Is the large-angle CMB anomalous?

Dragan Huterer Physics Department University of Michigan [On sabbatical at MPA and Excellence Cluster, Jan-Aug 2015]

based mostly on work with Copi, Schwarz & Starkman (2004-2014) **review in** Copi et al, Adv. Astro., 847531 (2010), arXiv:1004.5602

WMAP angular power spectrum

Philosophy:

Anomalies are almost always *a posteriori* nature – they are not (*a priori*) predicted

Not every 'anomaly' is equally compelling: in this talk, the **largest-scale** anomalies

Summary:

1. Angular 2-pt function $C(\theta)$ vanishes for $\theta \ge 60 \text{ deg}$ 2. Quadrupole and octopole are unusually planar, and the plane is nearly perpendicular to some special directions on the sky

Missing Large-Angle Power

Power at θ≈60 deg vanishes in cut-sky maps

Low power: COBE and WMAP

Spergel et al 2003: 0.2% of sims have less power at angles >60 deg

$S_{1/2}$ statistic: (Spergel et al 2003)

 $S_{1/2} \equiv \int_{-1}^{1/2} [C(\theta)]^2 d(\cos \theta)$

	U74		KQ75y9			
Map	$S_{1/2} \; (\mu { m K})^4$	$p\left(\% ight)$	$S_{1/2} \; (\mu { m K})^4$	p (%)		
WMAP ILC 7yr	1620.3	0.208	1247.0	0.090		
WMAP ILC 9yr	1677.5	0.232	1311.8	0.109		
<i>Planck</i> SMICA	1606.3	0.202	1075.5	0.053		
Planck NILC	1618.6	0.208	1096.2	0.058		
<i>Planck</i> SEVEM	1692.4	0.239	1210.5	0.082		
<i>WMAP W</i> 7yr	1839.0	0.304	1128.5	0.064		
WMAP W 9yr	1864.2	0.317	1138.3	0.066		
Planck HFI 100	1707.5	0.245	916.3	0.028		
<i>WMAP V</i> 7yr	1829.2	0.300	1276.2	0.099		
WMAP V 9yr	1840.4	0.304	1268.8	0.097		
Planck LFI 70	1801.7	0.287	1282.1	0.101		

(frequentist) significance $\geq 99.7\%$ in all cases

Remarkably consistent across experiments, frequencies, foreground cleanings:

Summary of missing-power statistics

	$S_{1/2} \equiv \int_{-1}^{1/2} \left[\mathcal{C}(\theta) \right]^2 \mathrm{d}(\cos \theta)$	Probability
LCDM	50,000 $\mu\mathrm{K}^4$	50%
best-fit theory (e.g. WMAP C _l)	8,000 μK^4	5%
WMAP cut-sky <t<sub>i T_j></t<sub>	1,000 μK ⁴	0.03%

Large-scale alignments

$\ell = 2$, 3 are aligned and planar

$$\hat{L}_{\ell}^{2} \equiv \frac{\sum_{m=-\ell}^{\ell} m^{2} |a_{\ell m}|^{2}}{\ell^{2} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^{2}}$$

ℓ=3 is planar: P~1/20

 $\ell=2,3$ is are aligned: P~1/60

de Oliveira-Costa, Tegmark, Zaldarriaga & Hamilton 2004

... and still are

	Unco	orrected	DQ	DQ corrected		
Map	$ m{\hat{n}}_2\cdotm{\hat{n}}_3 $	p-value (%)	$ m{\hat{n}}_2 \cdot m{\hat{n}}_3 $	p-value (%)		
WMAP ILC 7yr	0.9999	0.006	0.9966	0.327		
WMAP ILC 9yr	0.9985	0.150	0.9948	0.511		
<i>Planck</i> NILC	0.9902	0.955	0.9988	0.118		
<i>Planck</i> SEVEM	0.9915	0.825	0.9995	0.055		
<i>Planck</i> SMICA	0.9809	1.883	0.9965	0.338		

• Based on 10^6 simulated maps

- We inpaint Planck maps with Galactic cuts numerically heavy part of calculation
- Correcting for the kinematic quadrupole (DQ) is important

Copi et al, arXiv:1311.4562

Multipole vectors!

