Mysteries of the large-angle microwave sky

Dragan Huterer

Physics Department University of Michigan

Collaborators:

Craig Copi (CWRU), Dominik Schwarz (Bielefeld), Glenn Starkman (CWRU) Chris Gordon, Wayne Hu, Tom Crawford (Chicago) Universe becomes _ transparent (t=380,000 yrs)

- Radiation finally free to propagate - universe has become cool enough for atoms to form
- The Cosmic Microwave Background radiation we observe has been released at this time
- Temp = 3000 Kelvin (2.725 Kelvin today)
- Uniform to one part in 100,000

T=2.725 Kelvin

As seen by Penzias & Wilson (1963)

Fluctuations I part in 100,000 (of 2.725 Kelvin)

As seen by Wilkinson Microwave Anisotropy Probe (2003-present)

The CMB: The Surface of Last Scattering

We are at the center of `last scattering surface'

 We see the cold/hot spot pattern on the (microwave) sky

Image From http://map.gsfc.nasa.gov

The cosmic microwave background Radiation's "surface of last scatter" is analogous to the light coming through the clouds to our eye on a cloudy day. We can only see the surface of the cloud where light was last scattered

The CMB Spot Sizes Are A "Standard Ruler"

CMB Map provides a fingerprint of the cosmological model

A "Cosmological Rosetta Stone"

The cosmic Rosetta Stone

Class	Parameter	$WMAP$ 5-year ML^a	WMAP+BAO+SN ML	WMAP 5-year Mean ^b	WMAP+BAO+SN Mean
Primary	$100\Omega_b h^2$	2.268	2.263	2.273 ± 0.062	2.265 ± 0.059
	$\Omega_c h^2$	0.1081	0.1136	0.1099 ± 0.0062	0.1143 ± 0.0034
	Ω_{Λ}	0.751	0.724	0.742 ± 0.030	0.721 ± 0.015
	n_s	0.961	0.961	$0.963^{+0.014}_{-0.015}$	$0.960^{+0.014}_{-0.013}$
	Τ	0.089	0.080	0.087 ± 0.017	0.084 ± 0.016
	$\Delta^2_{\mathcal{R}}(k_0^{\ e})$	2.41×10^{-9}	2.42×10^{-9}	$(2.41 \pm 0.11) \times 10^{-9}$	$(2.457^{+0.092}_{-0.093}) \times 10^{-9}$
Derived	σ_8	0.787	0.811	0.796 ± 0.036	0.817 ± 0.026
	H_0	72.4 km/s/Mpc	70.3 km/s/Mpc	$71.9^{+2.6}_{-2.7}$ km/s/Mpc	$70.1 \pm 1.3 \text{ km/s/Mpc}$
	Ω_b	0.0432	0.0458	0.0441 ± 0.0030	0.0462 ± 0.0015
	Ω_c	0.206	0.230	0.214 ± 0.027	0.233 ± 0.013
	$\Omega_m h^2$	0.1308	0.1363	0.1326 ± 0.0063	0.1369 ± 0.0037
	$z_{\rm reion}^{f}$	11.2	10.5	11.0 ± 1.4	10.8 ± 1.4
	t_0^g	13.69 Gyr	13.72 Gyr	$13.69 \pm 0.13 \text{ Gyr}$	$13.73 \pm 0.12 \text{ Gyr}$

Section	Name	Type	WMAP 5-year	WMAP+BAO+SN
§ 3.2	Gravitational Wave ^a	No Running Ind.	$r < 0.43^{b}$	r < 0.20
§ 3.1.3	Running Index	No Grav. Wave	$-0.090 < dn_s/d \ln k < 0.019^c$	$-0.0728 < dn_s/d \ln k < 0.0087$
§ 3.4	Curvature ^d		$-0.063 < \Omega_k < 0.017^e$	$-0.0175 < \Omega_k < 0.0085^f$
	Curvature Radius ^g	Positive Curv.	$R_{\rm curv} > 12 \ h^{-1} { m Gpc}$	$R_{\rm curv} > 23 \ h^{-1}{\rm Gpc}$
		Negative Curv.	$R_{\rm curv} > 23 \ h^{-1}{\rm Gpc}$	$R_{\rm curv} > 33 \ h^{-1}{\rm Gpc}$
§ 3.5	Gaussianity	Local	$-9 < f_{NL}^{\text{local}} < 111^{h}$	N/A
		Equilateral	$-151 < f_{NL}^{equil} < 253^{i}$	N/A
§ 3.6	Adiabaticity	Axion	$\alpha_0 < 0.16^{j}$	$\alpha_0 < 0.067^k$
		Curvaton	$\alpha_{-1} < 0.011^{l}$	$\alpha_{-1} < 0.0037^m$
§ 4	Parity Violation	Chern-Simons ⁿ	$-5.9^{\circ} < \Delta \alpha < 2.4^{\circ}$	N/A
§ 5	Dark Energy	Constant w^o	$-1.37 < 1 + w < 0.32^{p}$	-0.11 < 1 + w < 0.14
		Evolving $w(z)^q$	N/A	$-0.38 < 1 + w_0 < 0.14^r$
§ 6.1	Neutrino Mass ^s		$\sum m_{\nu} < 1.3 \text{ eV}^t$	$\sum m_{\nu} < 0.61 \text{ eV}^{u}$
§ 6.2	Neutrino Species		$N_{\rm eff} > 2.3^{v}$	$N_{\rm eff} = 4.4 \pm 1.5^w \ (68\%)$

How does the universe look at largest observable scales?

