The future of dark energy measurements

Dragan Huterer

University of Chicago

The future of dark energy measurements - p.1/39

Type Ia Supernovae

SN Ia Hubble diagram

Parameterizing Dark Energy

a

•
$$\Omega_{DE} \equiv \frac{\rho_{DE}(z=0)}{\rho_{crit}(z=0)}, \quad w \equiv \frac{p_{DE}}{\rho_{DE}}$$

• $H^2(z) = H_0^2 \left[\Omega_M (1+z)^3 + \Omega_{DE} (1+z)^{3(1+w)} \right]$ (flat)
• $d_L(z) = (1+z) \int_0^z \frac{dz'}{H(z')}$
• $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} (\rho_M + \rho_{DE} + 3p_{DE})$

Current Supernova Constraints

Fine-Tuning Problems I: "Why Now ?"

DE is important only at $z \leq 2$, since

 $\rho_{DE}/\rho_M \approx \frac{\Omega_{DE}}{\Omega_M} (1+z)^{3w} \quad \text{and} \quad w \lesssim -0.8$

Fine-Tuning Problems II: "Why so small ?"

• Refers to the vacuum energy, $\rho_{\Lambda} \equiv \frac{\Lambda}{8\pi G}$.

(recall
$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$
)

•
$$\rho_{\Lambda} \simeq (10^{-3} \,\mathrm{eV})^4 <<< (M_{\mathrm{PL}} = 10^{+19} \,\mathrm{GeV})^4$$

• \Rightarrow 50 – 120 orders of magnitude discrepancy!

Wish List

- Goals:
 - Measure Ω_{DE} , w
 - . Measure w(z) equivalently, $\rho_{DE}(z)$
 - Measure any clustering of DE

Wish List

- Goals:
 - Measure Ω_{DE} , w
 - . Measure w(z) equivalently, $\rho_{DE}(z)$
 - Measure any clustering of DE
- Difficulties:

$$r(z) = \int_0^z \frac{dz'}{H(z')}$$

$$H^2(z) = H_0^2 \left[\Omega_M (1+z)^3 + \Omega_{DE} \exp\left(3\int_0^z (1+\mathbf{w}(\mathbf{z}'))d\ln(1+z')\right) \right]$$

DE is smooth on scales $\ll H_0^{-1}$

Assuming $w(z) = w_0 + w'z$

Direct reconstruction of w(z) (or $\rho(z)$)

$$r(z) = \frac{1}{H_0} \int_0^z dz' \left[\Omega_M (1+z)^3 + \Omega_{DE} \exp\left(3\int_0^z (1+\mathbf{w}(\mathbf{z}'))d\ln(1+z')\right) \right]$$
$$1+w(z) = \frac{1+z}{3} \frac{3H_0^2 \Omega_M (1+z)^2 + 2(d^2r/dz^2)/(dr/dz)^3}{H_0^2 \Omega_M (1+z)^3 - (dr/dz)^{-2}}$$

Huterer and Turner 1999; Chiba and Nakamura 1999, Weller & Albrecht 2002

Principal Components of Dark Energy

Consider a general description of w (say, w_i in 50 redshift bins at $z \in [0, 1.7]$)

- Compute the covariance matrix
 for w_i (assuming some SN survey)
- Diagonalize the covariance matrix.
 Get best, worst measured linear combinations of w_i's.

•
$$w(z) = \sum_{i=1}^{50} \alpha_i e_i(z)$$

Huterer & Starkman 2003

Uncorrelated band powers of w(z)

Huterer & Cooray (2005), astro-ph/0404062

Uncorrelated band powers of $\rho_{\rm DE}(z)/\rho_{\rm DE}(0)$

Huterer & Cooray (2005), astro-ph/0404062

The central question:

ls w(z) = -1?

Is w(z) = -1?

NB. This test is not parameter-dependent.