Spherical Harmonics:

$$\frac{\delta T}{T}(\theta,\phi) = \sum_{l,m} a_{lm} Y_{lm}(\theta,\phi), \qquad C_{\ell} \equiv \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$$

Multipole Vectors:

$$\sum_{m=-\ell}^{\ell} a_{lm} Y_{lm}(\theta, \phi) = A^{(\ell)} \left(\mathbf{v}_{1}^{(\ell)} \cdot \mathbf{e} \right) \cdots \left(\mathbf{v}_{\ell}^{(\ell)} \cdot \mathbf{e} \right)$$

$$``a_{i_{1} \dots i_{l}}^{(\ell)} \leftrightarrow A^{(l)} \left[\mathbf{v}_{1}^{(\ell)} \otimes \mathbf{v}_{2}^{(\ell)} \otimes \dots \mathbf{v}_{\ell}^{(\ell)} \right]''$$

Lth multipole <=> L (headless) vectors, plus a constant

Copi, Huterer & Starkman 2004; http://www.phys.cwru.edu/projects/mpvectors/

Multipole vectors of our sky

http://www.phys.cwru.edu/projects/mpvectors/

Multipole vectors, intuitively

Potential of:

Dipole: $\nabla_{\mathbf{v_1}} \frac{1}{r} = -\frac{\mathbf{v_1} \cdot \mathbf{r}}{r^3}$ Quadrupole: $\nabla_{\mathbf{v_2}} \nabla_{\mathbf{v_1}} \frac{1}{r} = \frac{3(\mathbf{v_1} \cdot \mathbf{r})(\mathbf{v_2} \cdot \mathbf{r}) - r^2(\mathbf{v_1} \cdot \mathbf{v_2})}{r^5}$

l'th multipole:
$$\nabla \mathbf{v}_{\ell} \dots \nabla_{\mathbf{v}_2} \nabla_{\mathbf{v}_1} \frac{1}{r}$$

$v_1 \dots v_\ell$ are the multipole vectors

Weeks 2004

Why multipole vectors?

- A different representation of the CMB sky than the spherical harmonics, related highly non-linearly
- Ideally suited for looking for planarity/directionality
- Many interesting properties, theorems (Katz & Weeks 2004, Weeks 2005, Lachieze-Rey 2004, Dennis 2005...)
- (Reviewed in Copi, Huterer, Schwarz & Starkman MNRAS 2006)

Also: discussed by J.C. Maxwell in his "Treatise on Electricity and Magnetism" in 1892!

Normals to multipole vectors

 $\mathbf{w}_{ij}^{(\ell)} \equiv \pm \left(\mathbf{v}_i^{(\ell)} \times \mathbf{v}_j^{(\ell)} \right)$ "oriented areas"

L=3

L=2

Copi et al, arXiv:1311.4562

Probability for alignment of Q+O structure with Ecliptic: 2%-4%

Probability for alignment of Q+O structure with Dipole: 0.1%-0.4%

which are independent of the previously quoted

Probability for Q and O to be mutually aligned and planar 0.05%-0.3%

Copi et al, arXiv:1311.4562

Movie by Craig Copi

Other notable claimed anomalies

- North/South power asymmetry
- CMB Cold Spot

The "cold spot"

BUT: evidence disappears once you try "finding" it with something other than a mexican hat wavelet (e.g. a top hat) Zhang & Huterer, 2010

Cold spot in the galaxy distribution?? In same direction as the CMB cold spot

Szapudi et al, 1405.1566

- Detected in Pan-STARRS1 in same angular direction as CMB cold spot!
- However, ISW effect from this Pan-STARRS "hole" only explains 10% of the CMB cold spot (Zibin 2014, Nadathur et al 2014)

N/S power asymmetry

South (ecliptic) has more power than north

Eriksen et al 2004; Hansen, Banday and Gorski 2004

Planck XXIII, 2013

Attempts at a theoretical explanation: missing large-angle power and alignments

4 classes of explanations:

- Astrophysical (e.g. an object or other source of radiation in the Solar System)
 - BUT: we think we know the Solar System. It would need to be a large source and undetected in data cross-checks.
- Instrumental (e.g. there is something wrong with WMAP instrument measuring CMB at large scales)
 - BUT: the instruments have been extremely well calibrated and checked. Plus, why would they pick out the Ecliptic plane?
- Cosmological (e.g. some property of the universe inflation or dark energy for example – that we do not understand)
 - This is the most exciting possibility. BUT: why would the new/unknown physics pick out the Ecliptic plane?
- These alignments are a pure fluke!
 - BUT: they are <0.1% likely!</p>

Example: non-linear detector

Suppose that the WMAP detectors are slightly (1%) nonlinear

 $T_{\rm obs}(\hat{\mathbf{n}}) = T(\hat{\mathbf{n}}) + \alpha_2 T(\hat{\mathbf{n}})^2 + \alpha_3 T(\hat{\mathbf{n}})^3 + \dots$

The biggest signal on the sky is the dipole

 $T(\hat{\mathbf{n}}) = 3.3mK\cos(\theta)$

So with $\alpha_2 \sim \alpha_3 \sim 10^{-2}$, dipole anisotropy is modulated into a 10^{-5} quadrupole and octopole with m = 0 in the dipole frame.

Sadly: doesn't work since would have been seen when observing $\sim 1K$ sources (in lab, Jupiter, etc).

