Understanding the Properties of Dark Energy in the Universe

Dragan Huterer

Case Western Reserve University

The Cosmic Food Pyramid

Type Ia Supernovae

The time series of spectra is a "CAT Scan" of the Supernova

maximum

Discovering SNe Ia

Supernova 1998ba Supernova Cosmology Project

Recent Supernova data

$$
m-M=5 \log \left(\frac{d_{L}\left(z, \Omega_{M}, \Omega_{D E}\right)}{10 \mathrm{pc}}\right)
$$

Parameterizing Dark Energy

- $\Omega_{D E} \equiv \frac{\rho_{D E}(z=0)}{\rho_{\text {crit }}(z=0)}, \quad w \equiv \frac{p_{D E}}{\rho_{D E}}$
- $H^{2}(z)=H_{0}^{2}\left[\Omega_{M}(1+z)^{3}+\Omega_{D E}(1+z)^{3(1+w)}\right]$
(flat)
- $d_{L}(z)=(1+z) \int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}$
- $\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}\left(\rho_{M}+\rho_{D E}+3 p_{D E}\right)$

Parameterizing Dark Energy

- $\Omega_{D E} \equiv \frac{\rho_{D E}(z=0)}{\rho_{\text {crit }}(z=0)}, \quad w \equiv \frac{p_{D E}}{\rho_{D E}}$
- $H^{2}(z)=H_{0}^{2}\left[\Omega_{M}(1+z)^{3}+\Omega_{D E}(1+z)^{3(1+w)}\right]$
- $d_{L}(z)=(1+z) \int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}$
- $\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}\left(\rho_{M}+\rho_{D E}+3 p_{D E}\right)$
- w may be varying:

$$
\exp \left[3 \int_{0}^{z}\left(1+w\left(z^{\prime}\right)\right) d \ln \left(1+z^{\prime}\right)\right]
$$

Current Supernova Constraints

Supernova Cosmology Project

Supernova Cosmology Project Knop et al. (2003)

Assuming constant w

With limits from;
2dFGRS (Hawkins et al. 2002) and CMB (Bennet et al. 2003,

Spergel et al. 2003)

$$
\begin{aligned}
w=-1.05 & { }_{-0.20}^{+0.15} \text { (statistical) } \\
& \pm 0.09 \text { (systematic) }
\end{aligned}
$$

Fine-Tuning Problems I: "Why Now ?"

DE is important only at $z \lesssim 2$, since
$\rho_{D E} / \rho_{M} \approx \frac{\Omega_{D E}}{\Omega_{M}}(1+z)^{3 w} \quad$ and $\quad w \lesssim-0.8$

Fine-Tuning Problems II: "Why so small ?"

- Refers to the vacuum energy, $\rho_{\Lambda} \equiv \frac{\Lambda}{8 \pi G}$.
(recall $G_{\mu \nu}+\Lambda g_{\mu \nu}=8 \pi G T_{\mu \nu}$)
- $\rho_{\Lambda} \simeq\left(10^{-3} \mathrm{eV}\right)^{4} \lll\left(M_{\mathrm{PL}}=10^{+19} \mathrm{GeV}\right)^{4}$
- $\Rightarrow 50$ - 120 orders of magnitude discrepancy!

A candidate: Quintessence

$$
\ddot{\phi}+3 H \dot{\phi}+V_{, \phi}=0
$$

Peebles \& Ratra 1987, Caldwell, Dave \& Steinhardt 1998

Classical Tests

Wish List

- Goals:
- Measure $\Omega_{D E}, w$
- Measure $w(z)$ - equivalently, $\rho_{D E}(z)$
- Measure any clustering of DE
- Difficulties:

$$
\begin{aligned}
r(z) & =\int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)} \\
H^{2}(z) & =H_{0}^{2}\left[\Omega_{M}(1+z)^{3}+\Omega_{D E} \exp \left(3 \int_{0}^{z}\left(1+\mathrm{w}\left(\mathbf{z}^{\prime}\right)\right) d \ln \left(1+z^{\prime}\right)\right)\right]
\end{aligned}
$$

DE may cluster at scales $\sim H_{0}^{-1}$

Cosmological Tests of Dark Energy

Tegmark 2001

Weak Gravitational Lensing

deflection of light rays crossing the universe, emitted by distant galaxies

Current Data and Constraints

Refregier 2003, Bacon et al. 2003

Weak Lensing and DE

$$
P_{l}^{\kappa}=\frac{2 \pi^{2}}{l^{3}} \int_{0}^{z_{s}} d z W_{1}(z) \Delta^{2}\left(\frac{l}{r(z)} ; z\right)
$$

Hu 1999, Huterer 2002, Refregier et al. 2003

Weak Lensing and DE

$$
P_{l}^{\kappa}=\frac{2 \pi^{2}}{l^{3}} \int_{0}^{z_{s}} d z W_{1}(z) \Delta^{2}\left(\frac{l}{r(z)} ; z\right)
$$

