Understanding the Properties of Dark Energy in the Universe

Dragan Huterer

Case Western Reserve University

The Cosmic Food Pyramid

Type Ia Supernovae

The time series of spectra is a "CAT Scan" of the Supernova

Discovering SNe Ia

Recent Supernova data

$$m - M = 5 \log \left(\frac{d_L(z, \Omega_M, \Omega_{DE})}{10 \,\mathrm{pc}} \right)$$

Parameterizing Dark Energy

•
$$\Omega_{DE} \equiv \frac{\rho_{DE}(z=0)}{\rho_{\text{crit}}(z=0)}, \quad w \equiv \frac{p_{DE}}{\rho_{DE}}$$

•
$$H^2(z) = H_0^2 \left[\Omega_M (1+z)^3 + \Omega_{DE} (1+z)^{3(1+w)} \right]$$
 (flat)

•
$$d_L(z) = (1+z) \int_0^z \frac{dz'}{H(z')}$$

•
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho_M + \rho_{DE} + 3p_{DE})$$

Parameterizing Dark Energy

•
$$\Omega_{DE} \equiv \frac{\rho_{DE}(z=0)}{\rho_{crit}(z=0)}, \quad w \equiv \frac{p_{DE}}{\rho_{DE}}$$

• $H^2(z) = H_0^2 \left[\Omega_M (1+z)^3 + \Omega_{DE} (1+z)^{3(1+w)} \right]$ (flated by $d_L(z) = (1+z) \int_0^z \frac{dz'}{H(z')}$
• $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} (\rho_M + \rho_{DE} + 3p_{DE})$
• w may be varying:

 $\exp\left[3\int_0^z (1+w(z'))d\ln(1+z')\right]$

Current Supernova Constraints

Fine-Tuning Problems I: "Why Now ?"

DE is important only at $z \leq 2$, since

 $\rho_{DE}/\rho_M \approx \frac{\Omega_{DE}}{\Omega_M} (1+z)^{3w} \quad \text{and} \quad w \lesssim -0.8$

Fine-Tuning Problems II: "Why so small ?"

• Refers to the vacuum energy, $\rho_{\Lambda} \equiv \frac{\Lambda}{8\pi G}$.

(recall
$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$
)

•
$$\rho_{\Lambda} \simeq (10^{-3} \,\mathrm{eV})^4 <<< (M_{\mathrm{PL}} = 10^{+19} \,\mathrm{GeV})^4$$

• \Rightarrow 50 – 120 orders of magnitude discrepancy!

A candidate: Quintessence

Classical Tests

Wish List

- Goals:
 - Measure Ω_{DE} , w
 - . Measure w(z) equivalently, $\rho_{DE}(z)$
 - Measure any clustering of DE
- Difficulties:

$$r(z) = \int_0^z \frac{dz'}{H(z')}$$

$$H^2(z) = H_0^2 \left[\Omega_M (1+z)^3 + \Omega_{DE} \exp\left(3\int_0^z (1+\mathbf{w}(\mathbf{z'}))d\ln(1+z')\right) \right]$$

DE may cluster at scales $\sim H_0^{-1}$

Cosmological Tests of Dark Energy

Weak Gravitational Lensing

Current Data and Constraints

Refregier 2003, Bacon et al. 2003

Weak Lensing and DE

$$P_{l}^{\kappa} = \frac{2\pi^{2}}{l^{3}} \int_{0}^{z_{s}} dz W_{1}(z) \Delta^{2} \left(\frac{l}{r(z)}; z\right)$$

Hu 1999, Huterer 2002, Refregier et al. 2003

Weak Lensing and DE

Deeper and Wider

Huterer 2002

Number Counts

Number Counts

 Count clusters using X-ray, SZ, weak lensing...

$$\frac{dN}{dzd\Omega}(z) = \left[\frac{dV}{dzd\Omega}(z)\int_{M_{\min}(z)}^{\infty} dM\frac{dn}{dM}\right]$$
$$\frac{r^{2}(z)}{H(z)}$$

Mass-observable relation

Haiman, Mohr & Holder 2001, Majumdar & Mohr 2003

Cosmic Microwave Background Anisotropie

Bennett et al. 2003 (WMAP collaboration)

CMB Sensitivity to Dark Energy

Peak locations are sensitive to dark energy (but not much):

$$\frac{\Delta l_1}{l_1} = -0.084\Delta w - 0.23\frac{\Delta\Omega_M h^2}{\Omega_M h^2} + 0.09\frac{\Delta\Omega_B h^2}{\Omega_B h^2} + 0.089\frac{\Delta\Omega_M}{\Omega_M} - 1.25\frac{\Delta\Omega_{\rm TOT}}{\Omega_{\rm TOT}}$$

- Same as measurement of $d_A(z \approx 1000)$ with $\Omega_M h^2$ fixed
 - End up constraining: $\mathcal{D} \equiv \Omega_M - 0.28(1+w) \approx 0.3$ (Planck: \mathcal{D} to $\sim 10\%$)

Huterer & Turner 2001, Frieman et al. 2003

SNe plus CMB

constant w

 $w(z) = w_0 + z(dw/dz)$

Frieman, Huterer, Linder & Turner 2003

CMB-LSS cross-correlation

$$\Delta T^{\rm ISW}(\hat{\mathbf{n}}) = -2 \int_0^{\eta_{\rm rec}} d\eta' \, \frac{d\Phi(\eta')}{d\eta'}$$

