Dark Energy, Modified Gravity
and
The Accelerating Universe

Dragan Huterer

Kavli Institute for Cosmological Physics
University of Chicago
Makeup of universe today

- **Dark Energy**
 - (suspected since 1980s, established since 1998)
 - 74%

- **Dark Matter**
 - (suspected since 1930s, established since 1970s)
 - 22%

- **Baryonic Matter**
 - (stars 0.4%, gas 3.6%)
 - 4%

- Also:
 - radiation (0.01%)
Some of the early history of the Universe is actually understood better!

Physics quite well understood

95% of contents only phenomenologically described
DE status ~8 years after discovery

Measurements much better, LCDM still a good fit

Strong indirect (non-SNa Ia) evidence for DE from CMB+LSS

Physical mechanism responsible completely unknown

A lot of work on modified gravity proposals and observational signatures

Riess et al 1998; Perlmutter et al 1999
Current constraints

\[\Omega_{\text{DE}} \approx 0.7 \]

Assuming constant \(w \)

With limits from:
2dFGRS (Hawkins et al. 2002) and CMB (Bennet et al. 2003, Spergel et al. 2003)

\[w = -1.05^{+0.15}_{-0.20} \text{ (statistical)} \]
\[\pm 0.09 \text{ (systematic)} \]
What if gravity deviates from GR?

For example:

\[H^2 - F(H) = \frac{8\pi G}{3} \rho, \quad \text{or} \quad H^2 = \frac{8\pi G}{3} \left(\rho + \frac{3F(H)}{8\pi G} \right) \]

Modified gravity

Dark energy
Modified gravity proposals

• Introduce modifications to GR (typically near horizon scale) to explain the observed acceleration of the universe

• Make sure Solar System tests are passed (can be hard)

• Constrain the MG theory using the cosmological data

• Try to distinguish MG vs. “standard” DE (can be hard!)
Example: f(R) gravity

\[S = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} \left[R + f(R) \right] \]

- Einstein equations are now 4th order
- Two classes
 - \(f_{RR} < 0 \) (never Matter Dominated, long range forces)
 - \(f_{RR} > 0 \) (MD in the past, can evade Solar system tests)

Carroll, Duvvuri, Trodden, Turner 2005; Mena, Santiago & Weller 2006; Navarro & van Acoleyen 2006; Song, Hu & Sawicki 2006; many others...
Example: DGP braneworld theory

- 1 extra dimension ("bulk") in which only gravity propagates
- matter lives on the "brane"
- weakening of gravity at large distances = appearance of DE

Credit: Iggy Sawicki

Dvali, Gabadadze & Porrati 2000; Deffayet 2001
The structure of DGP

\[H^2 - \frac{H}{r_c} = \frac{8\pi G}{3} \rho \]

\(r_c \) is a free parameter
(to be consistent with observation, \(r_c \sim 1/H_0 \))

New scale \(r_* = (r_gr_c^2)^{1/3} \)

Dvali, Gabadadze & Porrati 2000; Deffayet 2001
DGP linear growth

Growth relative to EdS

Scale factor

DE Mimicking
DGP expansion

DGP

LCDM

DGP→4D

Lue, Scoccimarro & Starkman; Koyama & Maartens; Sawicki, Song & Hu
ISW in DGP

Song, Sawicki, & Hu 2007
So DGP is (almost) ruled out

- Disfavored at a few sigma from distances (SNe etc)
- Disfavored at a few more sigma from CMB ISW
- Decisive rule-out will come from ISW cross-correlation at high z:

Song, Sawicki, & Hu 2007
Dark Energy or Modified Gravity?

• A given DE and modified gravity models may both fit the expansion history data very well

• But they will predict different structure formation history, i.e. deviation from

\[
\ddot{\delta} + 2H \dot{\delta} - 4\pi \rho_M \delta = 0
\]
• In standard GR, H(z) determines distances and growth of structure

\[\ddot{\delta} + 2H \dot{\delta} - 4\pi \rho_M \delta = 0 \]

• So check if this is true by measuring separately

Distances (a.k.a. kinematic probes) (a.k.a. 0th order cosmology)