Hu 1999, Huterer 2002, Refregier et al. 2003

Deeper and Wider

Huterer 2002

Number Counts

Number Counts

- Count clusters using X-ray, SZ, weak lensing...
- $\frac{d N}{d z d \Omega}(z)=\left[\frac{d V}{d z d \Omega}(z) \int_{M_{\min }(z)}^{\infty} d M \frac{d n}{d M}\right]$
- $\frac{r^{2}(z)}{H(z)}$
- Mass-observable relation

Haiman, Mohr \& Holder 2001, Majumdar \& Mohr 2003

Cosmic Microwave Background Anisotropie

Bennett et al. 2003 (WMAP collaboration)

CMB Sensitivity to Dark Energy

Peak locations are sensitive to dark energy (but not much):

$$
\frac{\Delta l_{1}}{l_{1}}=-0.084 \Delta w-0.23 \frac{\Delta \Omega_{M} h^{2}}{\Omega_{M} h^{2}}+0.09 \frac{\Delta \Omega_{B} h^{2}}{\Omega_{B} h^{2}}+0.089 \frac{\Delta \Omega_{M}}{\Omega_{M}}-1.25 \frac{\Delta \Omega_{\mathrm{TOT}}}{\Omega_{\mathrm{TOT}}}
$$

- Same as measurement of $d_{A}(z \approx 1000)$ with $\Omega_{M} h^{2}$ fixed
- End up constraining:
$\mathcal{D} \equiv \Omega_{M}-0.28(1+w) \approx 0.3$
(Planck: \mathcal{D} to $\sim 10 \%$)

Huterer \& Turner 2001, Frieman et al. 2003

SNe plus CMB

constant w

$$
w(z)=w_{0}+z(d w / d z)
$$

Frieman, Huterer, Linder \& Turner 200

CMB-LSS cross-correlation

$$
\Delta T^{\mathrm{ISW}}(\hat{\mathbf{n}})=-2 \int_{0}^{\eta_{\mathrm{rec}}} d \eta^{\prime} \frac{d \Phi\left(\eta^{\prime}\right)}{d \eta^{\prime}}
$$

CMB-LSS cross-correlation

$$
\Delta T^{\mathrm{ISW}}(\hat{\mathbf{n}})=-2 \int_{0}^{\eta_{\mathrm{rec}}} d \eta^{\prime} \frac{d \Phi\left(\eta^{\prime}\right)}{d \eta^{\prime}}
$$

$$
\sum X_{i} T_{j} \mathrm{w}_{i} \mathrm{w}_{j}
$$

$$
\langle T X(\theta)\rangle=\frac{\theta_{i j}=\theta}{\sum_{\theta_{i j}=\theta} \mathrm{w}_{i} \mathrm{w}_{j}}
$$

Boughn, Crittenden \& Turok 1997

CMB-LSS cross-correlation

$\Delta T^{\mathrm{ISW}}(\hat{\mathbf{n}})=-2 \int_{0}^{\eta_{\mathrm{rec}}} d \eta^{\prime} \frac{d \Phi\left(\eta^{\prime}\right)}{d \eta^{\prime}}$
$\sum X_{i} T_{j} \mathrm{w}_{i} \mathrm{w}_{j}$

$$
\langle T X(\theta)\rangle=\frac{\theta_{i j}=\theta}{\sum_{\theta_{i j}=\theta} \mathrm{w}_{i} \mathrm{w}_{j}}
$$

Boughn, Crittenden \& Turok 1997, Scranton et al. 2003

Strong Gravitational Lensing

Strong Lensing Statistics

$$
\tau=\int_{0}^{z_{s}} d z_{l} \frac{d D_{l}}{d z_{l}}\left(1+z_{l}\right)^{3} \times \int_{0}^{\infty} d L \frac{d \phi}{d L}(L) \sigma\left(L, z_{l}, z_{s}\right) B\left(L, z_{l}, z_{s}\right)
$$

Required input:

- Cosmology $\left(\Omega_{M}, \Omega_{D E}, w\right)$
- Luminosity function (galaxies) or mass function (all halos)
- Density profile of lenses e.g. SIS: $\quad \rho(r) \propto r^{-2}$ or generalized NFW: $\quad \rho(r) \propto r^{-\beta}$
- Magnification bias $B\left(L, z_{l}, z_{s}\right)$

Kochanek 1993, 1996, Cooray \& Huterer 1999, Chae 2003, Davis, Huterer \& Krauss 2003, Kuhlen, Keeton \& Madau 2003

Strong Lensing Statistics

$$
\tau=\int_{0}^{z_{s}} d z_{l} \frac{d D_{l}}{d z_{l}}\left(1+z_{l}\right)^{3} \times \int_{0}^{\infty} d L \frac{d \phi}{d L}(L) \sigma\left(L, z_{l}, z_{s}\right) B\left(L, z_{l}, z_{s}\right)
$$

Required input:

- Cosmology $\left(\Omega_{M}, \Omega_{D E}, w\right)$
- Luminosity function (galaxies) or mass function (all halos)
- Density profile of lenses
e.g. SIS: $\quad \rho(r) \propto r^{-2}$ or generalized NFW: $\quad \rho(r) \propto r^{-\beta}$
- Magnification bias $B\left(L, z_{l}, z_{s}\right)$

