural frequency of the elastodynamic
system and it leads ultimately to a limit cycle with alternating periods of contact
and separation also at this frequency.

The instability occurs regardless of the wide difference in time-scales of the
thermal and elastodynamic processes as characterized by the smallness of the
coupling parameter g. In fact, the system is predicted to be unstable for
arbitrarily small values of g.

The mechanism leads to vibrations normal to the sliding interface and
provides a plausible explanation for observations of such vibrations.
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Well-established numerical methods exist for the analysis of both squeal and
TEI instabilities. The present results provide cogent reasons for updating these
methods to include coupling between thermoelastic and elastodynamic effects.
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nale—Centre of Excellence in Computational Mechanics (CEMEC) and the Ph.D. program in
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sponsoring the visit to the University of Michigan, permitting also the completion of the present
work. Also, useful discussions about the numerical study with Profs G. Demelio and P. De Palma
are acknowledged.
Appendix A

When the layer is in contact (p̂O0), the transient problem is defined by
equations (2.9)–(2.11) with boundary conditions (2.7) and (2.8), while during
separation periods (2.8) is replaced by

ŝZ 0;
vT̂

vx
Z 0; at xZ 1; ðA 1Þ

and the transitions between contact and separation are governed by the
unilateral inequalities

p̂ðtÞhKsð1; tÞR0 ðcontactÞ; ðA 2Þ
uð1; tÞ%KD̂ ðseparationÞ: ðA 3Þ

The layer is discretized into n equal elements of length DxZ1=n, so that there
are (nK1) internal nodes. We also introduce a sequence of times tk at equal
intervals Dt. Equation (2.9) is discretized using the Crank–Nicolson implicit
scheme, which is unconditionally stable. We obtain

K
r

2
T̂

kC1
iC1 Cð1CrÞT̂kC1

i K
r

2
T̂

kC1
iK1 Z

r

2
T̂

k
iC1Cð1KrÞT̂k

i C
r

2
T̂

k
iK1; ðA 4Þ

where

r Z
Dt

Dx2
Zn2Dt: ðA 5Þ

This scheme makes use of trapezoidal differencing to achieve second-order
accuracy with truncation error of O½ðDtÞ2;Dx2�. However, a tridiagonal system of
linear algebraic equations must be solved at each new time-step and for this
purpose the Thomas algorithm (Thomas 1949) is used.

When the layer is in contact, boundary condition (2.8)(ii) can be discretized as

T̂
kC1
n KT̂

kC1
nK1

� �
CV̂ ûkC1

n KûkC1
nK1KDxT̂

kC1
n

� �
Z 0; ðA 6Þ

where we have used (2.11) to eliminate ŝ. The updating algorithm then requires
us to solve the system of algebraic equations

K
r

2
T̂

jC1
2 Cð1CrÞT̂ jC1

1 ZC1; ðA 7Þ

K
r

2
T̂

jC1
iC1 Cð1CrÞT̂ jC1

i K
r

2
T̂

jC1
iK1 ZCi; i Z 2;.;nK2; ðA 8Þ

1CrK
r=2

1KV̂Dx

� �
T̂

jC1
nK1 K

r

2
T̂

jC1
nK2 ZCnK1; ðA 9Þ
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where

C1 Z
r

2
T̂

j
2 Cð1KrÞT̂ j

1; ðA 10Þ

Ci Z
r

2
T̂

j
iC1Cð1KrÞT̂ j
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2
T̂

j
iK1; i Z 2;.; nK2; ðA 11Þ
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2
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j
nK2K

r

2

V̂ ûjC1
n Kû jC1

nK1

� �
1KV̂Dx

: ðA 12Þ

During separation periods, the same equations apply, except that the terms
involving V̂ drop from the boundary condition (2.8) and hence the modified
forms of (A 7)–(A 12) can be obtained by setting V̂Z0.

Eliminating ŝ from (2.10), we have

v2û

vx2
Kg2 v

2û

vt2
K

vT̂

vx
Z 0: ðA 13Þ

This equation is discretized using the Lax–Wendroff scheme (Lax & Wendroff
1960) for the derivatives of û, which has a truncation error of O½ðDtÞ2; ðDxÞ2�, and
a two-point finite-difference approximation for vT̂=vx. It is more convenient to
rewrite (A 13) as a system of coupled first-order conservative partial differential
equations by defining

ŵ Z
vû

vx
; ŝZg

vû

vt
; ðA 14Þ

from which

vŵ

vt
Z

1

g

vŝ

vx
; ðA 15Þ

vŝ

vt
Z

1

g

vŵ

vx
K

vT̂

vx

 !
; ðA 16Þ

vû

vt
Z

1

g
ŝ: ðA 17Þ

The functions ŵ and ŝ can then be udpated using the ‘one-level’ evolution
equations

ŵkC1
i Z ŵk

i C
b

2
½ðŝkiC1KŝkiK1ÞCbðŵk

iC1K2ŵk
i C ŵk

iK1Þ�; ðA 18Þ

ŝkC1
i Z ŝki C

b

2
½ðŵk

iC1Kŵk
iK1ÞCbðŝkiC1K2ŝki C ŝkiK1ÞKbðT̂k

iC1KT̂
k
i Þ�; ðA 19Þ

where bZDt=ðgDxÞ. This scheme is stable whenever b%1. However, numerical
dissipation errors are found when b is less than 1. For this reason, the numerical
simulations were performed for bZ1. Once the value of ŝkC1

i has been
calculated, the value of û can be integrated in time according to equation
(A 17), i.e.

ûkC1
j Z ûkj C

Dt

g
ŝkC1
i ; ðA 20Þ

where it should be noted that ûkC1
j has the same truncation error as ŵkC1

i and ŝkC1
i .

In all the examples, the layer was divided into 100 elements of equal length.
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