Multipole Vectors and the CMB Sky

Dragan Huterer

Case Western Reserve University

with Craig Copi, Glenn Starkman (astro-ph/0310511)

WMAP ILC map

Bennett et al. 2003

"....answered old questions and raised new..."

Bennett et al. 2003, Tegmark et al. 2003

"...answered old questions and raised new..."

Eriksen et al. 2003

$$\frac{\delta T}{T}(\theta,\phi) = \sum_{l,m} a_{lm} Y_{lm}(\theta,\phi), \qquad C_{\ell} \equiv \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

$$\frac{\delta T}{T}(\theta,\phi) = \sum_{l,m} a_{lm} Y_{lm}(\theta,\phi), \qquad C_{\ell} \equiv \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

$$\sum_{m=-\ell}^{\ell} a_{lm} Y_{lm}(\theta, \phi) = A^{(\ell)} \left(\hat{v}^{(\ell,1)} \cdot \hat{e} \right) \cdots \left(\hat{v}^{(\ell,\ell)} \cdot \hat{e} \right)$$

$$``a_{i_1...i_l}^{(\ell)} \leftrightarrow A^{(l)} \left[\hat{v}^{(\ell,1)} \otimes \hat{v}^{(\ell,2)} \otimes \dots \hat{v}^{(\ell,\ell)} \right]''$$

$$\frac{\delta T}{T}(\theta,\phi) = \sum_{l,m} a_{lm} Y_{lm}(\theta,\phi), \qquad C_{\ell} \equiv \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

$$\sum_{m=-\ell}^{\ell} a_{lm} Y_{lm}(\theta, \phi) = A^{(\ell)} \left(\hat{v}^{(\ell,1)} \cdot \hat{e} \right) \cdots \left(\hat{v}^{(\ell,\ell)} \cdot \hat{e} \right)$$

$$``a_{i_1...i_l}^{(\ell)} \leftrightarrow A^{(l)} \left[\hat{v}^{(\ell,1)} \otimes \hat{v}^{(\ell,2)} \otimes \dots \hat{v}^{(\ell,\ell)} \right]''$$

 $\ell^{\rm th}$ order equations? Fortunately, can peel off one vector at a time \rightarrow coupled quadratic equations.

WMAP's Multipole Vectors

Accuracy in determining MVs

Hypothesis:

 $\langle a_{\ell m} a^*_{\ell' m'} \rangle = C_{\ell} \, \delta_{\ell \ell'} \, \delta_{m m'}$

Hypothesis:

 $\langle a_{\ell m} a^*_{\ell' m'} \rangle = C_{\ell} \, \delta_{\ell \ell'} \, \delta_{m m'}$

Ferreira, Magueijo & Gorski 1998

Hypothesis:

 $\langle a_{\ell m} a^*_{\ell' m'} \rangle = C_{\ell} \, \delta_{\ell \ell'} \, \delta_{m m'}$

Tests:

• $|\hat{v}^{(\ell_1,i)} \cdot \hat{v}^{(\ell_2,j)}|$

Hypothesis:

 $\langle a_{\ell m} a^*_{\ell' m'} \rangle = C_{\ell} \, \delta_{\ell \ell'} \, \delta_{m m'}$

Tests:

- $|\hat{v}^{(\ell_1,i)} \cdot \hat{v}^{(\ell_2,j)}|$
- $|\hat{v}^{(\ell_1,i)} \cdot (\hat{v}^{(\ell_2,j)} \times \hat{v}^{(\ell_2,k)})|$

Hypothesis:

$$\langle a_{\ell m} a^*_{\ell' m'} \rangle = C_{\ell} \, \delta_{\ell \ell'} \, \delta_{m m'}$$

Tests:

- $|\hat{v}^{(\ell_1,i)} \cdot \hat{v}^{(\ell_2,j)}|$
- $|\hat{v}^{(\ell_1,i)} \cdot (\hat{v}^{(\ell_2,j)} \times \hat{v}^{(\ell_2,k)})|$
- $|(\hat{v}^{(\ell_1,i)} \times \hat{v}^{(\ell_1,j)}) \cdot (\hat{v}^{(\ell_2,k)} \times \hat{v}^{(\ell_2,m)})|$

