Reconstructing quintessence

Dragan Huterer (University of Chicago)

Michael Turner (University of Chicago, Fermilab)

astro-ph/9808133
+ work in progress
Quintessence - a dynamical scalar field

Origin: particle physics (yet unknown)

History: Starting in the late 1980’s, shows up in literature as ‘Rolling Scalar field’, ‘Dynamical Lambda’, ‘Quintessence’.

Features:

- rolls down its (effective) potential
- provides significant energy density Ω_Q (missing energy?).
- has negative equation of state today

$$w_Q = \frac{\dot{\phi}^2/2 - V(\phi)}{\dot{\phi}^2/2 + V(\phi)} < 0 \quad (-1 \lesssim w_Q \lesssim -0.5)$$

- in addition, quintessence may have other nice properties...
Supernova Ia Search

In flat universe: \(\Omega_M = 0.28 \) [± 0.085 statistical] [± 0.05 systematic]
Prob. of fit to \(\Lambda = 0 \) universe: 1%

astro-ph/9812133
Reconstruction Equations: \(r(z) \rightarrow V(\phi) \)

Assume a Universe where \(\Omega_M + \Omega_Q = 1 \). Then, from the Friedmann equations:

\[
V[r(z)] = \frac{1}{8\pi G} \left[\frac{3}{(dr/dz)^2} + (1 + z) \frac{d^2 r/dz^2}{(dr/dz)^3} \right] - \frac{3 \Omega_M H_0^2 (1 + z)^3}{16\pi G} \\

\frac{d\phi}{dz} = \frac{dr/dz}{1 + z} \left[-\frac{1}{4\pi G} \frac{(1 + z) d^2 r/dz^2}{(dr/dz)^3} - \frac{3 \Omega_M H_0^2 (1 + z)^3}{8\pi G} \right]^{1/2}
\]

- Only need to know \(\Omega_M \)
- \(r(z) \) comes in only as \(dr/dz \) and \(d^2 r/dz^2 \)

To demonstrate the feasibility of this approach, we use Monte Carlo simulation.
Monte Carlo demonstration of the potential reconstruction

Pick \(V(\phi) \), \(\Omega_M \), \(H_0 \) and present KE/PE (or eq. of state) of the field.

Compute the evolution of \(\phi \), \(a(t) \) and \(r(z) \) by evolving \(\phi(t) \) and \(a(t) \) back in time

Simulate SNeIa measurements:
\[r_{\text{sim}}(z_i) = r_{\text{exact}}(z_i) + \delta r_i \]
\(\delta r_i \) taken from a Gaussian distribution

Repeat 1000 times.

Fit the data with a (low-order) polynomial and numerically compute \(V(\phi) \) from the reconstruction equations
Examples of reconstruction

\[V(\phi) = V_0 \exp(-\beta \phi / m_{Pl}) \quad \beta = 8 \]

\[V_0 = (2.43 \times 10^{-3} \text{eV})^4 \]

\[N = 40 \text{ points} \quad z_{\text{max}} = 1.5 \quad \Omega_M = 0.4 \]

\[0.01 \quad 0.02 \quad 0.03 \quad 0.04 \quad 0.05 \quad 0.06 \]

\[V(\phi) / 10^{-10} \text{eV}^4 \]

\[\sigma = 2\% \quad \sigma = 5\% \]

\[0.2 \quad 0.4 \quad 0.6 \]

\[-0.01 \quad 0.01 \quad 0.03 \quad 0.05 \quad 0.07 \]

\[\phi / m_{Pl} \]

\[V(\phi) = V_0[1 + \cos(\phi / f)] \quad V_0 = (4.65 \times 10^{-3} \text{eV})^4 \quad f / m_{Pl} = 0.154 \]

\[N = 40 \text{ points} \quad z_{\text{max}} = 1.0 \quad \Omega_M = 0.3 \]

\[0 \quad 0.2 \quad 0.4 \quad 0.6 \]

\[0 \quad 0.2 \quad 0.4 \quad 0.6 \]

\[\sigma = 2\% \quad \sigma = 5\% \]

\[-1 \quad 1 \quad 3 \]

\[2 \quad 2.5 \quad 3 \quad 3.5 \]

\[\phi / f \]
Padé Approximants:

- Fit the (simulated) data with
 \[r(z) = \frac{z(1 + az)}{1 + bz + cz^2} \]

Summary of potential reconstruction

- Need to know only \(\Omega_M \) and \(\Omega_Q = 1 - \Omega_M \).
- The uncertainty in the reconstruction will decrease as more supernovae are discovered (roughly as \(1/\sqrt{N} \)).
- Inferring \(d^2r/dz^2 \) from the data is required for reconstruction.
Reconstructing the equation of state

• No need to assume that quintessence is the missing energy!

\[1 + w_X(z) = \frac{1 + z}{3} \frac{3H_0^2\Omega_M(1 + z)^2 + 2 (d^2 r / dz^2) / (d r / dz)^3}{H_0^2\Omega_M(1 + z)^3 - (d r / dz)^{-2}} \]

• This gives evidence that beyond \(z \sim 0.8 \) it is difficult to get information about the missing component.
Optimal supernova search strategies

Q: What is the ideal distribution of supernovae in redshift?

Minimize $A \propto [\det(F')]^{-1/2}$

$$m_n = 5 \log[H_0d_L(z_n, \Omega_M, \Omega_\Lambda)] + m_0 + \epsilon_n,$$

$$F_{ij} = -\left\langle \frac{\partial^2 \ln L}{\partial p_i \partial p_j} \right\rangle_x$$

$$= \frac{1}{\Delta m^2} \sum_{n=1}^{N} \frac{\partial m_n(z_n, \Omega_M, \Omega_\Lambda, \ldots)}{\partial p_i} \frac{\partial m_n(z_n, \Omega_M, \Omega_\Lambda, \ldots)}{\partial p_j}$$

$$= \frac{1}{\Delta m^2} \sum_{n=1}^{N} \omega_i(z_n) \omega_j(z_n)$$

(Tegmark et al., astro-ph/9804168)

If we represent the measurements as a sum of delta-functions

$$g(z) = \sum_{i=1}^{BINS} g_i \delta(z - z_i),$$

then

$$F_{ij} = \frac{N}{(\Delta m)^2} \int_0^{\infty} g(z) \omega_i(z) \omega_j(z) \, dz,$$
With two parameters:

\[
\det(F) = \int_0^\infty \int_0^\infty g(z_1) g(z_2) \omega^2(z_1, z_2) \, dz_1 \, dz_2
\]

\[
= \sum_{i,j=1}^{BINS} g_i g_j \omega^2(z_i, z_j)
\]

with

\[
\sum_{i=1}^{BINS} g_i = 1 \quad \text{and} \quad g_i > 0
\]

The result is, for \(\Omega_M - \Omega_{\Lambda}\) case

\[
g(z) = 0.50 \delta(z - 0.44) + 0.50 \delta(z - 1.00),
\]

and for the \(\Omega_M - w_Q\) case

\[
g(z) = 0.50 \delta(z - 0.36) + 0.50 \delta(z - 1.00).
\]
Simulating and fitting the data

![Graph showing simulated data and fit data]

- **Simulated data** (σ=5%)
- **Fit data** (4th order pol.)