Cosmological Tests of Dark Energy

Space: SNAP, WMAP, Planck

Ground: SPT, LSST

Ground: Pan-STARRS, DES

CMB Sensitivity to Dark Energy

Peak locations are sensitive to dark energy (but not much):

$$\frac{\Delta l_1}{l_1} = -0.084\Delta w - 0.23\frac{\Delta\Omega_M h^2}{\Omega_M h^2} + 0.09\frac{\Delta\Omega_B h^2}{\Omega_B h^2} + 0.089\frac{\Delta\Omega_M}{\Omega_M} - 1.25\frac{\Delta\Omega_{\text{TOT}}}{\Omega_{\text{TOT}}}$$

$$\int_{0}^{0} \int_{0}^{0} \int_{0}^{0}$$

Huterer & Turner 2001, Hu et al. 2001, Frieman et al. 2003

Weak Gravitational Lensing

Current Data and Constraints

Refregier 2003, Bacon et al. 2003

Weak Lensing and DE

Weak Lensing Systematics

Why work on this?

- The most powerful experiments (SNAP, and especially LSST) are likely to hit the systematic floor.
- Work on WL systematics is singled out as one of top priorities by various panels (e.g. SAGENAP)

Experimental systematics in WL

Our approach:

- Define and impose requirements on several generic types of error (i.e. multiplicative, additive, and redshift error)
- One can then use these to drive requirements on experiment-specific sources of the systematics (number of filters, depth of survey/galaxy size, atmosphere,...)

$$\hat{\gamma}(z_s) = \gamma \left(z_s + \delta z_p \right) \times \left[1 + f(z_s) \right] + \gamma_{\text{add}}(z_s)$$

Huterer, Takada, Bernstein, Jain (2005)

Degradations due to multiplicative errors

So, $\lesssim 1\%$ RELATIVE (but coherent) error in shear calibration is required.

PS+BS self-calibration

Huterer, Takada, Bernstein, Jain (2005)

Photometric Redshifts and Their Errors

Cunha, Lima, Oyaizu et al. (2005)

Degradations due to redshift errors

Ma, Hu & Huterer (2005)

Degeneracies with redshift errors

Ma, Hu & Huterer (2005)

Theoretical systematics in WL

Huterer & Takada, astro-ph/0412142

Required calibration of P(k)

Huterer & Takada, astro-ph/0412142; Heitmann et al. 2004

WL systematic control: Nonlinear Power

Need to run a suite of N-body simulations in (Ω_M , σ_8 , n, w, m_{ν} ,...)

Nulling Tomography with WL

Huterer & White, astro-ph/0501451

Nulling Tomography: cutting in k

$$C_{i}^{\kappa}(\ell) = \int_{0}^{\infty} dz \, \frac{W_{1}(z) \, W_{2}(z)}{r(z)^{2} \, H(z)} \, P\left(\frac{\ell}{r(z)}, z\right),$$
$$\simeq \sum_{k=1}^{N_{\text{planes}}} \tilde{W}_{ik} \quad \text{(i denotes a pair of redshift bins)}$$

$$\widetilde{\mathbf{W}} = \begin{pmatrix} \tilde{W}_{11} & \tilde{W}_{12} & \tilde{W}_{13} & \dots & \tilde{W}_{1N_P} \\ \tilde{W}_{21} & \tilde{W}_{22} & \tilde{W}_{23} & \dots & \tilde{W}_{2N_P} \\ \tilde{W}_{31} & \tilde{W}_{32} & \tilde{W}_{33} & \dots & \tilde{W}_{3N_P} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix} \sim \begin{pmatrix} \mathcal{W}_{11} & \mathcal{W}_{12} & \mathcal{W}_{13} & \dots & \mathcal{W}_{1N_P} \\ 0 & \mathcal{W}_{22} & \mathcal{W}_{23} & \dots & \mathcal{W}_{2N_P} \\ 0 & 0 & \mathcal{W}_{33} & \dots & \mathcal{W}_{3N_P} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Nulling Tomography: cutting in k

$$P(k,z) = P^{\text{true}}(k,z) \left[1 + \left(\frac{k}{k_*}\right)^3 \right]$$

Huterer & White, astro-ph/0501451

Extracting information from WL surveys

Vale and White 2003

Conclusions

- Dark energy constraints are getting better, although our understanding of it is not.
- Whether or not w(z) = -1 is shaping up as a central question.
- Identification and control of systematics, both experimental and theoretical, is crucial. More powerful experiments have more stringent systematic requirements.
- Bright prospects with ongoing and upcoming SNe, weak lensing, SZ, CMB surveys.