Example: Spontaneous Isotropy Breaking

• To explain/model the apparent lack of isotropy on largest scales seen by WMAP

$$V(\phi) = V_0 [1 + f \cos(\phi/M_0)]$$

$$\phi(z) = A + Bz$$

Modulates the CMB anisotropy through the ISW effect Nonlinear modulation ⇒ a range of multipoles affected

Additive schemes "don't work"

$$\hat{T}(\hat{\mathbf{n}}) = T_{\text{intr}}(\hat{\mathbf{n}}) + T_{\text{extra}}(\hat{\mathbf{n}})$$

Double (likelihood) penalty:

- Intrinsic sky is less likely than observed
- Requires a chance cancellation

True for all additive schemes: Solar System contamination, Bianchi models, etc

Multiplicative modulation can work

 $\hat{T}(\hat{\mathbf{n}}) = T(\hat{\mathbf{n}}) \left[1 + w(\hat{\mathbf{n}})\right]$

 $w(\hat{\mathbf{n}}) \propto Y_{20}(\hat{\mathbf{n}})$ example

Dipolar modulation in Planck

No compelling theoretical (or systematic) explanations for large-angle anomalies as yet

Can other observations confirm or refute the anomalies?

CMB polarization? Large-scale structure?

If this is a statistical fluke, CMB polarization <u>may</u> successfully confirm that

Copi et al, *MNRAS* **434**, 3590 (2013),

Can one see effect of such large-angle power suppression in future LSS surveys?

Answer: yes, though it will be challenging; below, hypothesis that P(k) is suppressed, using LSST

Gibelyou, Huterer & Fang 2010

Dangers of working on anomalies: geocentrists are very interested!

Entertaining story by Adam Becker on Story Collider: "How to save your PhD supervisor"

https://soundcloud.com/the-story-collider/adam-becker-how-to-save-your-phd-supervisor

Conclusions

- Angular power is nearly zero at $\theta \ge 60 \text{ deg}$
- Quadrupole and octopole planar, nearly perpendicular to ecliptic plane
- Several separate \geq 3-sigma anomalies, they are *a posteriori*...
 - ... but all have to do with <u>largest</u> observed scales!
- Suppression of $C(\theta)$ seems *very* robust to map/ experiment choice, frequency, etc
- No compelling explanations to date, cosmological or systematic

EXTRA SLIDES

Szapudi et al, 1405.1566

Zhang & Huterer, arXiv:0908.3988

Theorem: Every homogeneous polynomial *P* of degree ℓ in *x*, *y* and *z* may be written as

$$P(x, y, z) = \lambda \cdot (a_1 x + b_1 y + c_1 z) \cdot (a_2 x + b_2 y + c_2 z) \dots \cdot (a_\ell x + b_\ell y + c_\ell z) + (x^2 + y^2 + z^2) \cdot R$$

where *R* is a homogeneous polynomial of degree $\ell - 2$. The decomposition is unique up to reordering and rescaling the linear factors.

Example (Y_{20}) :

$$P(x,y) = x^{2} + y^{2} - 2z^{2}$$

= -3(z)(z) + (x^{2} + y^{2} + z^{2})(1)

Katz & Weeks, astro-ph/0405631

Harmonic inpainting:

produces mutually consistent reconstructions of maps

MLE reconstruction is 'optimal', but – need to smooth map => mix up with Gal cut region – if not smoothing, returns a biased result:

Published values of the power spectrum coefficients differ by many times the error

$$D_{\ell} \equiv \frac{\ell(\ell+1)C_{\ell}}{2\pi}$$

Data Release	D_2	D_3	D_4	D_5	$S_{1/2} \; (\mu { m K}^4)$
WMAP 3yr	211	1041	731	1521	8330
WMAP 5yr	213	1039	674	1527	8915
<i>WMAP</i> 7yr	201	1051	694	1517	8938
WMAP 9yr	151	902	730	1468	5797
Planck R1	299	1007	646	1284	8035^{a}

	Q+O		Ecliptic Plane		NGP		dipole	
Map	S	T	S	T	S	T	S	T
WMAP ILC 7yr	0.22	0.10	2.66	2.70	0.82	0.90	0.18	0.20
WMAP ILC 9yr	0.18	0.08	1.96	1.82	0.79	0.76	0.14	0.15
<i>Planck</i> NILC	1.85	1.05	2.80	3.04	1.41	1.26	0.32	0.19
<i>Planck</i> SEVEM	0.41	0.22	2.52	2.94	0.79	0.92	0.09	0.05
<i>Planck</i> SMICA	1.62	0.93	3.74	4.16	1.56	1.52	0.37	0.30

Systematic checks: foreground missubtraction

Adding (known) foregrounds leads to galactic, and not ecliptic, alignments

Copi, Huterer, Schwarz & Starkman, MNRAS, 2006