CMB-LSS cross-correlation

$$\Delta T^{\text{ISW}}(\hat{\mathbf{n}}) = -2 \int_{0}^{\eta_{\text{rec}}} d\eta' \, \frac{d\Phi(\eta')}{d\eta'}$$
$$\langle TX(\theta) \rangle = \frac{\sum_{\theta_{ij}=\theta} X_i T_j \, \mathbf{w}_i \mathbf{w}_j}{\sum_{\theta_{ij}=\theta} \mathbf{w}_i \mathbf{w}_j}$$

Boughn, Crittenden & Turok 1997

CMB-LSS cross-correlation

Boughn, Crittenden & Turok 1997, Scranton et al. 2003

Strong Gravitational Lensing

Strong Lensing Statistics

$$\tau = \int_0^{z_s} dz_l \frac{dD_l}{dz_l} (1+z_l)^3 \times \int_0^\infty dL \frac{d\phi}{dL} (L) \,\sigma(L,z_l,z_s) B(L,z_l,z_s)$$

Required input:

- Cosmology $(\Omega_M, \Omega_{DE}, w)$
- Luminosity function (galaxies)
 Or mass function (all halos)
- Density profile of lenses

 e.g. SIS: $\rho(r) \propto r^{-2}$ or generalized NFW: $\rho(r) \propto r^{-\beta}$
- Magnification bias $B(L, z_l, z_s)$

Kochanek 1993, 1996, Cooray & Huterer 1999, Chae 2003, Davis, Huterer & Krauss 2003, Kuhlen, Keeton & Madau 2003

Strong Lensing Statistics

$$\tau = \int_0^{z_s} dz_l \frac{dD_l}{dz_l} \left(1 + z_l\right)^3 \times \int_0^\infty dL \frac{d\phi}{dL}(L) \,\sigma(L, z_l, z_s) B(L, z_l, z_s)$$

Required input:

- Cosmology $(\Omega_M, \Omega_{DE}, w)$
- Luminosity function (galaxies)
 Or mass function (all halos)
- Density profile of lenses

 e.g. SIS: $\rho(r) \propto r^{-2}$ or generalized NFW: $\rho(r) \propto r^{-\beta}$
- Magnification bias $B(L, z_l, z_s)$

Huterer & Ma 2003

Beyond w = const

•
$$w(z) = w_0 + w'(z - z_1)$$

 $w(z) = w_0 + w_1 \frac{z}{1 + z}$

Beyond w = const

•
$$w(z) = w_0 + w'(z - z_1)$$

 $w(z) = w_0 + w_1 \frac{z}{1 + z}$

• Principal Components of w(z)

Huterer & Starkman 2003

Reconstruction of w

$$1 + w(z) = \frac{1+z}{3} \frac{3H_0^2 \Omega_M (1+z)^2 + 2(d^2 r/dz^2)/(dr/dz)^3}{H_0^2 \Omega_M (1+z)^3 - (dr/dz)^{-2}}$$

Huterer and Turner 1999; Chiba and Nakamura 1999, Weller & Albrecht 2002

Requirements

Understanding the Properties of Dark Energy in the Universe - p.28/3

SuperNova/Acceleration Probe

ET VERIT

UC Berkeley: M. Bester, E. Commins, G. Goldhaber, S. Harris, P. Harvey, H. Heetderks, M. Lampton, D. Pankow, M. Sholl, G. Smoot

U. Michigan: C. Akerlof, D. Levin, T. McKay, S. McKee, M. Schubnell, G. Tarle, A. Tomasch

Yale: C. Baltay, W. Emmet, J. Snyder, A. Szymkowiak, D. Rabinowitz, N. Morgan

CalTech: R. Ellis, J. Rhodes, R. Smith, K. Taylor

Indiana: C. Bower, N. Mostek, J. Musser, S. Mufson

JHU / STScI: R. Bohlin, A. Fruchter

U. Penn: G. Bernstein

IN2P3/INSU (France): P. Astier, E. Barrelet, J-F. Genat, R.Pain, D. Vincent

U. Stockholm: R. Amanullah, L. Bergström, M. Eriksson, A. Goobar, E. Mörtsell

LAM** (France): S. Basa, A. Bonissent, A. Ealet, D. Fouchez, J-F. Genat, R. Malina, A. Mazure, E. Prieto, G. Smajda, A. Tilquin

FNAL**: S. Allam, J. Annis, J. Beacom, L. Bellantoni, G. Brooijmans, M. Crisler, F. DeJongh, T. Diehl, S. Dodelson, S. Feher, J. Frieman, L. Hui, S. Jester, S. Kent, H. Lampeitl, P. Limon, H. Lin, J. Marriner, N. Mokhov, J. Peoples, I. Rakhno, R. Ray, V. Scarpine, A. Stebbins, S. Striganov, C. Stoughton, B. Tschirhart, D. Tucker

*affiliated institution ** pending

Mirror and Focal Plane

SNAP predicted constraints

Weak Lensing with SNAP

Understanding the Properties of Dark Energy in the Universe - p.35/3

Joint Dark Energy Mission

Paul Hertz / NASA Robin Staffin / DOE

Endorsed by

Raymond L. Orbach Director of the Office of Science Department of Energy September 24, 2003

Edward J. Weiler Associate Administrator for Space Science NASA September 25, 2003

Understanding the Properties of Dark Energy in the Universe - p.36/3

Conclusions

- Dark energy makes up ~ 70% of energy density in the universe.
 It is smooth and has negative pressure.
- We describe it via Ω_{DE} and w.
- It affects cosmology by modifying the expansion rate H(z) at recent times ($z \leq 2$).
- SNe Ia, weak lensing and number counts are most promising probes; variety of other methods can help.
- Bright prospects with future wide-field surveys (SNAP, LSST, SPT,...)
- But to understand DE, major insights will be needed from theorists.
 This will be especially hard if w(z) = -1!