Growth (a.k.a. dynamical probes) (a.k.a. 1st order cosmology)
Price of ignorance of MG

allows for modified gravity

neglects modified gravity having $\Delta \gamma = 0.1$

Huterer & Linder, astro-ph/0608681
Cosmological Probe

Redshift Coverage

CMB (out to z=1000)
- Galaxy clustering
- Cluster Counts
- Weak Lensing
- Baryon Oscillations
- Supernovae
Cosmological Probes of Dark Energy (and Modified Gravity)

- CMB (out to z=1000)
- Galaxy clustering
- Cluster Counts
- Weak Lensing
- Baryon Oscillations
- Supernovae
Kinematic probes: SNe Ia

- Get pure (luminosity) distances
Kinematic probes: CMB and BAO

\[T = 2.726 \text{ K} \]

\[\frac{\delta T}{T} \approx 10^{-5} \]

Bennett et al. 2003 (WMAP collaboration)
Structure formation probes: Galaxy cluster counts

\[
\frac{d^2 N}{d\Omega \, dz} = n(z) \frac{r(z)^2}{H(z)}
\]

Credit: Quinn, Barnes, Babul, Gibson

• Essentially fully in the nonlinear regime (scales ~1 Mpc)
Structure formation probes: Weak Gravitational Lensing

\[P_{\text{shear}} \approx \int_0^\infty W(r)P_{\text{matter}}(r)dr \]

- Mostly in the nonlinear regime (scales \(\sim 10 \text{ arcmin, or } \sim 1 \text{ Mpc}\))

Credit: Colombi & Mellier
More general approach

Measure the DE parameters from **distances** and **growth** separately

Ishak, Upadhye and Spergel 2006; others...
Still more general approach: measure functions $r(z)$ and $g(z)$ see if they are consistent

Knox, Song & Tyson 2005
Minimalist Modified Gravity vs. DE

Describe deviations from GR via a **single** new parameter

\[
g(a) \equiv \frac{\delta}{a} = \exp \left[\int_0^a d \ln a \left[\Omega_M(a)^\gamma - 1 \right] \right]
\]

Excellent **fit** to standard DE growth function with

\[
\gamma = 0.55 + 0.05 [1 + w(z = 1)]
\]

Also fits the DGP braneworld theory with \(\Delta \gamma = 0.13 \)

Huterer & Linder, astro-ph/0608681
see also Linder & Cahn, astro-ph/0701317
Cluster counts

Weak lensing tomography
Constraints on the growth index

<table>
<thead>
<tr>
<th></th>
<th>$\text{sig}(w_0)$</th>
<th>$\text{sig}(w_a)$</th>
<th>$\text{sig}(\gamma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL</td>
<td>0.33</td>
<td>1.16</td>
<td>0.23</td>
</tr>
<tr>
<td>+SNE</td>
<td>0.06</td>
<td>0.28</td>
<td>0.10</td>
</tr>
<tr>
<td>+Planck</td>
<td>0.06</td>
<td>0.21</td>
<td>0.044</td>
</tr>
<tr>
<td>+Clusters</td>
<td>0.05</td>
<td>0.16</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Recall, for DGP $\Delta \gamma = 0.13$
Discarding the small-scale info in weak lensing

Using the Nulling Tomography of weak lensing (Huterer & White 2005)
Conclusions

• distinguishing dark energy from modified gravity is becoming one of the key goals of cosmology in years to come

• assuming nonlinear clustering that follows the usual prescription even with MG, we find that future probes can achieve very interesting constraints on this parameter

• restriction to linear scales severely degrades the errors, but well worth pursuing

• ambitious, general approach: measure functions $r(z)$ and $g(z)$, check if they are consistent

• minimalistic approach: measure a single parameter that describes departures between DE and MG

• bright future with upcoming powerful surveys
Physically motivated MG parametrization

$$ds^2 = a^2(\tau) \left[-(1 + 2\psi) d\tau^2 + (1 - 2\phi) d\vec{x}^2 \right]$$

$$\psi = (1 + \varpi)\phi \quad \text{and assume} \quad \varpi = \varpi_0 \frac{\rho_{DE}}{\rho_M}$$

Caldwell, Cooray & Melchiorri, astro-ph/0703375
Physically motivated MG parametrization

CMB-galaxy cross-correlation

Weak lensing power spectrum

Caldwell, Cooray & Melchiorri, astro-ph/0703375