Cosmological Probes of Dark Energy

Dragan Huterer

Kavli Institute for Cosmological Physics University of Chicago The universe today presents us with a grand puzzle:

What makes up 95% of it?

Scandalously, we still don't know.

But we are working to get closer to the answer.

Makeup of universe today

Baryonic Matter (stars 0.4%, gas 3.6%)

Dark Matter (suspected since 1930s established since 1970s)

> Also: radiation (0.01%)

Friedmann Equation

$$H^{2} = \frac{8\pi G}{3}\rho - \frac{\kappa}{a^{2}}$$

define $\Omega \equiv \rho \frac{8\pi G}{3H^{2}} \equiv \frac{\rho}{\rho_{\text{crit}}}$

Inflation predicts, and **CMB** anisotropy indicates universe is flat (curvature is zero), so $\Omega_{TOT} = 1$ (or $\kappa = 0$)

Galaxy distribution indicates matter makes up 25% of critical density, so $\Omega_M\approx 0.25$

So where is 75% of the energy density?

Type Ia Supernovae

A white dwarf accretes matter from a companion.

SNe Ia are "Standard Candles"

If you know the intrinsic brightness of the headlights, you can estimate how far away the car is

(car headlights example)

A way to measure (relative) distances to objects far away

Brightness

Brightness

Days

Riess et al 1998; Perlmutter et al 1999

Dark Energy discovery from SNe la

Riess et al 1998; Perlmutter et al 1999

Dark Energy discovery from SNe la

Riess et al 1998; Perlmutter et al 1999

Dark Energy Parametrization

Distant Sne are dimmer than expected \Rightarrow the expansion of the universe is accelerating

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p)$$

so, pressure of dark energy is strongly negative

Equation of state ratio:
$$w = \frac{p_{\rm DE}}{\rho_{\rm DE}}$$

Energy density today (relative to critical): $\Omega_{\rm DE} = \frac{\rho_{\rm DE}}{\rho_{\rm crit}}$

For vacuum energy w = -1 $(G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu})$

Current constraints

Supernova Cosmology Project

 Ω_{Λ}

Fine Tuning Problems I: "Why Now?"

Dark Energy was much less important at earlier epochs. So why is it comparable to matter today?

$$\frac{\rho_{\rm DE}(z)}{\rho_{\rm M}(z)} = \frac{\Omega_{\rm DE}}{\Omega_M} (1+z)^{3w}$$

Fine Tuning Problems II: "Why so small"?

Vacuum Energy: QFT predicts it to be $\simeq M_{\rm cutoff}^4$

Measured: $(10^{-3} \text{eV})^4$ SUSY scale: $(1 \text{ TeV})^4$ Planck scale: $(10^{19} \text{ GeV})^4$ 60-120 orders of magnitude smaller than expected!

In other words:

$$\Lambda\left(\frac{\hbar G}{c^5}\right) \equiv \Lambda t_{\rm pl}^2 \approx \left(H_0^{-1}/t_{\rm pl}\right)^{-2} \sim 10^{-120}$$

The smallness problem

 $G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$

Is there a cancellation mechanism that sets vacuum energy to nearly but not precisely zero?

Is there a huge number of universes with different values of the CC, and we just happen to live in one that supports life? (Anthropic)

Alternatives to "pure" Cosmological Constant (CC)

Examples:

Modifications to Einstein's General Relativity (e.g. f(R) theories)

Extra Dimensions (gravity leaks to the 4th dimension)

Unified Dark Energy (Dark Matter, DE are a single fluid)

So far, without much success:

- the smallness (or CC) problem is typically not solved
- reliable predictions are difficult to compute
- Solar System constraints are stringent

A dynamical DE alternative: quintessence

Peebles & Ratra 1987; Freese, Frieman & Olinto 1990; Caldwell, Dave & Steinhardt 1998

S. Weinberg: ``Right now, not only for cosmology but for elementary particle theory, this is the bone in our throat"

F.Wilczek: ``... maybe the most fundamentally mysterious thing in all of basic science" E.Witten: ``... would be the number 1 on my list of things to figure out"

What do we do now?

S. Weinberg: ``Right now, not only for cosmology but for elementary particle theory, this is the bone in our throat"

F.Wilczek: ``... maybe the most fundamentally mysterious thing in all of basic science" E.Witten: ``... would be the number 1 on my list of things to figure out"

What do we do now?