ILC map, WMAP collaboration

Outline

Motivation and overview of concurrent findings

Multipole Vectors

Large-scale alignments

Various explanations

Future prospects and conclusions

Low power on large scales

Spergel et al 2003: 0.2% of sims have less power at angles >60 deg

l=2, 3 are aligned and planar

$$\hat{L}_{\ell}^{2} \equiv \frac{\sum_{m=-\ell}^{\ell} m^{2} |a_{\ell m}|^{2}}{\ell^{2} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^{2}}$$

l=3 is planar: P~1/20

l=2,3 is are aligned: $P \sim 1/60$

de Oliveira-Costa, Tegmark, Zaldarriaga & Hamilton 2004

N/S power asymmetry

South (ecliptic) has more power than north

Eriksen et al 2004; Hansen, Banday and Gorski 2004

Multipole vectors!

Spherical Harmonics:

$$\frac{\delta T}{T}(\theta,\phi) = \sum_{l,m} a_{lm} Y_{lm}(\theta,\phi), \qquad C_{\ell} \equiv \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

Multipole Vectors:

$$\sum_{m=-\ell}^{\ell} a_{lm} Y_{lm}(\theta, \phi) = A^{(\ell)} \left(\mathbf{v}_{1}^{(\ell)} \cdot \mathbf{e} \right) \cdots \left(\mathbf{v}_{\ell}^{(\ell)} \cdot \mathbf{e} \right)$$

$$``a_{i_{1}...i_{l}}^{(\ell)} \leftrightarrow A^{(l)} \left[\mathbf{v}_{1}^{(\ell)} \otimes \mathbf{v}_{2}^{(\ell)} \otimes \dots \mathbf{v}_{\ell}^{(\ell)} \right]''$$

Lth multipole <=> L (headless) vectors, plus a constant

Copi, Huterer & Starkman 2003; <u>http://www.phys.cwru.edu/projects/mpvectors/</u>

Theorem: Every homogeneous polynomial *P* of degree ℓ in *x*, *y* and *z* may be written as

$$P(x, y, z) = \lambda \cdot (a_1 x + b_1 y + c_1 z) \cdot (a_2 x + b_2 y + c_2 z) \dots \cdot (a_\ell x + b_\ell y + c_\ell z) + (x^2 + y^2 + z^2) \cdot R$$

where *R* is a homogeneous polynomial of degree $\ell - 2$. The decomposition is unique up to reordering and rescaling the linear factors.

Example (Y_{20}) :

$$P(x,y) = x^{2} + y^{2} - 2z^{2}$$

= -3(z)(z) + (x^{2} + y^{2} + z^{2})(1)

Katz & Weeks, astro-ph/0405631

Multipole vectors of our sky

Copi, Huterer & Starkman 2003

Maxwell's multipole vectors

Potential of:

Dipole: $\nabla_{\mathbf{v_1}} \frac{1}{r} = -\frac{\mathbf{v_1} \cdot \mathbf{r}}{r^3}$ Quadrupole: $\nabla_{\mathbf{v_2}} \nabla_{\mathbf{v_1}} \frac{1}{r} = \frac{3(\mathbf{v_1} \cdot \mathbf{r})(\mathbf{v_2} \cdot \mathbf{r}) - r^2(\mathbf{v_1} \cdot \mathbf{v_2})}{r^5}$

l'th multipole:
$$\nabla \mathbf{v}_{\ell} \dots \nabla_{\mathbf{v}_2} \nabla_{\mathbf{v}_1} \frac{1}{r}$$

$v_1 \dots v_\ell$ are the multipole vectors

Maxwell 1892; Weeks 2004

Why multipole vectors?

- A different representation of the CMB sky than the spherical harmonics, related highly non-linearly
- Ideally suited for looking for planarity/directionality
- Many interesting properties, theorems (Katz & Weeks 2004, Weeks 2005, Lachieze-Rey 2004, Dennis 2005...)
- (Reviewed in Copi, Huterer, Schwarz & Starkman astro-ph/0508047)

Also: discussed by J.C. Maxwell in his "Treatise on Electricity and Magnetism" in 1892!!

