Figures of Merit for Dark Energy Measurements

Dragan Huterer

Department of Physics University of Michigan

What next for Dark Energy?

What next for Dark Energy?

Dark Energy constraints: current status

Kowalski et al., arXiv:0804.4142

Dark Energy constraints: current status

Zhao, Huterer & Zhang, arXiv:0712.2277

Figure of Merit: definition, history, current status

FoM: requirements

- FoM should show intrinsic power of any given cosmological probe OR individual experiment to measure the properties of DE
- FoM should be as robust as possible w.r.t. fiducial DE model
- Should try to intuitively capture quantities/concepts we like to measure (e.g. variation in time of w)
- It should clearly differentiate between experiments/probes in a way that agrees with overall assessment
- It should, ideally, be represented by one number!

In sum, finding a suitable FoM is neither easy nor is there a unique choice

Early work

"If we are using SNe Ia alone to determine the cosmological parameters, then we clearly want to minimize the area of the error ellipse."

volume of the ellipsoid : $V \propto \det(F)^{-1/2}$ where $F \equiv \left\langle -\frac{\partial^2 L}{\partial p_i \partial p_j} \right\rangle$

(Also showed how to get such a minimal-area/volume ellipse: for N cosmological parameters, need SNe located at N discrete, specific locations in z)

However, clearly there are other possibilities, e.g.:

" SN measurements will also be combined with other methods to determine cosmological parameters. A good example of the symbiosis is combining CMB measurements with those of SNe." -> thinnest ellipse

Huterer & Turner, PRD, 2001

Smallest ellipse, thinnest ellipse

Huterer & Turner, 2001

Currently accepted FoM: inverse area of ellipse in w_0 - w_a plane

DETF report; Albrecht et al 2006

DETF FoM - advantages and disadvantages

The currently accepted FoM is a very reasonable choice which captures essential ingredients and is easy to compute.

However, we should also be aware of its deficiencies:

- DETF FoM probably fails to capture success at measuring models with non-canonical variations in w(z) at late times
- It definitely fails to capture success at measuring early DE
- It does not address anything about modified gravity vs. DE
- It doesn't account for clustering of DE
- It's not designed to measure deviations from LCDM

Other proposals/options for the dark energy FoM

Principal Components of w(z)

These are best-to-worst measured linear combinations of w(z)

Uncorrelated by construction

- Shows where sensitivity of any given survey is greatest
- Used by various authors to study optimization of surveys
- Used to make model-(in)dependent statements about DE

Huterer & Starkman 2003

Principal Components of w(z)

Linder & Huterer 2005

Uncorrelated measurements of Dark Energy evolution

Huterer & Cooray 2005

Other proposals for the FoM: using uncorrelated bandpowers

FoM =
$$\prod_{i=1}^{N_{\text{bins}}} \frac{1}{\sigma(\tilde{w}_i)}$$

Albrecht & Bernstein 2006

FoM =
$$\left[\sum_{i=1}^{N_{\text{bins}}} \frac{1}{\sigma^2(\tilde{w}_i)}\right]^{1/2}$$

Sullivan, Sarkar, Joudaki, Amblard, Holz & Cooray 2007

How to parametrize modified gravity

1. Parametrize the gravitational potentials (and/or other metric, stress tensor variables) - _{Song 2006, Kunz & Sapone 2006, Jain & Zhang 2007, Amin et al 2007, Caldwell et al 2007, Hu 2008}

2. Parametrize the expansion and growth history separately; check consistency

Beyond measuring w(z), we can ask...

Dark Energy or Modified Gravity? $\ddot{\delta} + 2H\dot{\delta} - 4\pi\rho_M\delta = 0$ *Assuming smooth DE

- A given DE and modified gravity models may both fit the expansion history data very well
- But they will predict different structure formation history
- Linear growth is hard to compute even in fully well defined models for modified gravity (e.g. DGP)
- Nonlinear growth is much harder still to compute (c.f. this is a challenge even in GR!)

Strategy I: distance (z), growth(z) separately

Strategy II: (O_m, w₀, w_a) separately

Measure w0 and w1 for growth and distance, see if they agree

Ishak, Upadhye & Spergel 2005, others...

Strategy II.5: w separately, real data

Nice work, but current constraints are weak

Wang, Hui, May & Haiman, 2007

Strategy III: "Minimalist Modified Gravity"

$$g(a) \equiv \frac{\delta}{a} = \exp\left[\int_0^a d\ln a [\Omega_M(a)^\gamma - 1]\right]$$

Excellent fit to standard DE cosmology with

$$\gamma = 0.55 + 0.05 [1 + w(z = 1)]$$
 Linder 2005

- Gamma is a new parameter the growth index and we should measure it!
- E.g. fits DGP with value different from GR by $\Delta\gamma=0.13$
- For a moment, let us assume that the usual prescription for the nonlinear power spectrum is unchanged
- Apply to weak lensing and number counts; SNe and CMB remain unaffected

Huterer & Linder, astro-ph/0608681

Constraints on the growth index

	sig(wo)	sig(wa)	sig(gamma)
WL	0.33	1.16	0.23
+SNE	0.06	0.28	0.10
+Planck	0.06	0.21	0.044
+Clusters	0.05	0.16	0.037

WL: 1000 sqdeg (SNAP) SNe: 2800 SNe (SNAP) Clusters: 4000 sqdeg (SPT), dN/dz only, but mass-obs relation exact parameters: Ode, A, w0, wa, omhh, obhh, m_nu, gamma

Huterer & Linder, astro-ph/0608681

Effects of discarding the small-scale info in weak lensing

Using the Nulling Tomography of weak lensing (Huterer & White 2005)

We really need - a decision tree

- The data are now consistent with LCDM, but that may change
- If so, what observational strategies do we use to determine which violation of Occam's Razor has the nature served us?
- Possible alternatives:
 - w(z)
 - early DE

.....

- curvature != 0
- clustered DE
- modified gravity
- more than one of the above

Mortonson, Hu & Huterer, in preparation