We map out the expansion history as accurately as possible

Wish List

Goals:

Measure $\Omega_{\rm DE}, w$ Measure $\rho_{\rm DE}(z)$ or w(z)

$$w = \frac{p_{\rm DE}}{\rho_{\rm DE}}$$
$$\Omega_{\rm DE} = \frac{\rho_{\rm DE}}{\rho_{\rm crit}}$$

Measure any clustering of DE

Wish List

Goals:

Measure Ω_{DE}, w Measure $\rho_{DE}(z)$ or w(z)Measure any clustering of Γ

$$w = \frac{\rho_{\rm DE}}{\rho_{\rm DE}}$$
$$\Omega_{\rm DE} = \frac{\rho_{\rm DE}}{\rho_{\rm crit}}$$

 $m_{\mathbf{D}}$

Measure any clustering of DE

Difficulties:

w(z) enters the observables via integral relations

$$r(z) = \int_0^z \frac{dz'}{H(z')}$$
$$H^2(z) = H_0^2 \left[\Omega_M (1+z)^3 + \Omega_{DE} \exp\left(3\int_0^z (1+w(z'))d\ln(1+z')\right) \right]$$

DE clustering affects cosmology negligibly on scales $\ll H_0^{-1}$

Is dark energy the vacuum energy
$$(w(z) = -1)$$
?
Is $w(z) = \text{const}$?

Simplest ways to approach these questions:

$$w(z) = w_0 + w' z$$
$$w(z) = w_0 + w_a \frac{z}{1+z}$$

Cooray & Huterer 1999; Linder 2003

Two crucial questions:

Is dark energy the vacuum energy (w(z) = -1)? Is w(z) = const?

Simplest ways to approach these questions:

$$w(z) = w_0 + w' z$$
$$w(z) = w_0 + w_a \frac{z}{1+z}$$

Cooray & Huterer 1999; Linder 2003

Direct Reconstruction of w(z)

- The most general possible approach to constrain dark energy, but
- Very hard in practice: needs second derivative of (noisy) data
- Nevertheless, studied, refined and used by many authors

Huterer & Turner 1999

Direct Reconstruction: (parametric) example

Direct reconstruction of the equation of state leads to biases, or large errors, or both

Weller & Albrecht 2002

Principal Components of w(z)

These are best-to-worst measured linear combinations of w(z)

Uncorrelated by construction

- Shows where sensitivity of any given survey is greatest
- Used by various authors to study optimization of surveys
- Used to make model-(in)dependent statements about DE

Huterer & Starkman 2003

Principal Components of w(z)

Linder & Huterer 2005

Uncorrelated measurements of Dark Energy evolution

Huterer & Cooray 2005

Cosmological Probe

Cosmological Probes of Dark Energy

Cosmological Probes of Dark Energy

Cosmological Probes of Dark Energy

Weak Gravitational Lensing

<u>Credit: NASA, ESA and</u> <u>R. Massey (Caltech)</u>

Key advantage: measures distribution of matter, not light

Weak Gravitational Lensing

Credit: Colombi & Mellier

Weak Lensing and Dark Energy

Hu & Tegmark 1999, Huterer 2002

Refregier 2003

Bennett et al 2003 (WMAP collaboration)

CMB and Dark Energy

One linear combination of DE parameters is measured by the CMB

Hu 2001; Frieman, Huterer, Linder & Turner 2003

Upcoming Experiments

Planck South Pole Telescope LSST

Lots and lots of data coming our way

Dark Energy Survey

Blanco 4m telescope in Chile

Four techniques to probe Dark Energy:

- 1. Number Counts of clusters
- 2. Weak Lensing
- 3. SNe Ia
- 4. Angular clustering of galaxies

SuperNova/Acceleration Probe

~2500 SNe at 0.1<z<1.7

Visible (CCDs)

SNAP expected constraints

- 1. Unprecedented SNa Ia dataset
- 2. Weak Lensing (2pt, 3pt function; cosmography)
- 3. Huge amount of other science

(cluster counts, galaxy clustering, galaxy evolution, strong lensing, type II supernovae, GRBs,)

Upcoming dark energy probes: systematics control is key weak lensing example

- More powerful experiments need more stringent control of systematics
- Systematics requirements directly affect the experiment design and strategy

Weak Lensing Experimental Systematics: redshift errors

Weak Lensing Experimental Systematics: redshift errors

Ma, Hu & Huterer 2006; Huterer, Takada, Bernstein & Jain 2005

Weak Lensing Theory Systematics

Huterer & Takada 2005, Huterer & White 2005

Weak Lensing Theory Systematics

The glorious future

Say the systematics are taken care of, the future is now, and we have access to data from surveys

What else do we need to have at hand?

