Dark Energy, Modified Gravity and The Accelerating Universe

Dragan Huterer

Kavli Institute for Cosmological Physics University of Chicago

Makeup of universe today

Baryonic Matter (stars 0.4%, gas 3.6%)

Dark Matter (suspected since 1930s established since 1970s)

> Also: radiation (0.01%)

DE status ~8 years after discovery

Measurements much better, LCDM still a good fit

Strong indirect (non-SNa Ia) evidence for DE from CMB+LSS

Physical mechanism responsible completely unknown

A lot of work on modified gravity proposals and observational signatures

Riess et al 1998; Perlmutter et al 1999

Current constraints

Supernova Cosmology Project

 Ω_{Λ}

What if gravity deviates from GR?

For example:

Modified gravity proposals

- Introduce modifications to GR (typically near horizon scale) to explain the observed acceleration of the universe
- Make sure Solar System tests are passed (can be hard)
- Constrain the MG theory using the cosmological data
- Try to distinguish MG vs. "standard" DE (can be hard!)

Example:
$$f(R)$$
 gravity
 $S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left[R + f(R)\right]$

- Einstein equations are now 4th order
- Two classes
 - f_{RR}<0 (never Matter Dominated, long range forces)
 - f_{RR}>0 (MD in the past, can evade Solar system tests)

Carroll, Duvvuri, Trodden, Turner 2005; Mena, Santiago & Weller 2006; Navarro & van Acoleyen 2006; Song, Hu & Sawicki 2006; many others....

Example: DGP braneworld theory

- 1 extra dimension ("bulk") in which only gravity propagates
- matter lives on the "brane"
- weakening of gravity at large distances = appearance of DE

Credit: Iggy Sawicki

Dvali, Gabadadze & Porrati 2000; Deffayet 2001

The structure of DGP

$$H^2 - \frac{H}{r_c} = \frac{8\pi G}{3}\rho$$

 r_c is a free parameter (to be consistent with observation, $r_c \sim 1/H_{0}$)

New scale
$$r_* = \left(r_g r_c^2\right)^{1/3}$$

Credit: Iggy Sawicki

Dvali, Gabadadze & Porrati 2000; Deffayet 2001

DGP linear growth

Lue, Scoccimarro & Starkman; Koyama & Maartens; Sawicki, Song & Hu

ISW in DGP

Song, Sawicki, & Hu 2007

So DGP is (almost) ruled out

- Disfavored at a few sigma from distances (SNe etc)
- Disfavored at a few more sigma from CMB ISW
- Decisive rule-out will come from ISW cross-correlation at high z:

Song, Sawicki, & Hu 2007

Dark Energy or Modified Gravity?

- A given DE and modified gravity models may both fit the expansion history data very well
- But they will predict different structure formation history, i.e. deviation from $\ddot{\delta} + 2H\dot{\delta} 4\pi\rho_M\delta = 0$

• In standard GR, H(z) determines distances and growth of structure

$$\dot{\delta} + 2H\dot{\delta} - 4\pi\rho_M\delta = 0$$

• So check if this is true by measuring separately

Distances (a.k.a. kinematic probes) (a.k.a. 0th order cosmology) Growth (a.k.a. dynamical probes) (a.k.a. 1st order cosmology)

Price of ignorance of MG

Huterer & Linder, astro-ph/0608681

Cosmological Probe

Cosmological Probes of Dark Energy (and Modified Gravity)

Kinematic probes: SNe Ia

• Get pure (luminosity) distances

Kinematic probes: CMB and BAO

Bennett et al 2003 (WMAP collaboration)

Structure formation probes: Galaxy cluster counts

• Essentially fully in the nonlinear regime (scales ~1 Mpc)

Structure formation probes: Weak Gravitational Lensing $P_{\rm shear} \simeq \int_{0}^{\infty} W(r) P_{\rm matter}(r) dr$

Credit: Colombi & Mellier

• Mostly in the nonlinear regime (scales ~10 arcmin, or ~1 Mpc)

1000

10000

More general approach

Measure the DE parameters from distances and growth separately

Ishak, Upadhye and Spergel 2006; others...

Still more general approach: measure functions r(z) and g(z) see if they are consistent

Knox, Song & Tyson 2005

Minimalist Modified Gravity vs. DE

Describe deviations from GR via a single new parameter

$$g(a) \equiv \frac{\delta}{a} = \exp\left[\int_0^a d\ln a [\Omega_M(a)^\gamma - 1]\right]$$

Excellent fit to standard DE growth function with

$$\gamma = 0.55 + 0.05[1 + w(z = 1)]$$

Also fits the DGP braneworld theory with $\Delta \gamma = 0.13$

Huterer & Linder, astro-ph/0608681 see also Linder & Cahn, astro-ph/0701317

Constraints on the growth index

	sig(wo)	sig(wa)	sig(gamma)
WL	0.33	1.16	0.23
+SNE	0.06	0.28	0.10
+Planck	0.06	0.21	0.044
+Clusters	0.05	0.16	0.037

Recall, for DGP $\Delta \gamma = 0.13$

Huterer & Linder, astro-ph/0608681

Discarding the small-scale info in weak lensing

Using the Nulling Tomography of weak lensing (Huterer & White 2005)

South Pole Telescope

Supernova/Acceleration Probe

Planck

LSST

Conclusions

- distinguishing dark energy from modified gravity is becoming one of the key goals of cosmology in years to come
- assuming nonlinear clustering that follows the usual prescription even with MG, we find that future probes can achieve very interesting constraints on this parameter
- restriction to linear scales severely degrades the errors, but well worth pursuing
- ambitious, general approach: measure functions r(z) and g(z), check if they are consistent
- minimalistic approach: measure a single parameter that describes departures between DE and MG
- bright future with upcoming powerful surveys

Caldwell, Cooray & Melchiorri, astro-ph/0703375

Physically motivated MG parametrization

Caldwell, Cooray & Melchiorri, astro-ph/0703375