Huterer \& Ma 2003

Beyond $w=$ const

- $w(z)=w_{0}+w^{\prime}\left(z-z_{1}\right)$

$$
w(z)=w_{0}+w_{1} \frac{z}{1+z}
$$

Beyond $w=$ const

- $w(z)=w_{0}+w^{\prime}\left(z-z_{1}\right)$

$$
w(z)=w_{0}+w_{1} \frac{z}{1+z}
$$

- Principal Components of $w(z)$

Huterer \& Starkman 2003

Reconstruction of w

$$
1+w(z)=\frac{1+z}{3} \frac{3 H_{0}^{2} \Omega_{M}(1+z)^{2}+2\left(d^{2} r / d z^{2}\right) /(d r / d z)^{3}}{H_{0}^{2} \Omega_{M}(1+z)^{3}-(d r / d z)^{-2}}
$$

Huterer and Turner 1999; Chiba and Nakamura 1999, Weller \& Albrecht 2002

Requirements

Science

- Measure Ω_{M} and Λ
- Measure w and $w(z)$

Statistical Requirements

- Sufficient (~2000) numbers of SNe Ia
- ...distributed in redshift
- ...out to $z<1.7$

Systematics

 RequirementsIdentified \& proposed systematics:

- Measurements to eliminate / bound each one to $+/-0.02 \mathrm{mag}$

Data Set

Requirements

- Discoveries 3.8 mag before max.
- Spectroscopy with $\mathrm{S} / \mathrm{N}=10$ at $15 \AA$ bins.
- Near-IR spectroscopy to $1.7 \mu \mathrm{~m}$.
:

Satellite / Instrumentation
Requirements

- ~2-meter mirror
- 1 -square degree imager
- 3-channel spectrograph ($0.3 \mu \mathrm{~m}$ to $1.7 \mu \mathrm{~m}$)

Derived requirements:

- High Earth orbit
- $\sim 5 \mathrm{Mb} / \mathrm{sec}$ bandwidth
:

SuperNova/Acceleration Probe

H. Oluseyi, N. Palaio, S. Perlmutter, K. Robinson, A. Spadafora H. von der Lippe, J-P.

UC Berkeley: M. Bester, E. Commins, G. Goldhaber, S. Harris, P. Harvey, H. Heetderks, M. Lampton, D. Pankow, M. Sholl, G. Smoot
U. Michigan: C. Akerlof, D. Levin, T. McKay, S. McKee, M. Schubnell, G. Tarle, A. Tomasch

Yale: C. Baltay, W. Emmet, J. Snyder, A. Szymkowiak, D. Rabinowitz, N. Morgan
CalTech: R. Ellis, J. Rhodes, R. Smith, K. Taylor
Indiana: C. Bower, N. Mostek, J. Musser, S. Mufson
JHU / STScI: R. Bohlin, A. Fruchter
U. Penn: G. Bernstein

IN2P3/INSU (France): P. Astier, E. Barrelet, J-F. Genat, R.Pain, D. Vincent
U. Stockholm: R. Amanullah, L. Bergström, M. Eriksson, A. Goobar, E. Mörtsell

LAM *** (France): S. Basa, A. Bonissent, A. Ealet, D. Fouchez, J-F. Genat, R. Malina, A. Mazure, E. Prieto, G. Smajda, A. Tilquin

FNAL**: S. Allam, J. Annis, J. Beacom, L. Bellantoni, G. Brooijmans, M. Crisler, F. DeJongh, T. Diehl, S. Dodelson, S. Feher, J. Frieman, L. Hui, S. Jester, S. Kent, H. Lampeitl, P. Limon, H. Lin, J. Marriner, N. Mokhov, J. Peoples, I. Rakhno, R. Ray, V. Scarpine, A. Stebbins, S. Striganov, C. Stoughton, B. Tschirhart, D. Tucker
*affiliated institution
** pending

Mirror and Focal Plane

SNAP $\begin{gathered}\text { Auper } \mathrm{Al} \text { Aleva } \\ \text { Acration }\end{gathered}$

SNAP predicted constraints

Dark Energy
Unknown Component, Ω_{u}, of Energy Density

SNAP Satellite Target Statistical Uncertainty

Weak Lensing with SNAP

GREAT OBSERVATORIES

Paul Hertz / NASA Robin Staffin / DOE

Endorsed by

Edward J. Weiler
Associate Administrator for Space Science
NASA
September 25, 2003

Conclusions

- Dark energy makes up $\sim 70 \%$ of energy density in the universe. It is smooth and has negative pressure.
- We describe it via $\Omega_{D E}$ and w.
- It affects cosmology by modifying the expansion rate $H(z)$ at recent times $(z \lesssim 2)$.
- SNe la, weak lensing and number counts are most promising probes; variety of other methods can help.
- Bright prospects with future wide-field surveys (SNAP, LSST, SPT,...)
- But to understand DE, major insights will be needed from theorists. This will be especially hard if $w(z)=-1$!