- Reliable predictions for classes of models and how to distinguish them
- Understanding how to separate DE from modified gravity
- Alternative, complementary probes of DE
- Sophisticated statistical methods for data mining

The glorious future

Say the systematics are taken care of, the future is now, and we have access to data from surveys

What else do we need to have at hand?

- Reliable predictions for classes of models and how to distinguish them
- Understanding how to separate DE from modified gravity
- Alternative, complementary probes of DE
- Sophisticated statistical methods for data mining

Cosmological implications of a dark energy model scan

Idea: test cosmological implications by considering all DE models within a given (large) class

- What constraints are obtained on w(z), rho(z) within this class? On w_0 and w_a ?
- Does the class of models itself significantly limit the range of DE histories?
- Is it worth spending \$\$\$ for future experiments, or have "all reasonable non-Lambda models already been ruled out"?

D. Huterer & H. Peiris, astro-ph/0610427

Scan through quintessence models

Adopting to DE the flow-equation formalism from inflation: Scan all (sample millions) of models, and ICs, within a general paradigm e.g. quintessence with polynomial potentials i2/2

$$w(z) = \frac{\dot{\phi}^2/2 - V(\phi)}{\dot{\phi}^2/2 + V(\phi)}$$

DE Monte Carlo algorithm

- Set the class of models you are considering
- \rightarrow Generate models using a wide range of ICs
 - For each model, compute the dark energy history w(z) and any other observables
 - Compute the likelihood of the model from data
 - • Repeat

Initial conditions prior: $\Omega_{DE}^{\text{start}} \in [0, 1]$

 $w^{\text{start}} \in [-1, 1]$ $\epsilon^{\text{start}} \in [0, \infty]$ $\eta^{\text{start}} \in [-\infty, \infty]$ + other cosmo parameters (+ higher slow roll parameters)

Scan through quintessence models

Also allows straightforward computation and constraints on the principal components, phase-space flows, figures of merit....

Reconstruction of w(z)

N.B. This scalar-field-model reconstruction is much more stable than the general non-parametric reconstruction

Generic behavior of scalar fields (??)

- Do scalar field models follow the freezing/thawing behavior?
- The claim was based on specific scalar field models

Caldwell & Linder 2005

Generic behavior of scalar fields (??)

Caldwell & Linder 2005

Conclusions

- Recent accelerated expansion of the universe is a great mystery of modern physics and cosmology
- Constraints on the expansion history are becoming tight; however, fundamental understanding is lacking
- Incredible amount of new data is starting to come in, sophisticated analytical, statistical and numerical methods are required
- We need a combination of experiments that are
 - ground and space probes,
 - expansion and growth probes,
 - linear and nonlinear theory

Are beyond-LCDM cases favored by the evidence?

E.g. for two extra parameters, D=2 $(\epsilon^{\text{start}}, \eta^{\text{start}})$

With current data, no evidence whatsoever for extra parameters

Dark Energy Monte-Carlo
scalar field reconstruction
$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV}{d\phi} = 0$$
 + Friedmann Equation

Potential is specified via "slow-roll" parameters

$$\epsilon = \frac{m_{\rm pl}^2}{16\pi} \left(\frac{V'}{V}\right)^2 \qquad \quad \ell \lambda = \left(\frac{m_{\rm pl}^2}{8\pi}\right)^\ell \frac{(V')^{\ell-1}}{V^\ell} \frac{d^{\ell+1}V}{d\phi^{\ell+1}}; \ \ell \ge 1$$

 $V(\phi) = V_0 \left[1 + A_1 \phi + A_2 \phi^2 + \ldots + A_{M+1} \phi^{M+1} \right]$
Cosmological data

- Current data
 - SNLS SNe (~115), includes low-z
 - WMAP: $\theta_A, \Omega_M h^2, \Omega_B h^2$
 - BAO (SDSS, distance to z=0.35)
 - Ho to 10% (Hubble Key Project)
- Future data centered on LCDM
 - SNAP SNe (\sim 2800) with systematics
 - Planck: $\theta_A, \Omega_M h^2, \Omega_B h^2$
 - BAO (10,000 sq. deg, 0.5 < z < 2.0)
 - H₀ to 5%