Normals to multipole vectors

 $\mathbf{w}_{ij}^{(\ell)} \equiv \pm \left(\mathbf{v}_i^{(\ell)} imes \mathbf{v}_j^{(\ell)}
ight)$

"oriented areas"

L=3

L=2

L=2+3 alignments

Schwarz, Starkman, Huterer & Copi 2004

Alignments found at L=2, 3

- The four area vectors are mutually close (99.0-99.9% CL)
- They lie close to ecliptic plane (98%-99% CL)
- They lie close to equinoxes and dipole (99.8% CL)
- Ecliptic plane carefully separates weak from strong extrema (93%-99.6% CL)

Axis of evil: (b, l)=(60, -100)

l=5 in galactic coordinates

Land & Magueijo 2005

L=5, gal frame

Preferred-axis vectors at 2<=L<=5 are unusually close (99.9% CL)

L=5, AOE frame

Systematic checks: sky cut

Errors increase sharply, but results consistent with full-sky result

Copi, Huterer, Schwarz & Starkman 2006

Systematic checks: foreground missubtraction

Adding (known) foregrounds leads to galactic, and not ecliptic, alignments

What about COBE?

Using COBE MCMC maps from Wandelt, Larson & Lakshminarayanan 2003

Copi, Huterer, Schwarz & Starkman 2006

4 classes of explanations:

- Astrophysical (e.g. an object or other source of radiation in the Solar System)
 - BUT: we think we know the Solar System. It would need to be a large source and undetected in data cross-checks.
- Instrumental (e.g. there is something wrong with WMAP instrument measuring CMB at large scales)
 - BUT: the instruments have been extremely well calibrated and checked. Plus, why would they pick out the Ecliptic plane?
- Cosmological (e.g. some property of the universe inflation or dark energy for example – that we do not understand)
 - This is the most exciting possibility. BUT: why would the new/unknown physics pick out the Ecliptic plane?
- These alignments are a pure fluke!
 - BUT: they are <0.1% likely!</p>

Example: non-linear detector

Suppose that the WMAP detectors are slightly (1%) nonlinear

 $T_{\rm obs}(\hat{\mathbf{n}}) = T(\hat{\mathbf{n}}) + \alpha_2 T(\hat{\mathbf{n}})^2 + \alpha_3 T(\hat{\mathbf{n}})^3 + \dots$

The biggest signal on the sky is the dipole

 $T(\hat{\mathbf{n}}) = 3.3mK\cos(\theta)$

So with $\alpha_2 \sim \alpha_3 \sim 10^{-2}$, dipole anisotropy is modulated into a 10^{-5} quadrupole and octopole with m = 0 in the dipole frame.

Sadly: doesn't work since would have been seen when observing $\sim 1K$ sources (in lab, Jupiter, etc).

Gordon, Hu, Huterer & Crawford 2006

Example: Spontaneous Isotropy Breaking

 To explain/model the apparent lack of isotropy on largest scales seen by WMAP

Modulates the CMB anisotropy through the ISW effect Nonlinear modulation \Rightarrow a range of multipoles affected

Gordon, Hu, Huterer & Crawford 2006

Additive schemes "don't work" $\hat{T}(\hat{\mathbf{n}}) = T_{intr}(\hat{\mathbf{n}}) + T_{extra}(\hat{\mathbf{n}})$

Double (likelihood) penalty:

- Intrinsic sky is less likely than observed
- Requires a chance cancellation

True for all additive schemes: Solar System contamination, Bianchi models, etc

Multiplicative modulation can work

- $\hat{T}(\hat{\mathbf{n}}) = T(\hat{\mathbf{n}}) \left[1 + w(\hat{\mathbf{n}})\right]$
- $w(\hat{\mathbf{n}}) \propto Y_{20}(\hat{\mathbf{n}})$ example

Best-fit L=1,2 multiplicative modulation from WMAP 123

Spergel et al, 2006

Low power on large scales

Spergel et al 2003: 0.2% of sims have less power at angles >60 deg

Copi, Huterer, Schwarz & Starkman astro-ph/0605135

Copi, Huterer, Schwarz & Starkman astro-ph/0605135

Future data and prospects

- WMAP is probably as good as it will get on large scales (as seen in year 1 vs year 123)
- Nevertheless, understanding of fine details is improving and is crucial.
- Planck will provide a great check of these measurements (very different experiment)
- Polarization maps with relatively high S/N, when eventually available, will provide even more leverage.
- The level of expected polarization "alignments" is model dependent
- In principle, can map out largest-scale fluctuations from wide-field, large-volume large-scale structure surveys (e.g. LSST; Zhan, Knox et al 2005)

Conclusions

- Alignments with the ecliptic plane and/or dipole are sufficiently significant to be very interesting despite the a posteriori nature of these observations
- No convincing explanations so far
- Other observed anomalies (N/S asymmetry, L=4-6 etc) very intriguing and possibly related
- Multipole vectors are a great tool to study alignments and directionalities in the CMB
- Pixel-space C(theta) low at 99.97% CL even more than in year 1

Reading/review references

CMB alignments (short) review: Huterer, New Astronomy Reviews 50, 868 (2006), www.arxiv.org/abs/astro-ph/0608318

CMB alignments (long) review and tests: Copi, Huterer, Schwarz & Starkman MNRAS, 367, 79 (2006), www.arxiv.org/abs/astro-ph/0508047

Popular articles:

G. Starkman and D. Schwarz, Scientific American, August 2005

D. Huterer, Astronomy, Dec. 2007 (also off my web site)