WMAP Ranks relative to MC maps

Ranks of Products of Multipole Vectors										
	Vector-Vector		Vector-Cross			Cross-Cross		Oriented Area		
(ℓ_1,ℓ_2)	M	Rank	M	(ℓ_1,ℓ_2) Rank	(ℓ_2,ℓ_1) Rank	M	Rank	M	Rank	
(2, 3)	6	0.30085	6, 3	0.03881	0.02663	3	0.02851	3	0.00437	
(2, 4)	8	0.44821	12, 4	0.40617	0.28697	6	0.64002	6	0.70802	
(2, 5)	10	0.86384	20,5	0.91952	0.12703	10	0.34211	10	0.96408	
(2, 6)	12	0.49091	30, 6	0.39465	0.88406	15	0.79848	15	0.83726	
(2, 7)	14	0.26945	42, 7	0.58516	0.74222	21	0.90614	21	0.97656	
(2, 8)	16	0.52924	56, 8	0.47201	0.80074	28	0.94728	28	0.90320	
(3, 4)	12	0.21693	18, 12	0.77938	0.27641	18	0.16803	18	0.32075	
(3, 5)	15	0.18173	30, 15	0.37847	0.80930	30	0.36049	30	0.66510	
(3, 6)	18	0.29579	45, 18	0.27379	0.54152	45	0.74466	45	0.92840	
(3, 7)	21	0.99128	63, 21	0.86604	0.54870	63	0.57494	63	0.75950	
(3, 8)	24	0.74998	84, 24	0.98974	0.64684	84	0.99994	84	0.99800	
(4, 5)	20	0.44103	40, 30	0.28163	0.83108	60	0.54514	60	0.50828	
(4, 6)	24	0.71024	60, 36	0.57400	0.87122	90	0.74174	90	0.63144	
(4, 7)	28	0.86308	84, 42	0.52634	0.93646	126	0.52980	126	0.88500	
(4, 8)	32	0.49009	112, 48	0.55776	0.85588	168	0.84710	168	0.99034	
(5, 6)	30	0.82896	75,60	0.41045	0.90076	150	0.66392	150	0.82894	
(5, 7)	35	0.86748	105, 70	0.55802	0.95898	210	0.59690	210	0.68370	
(5, 8)	40	0.85286	140, 80	0.97216	0.33791	280	0.30357	280	0.24739	
(6, 7)	42	0.03659	126, 105	0.14563	0.02445	315	0.19767	315	0.97232	
(6, 8)	48	0.93586	168, 120	0.91310	0.77020	420	0.73614	420	0.63374	
(7, 8)	56	0.03285	196, 168	0.04175	0.02303	588	0.09505	588	0.25041	

WMAP Ranks relative to MC maps

We use the following statistic:

$$Q(x_1, \dots, x_N) = N! \int_{x_1}^1 dy_1 \int_{x_2}^{y_1} dy_2 \dots \int_{x_N}^{y_{N-1}} dy_N$$

For uniform random *y*'s, this is equal to

Probability $[(y_1 > x_1) \text{ AND } (y_2 > x_2) \text{ AND } \dots \text{ AND } (y_N > x_N)]$

Final Probability

• ranks $2 \le (\ell_1, \ell_2) \le 8$ are unusual at the level of 4 parts in a 1000 (12 in a 1000 for ILC map)

• ranks $2 \le (\ell_1, \ell_2) \le 8$ are unusual at the level of 4 parts in a 1000 (12 in a 1000 for ILC map)

Varying the Multipole Coverage						
ℓ_{\min}	$Q_{ m WMAP}$	$f(Q_{\rm MC} < Q_{\rm WMAP})$				
2	9.00×10^{-8}	4/1000				
3	2.11×10^{-6}	10/1000				
4	$3.18 imes 10^{-4}$	70/1000				
$\ell_{ m max}$	$Q_{ m WMAP}$	$f(Q_{\rm MC} < Q_{\rm WMAP})$				
8	9.00×10^{-8}	4/1000				
7	$1.26 imes 10^{-5}$	20/1000				
6	$3.42 imes 10^{-3}$	193/1000				

- ranks $2 \le (\ell_1, \ell_2) \le 8$ are unusual at the level of 4 parts in a 1000 (12 in a 1000 for ILC map)
- Dust, random-gaussian contamination

- ranks $2 \le (\ell_1, \ell_2) \le 8$ are unusual at the level of 4 parts in a 1000 (12 in a 1000 for ILC map)
- Dust, random-gaussian contamination
- Out skies

- ranks $2 \le (\ell_1, \ell_2) \le 8$ are unusual at the level of 4 parts in a 1000 (12 in a 1000 for ILC map)
- Dust, random-gaussian contamination
- Cut skies
- Other work (Park, Eriksen et al.), but relation unclear

http://www.phys.cwru.edu/projects/mpvectors/

Multipole Vectors and the CMB Sky - p.17/1