Dark Energy: Systematic Requirements and Future Prospects

Dragan Huterer University of Michigan

Current evidence for dark energy is impressively strong

Likelihood

D. Shafer

Since the discovery of acceleration, constraints have converged to w ≈ -1

SN + BAO + CMB

But we can do much better; need:

- Better mapping of expansion history
- Precision measurements of growth history.

Figures of Merit (FoMs)

Most common choice: area of the (95%) ellipse in the w_0 - w_a plane (DETF report 2006)

DETF FoM - pros and cons

Advantages:

- Captures not only w=const but also variation in w(z)
- (w₀, w_a) parametrization surprisingly flexible yet very simple
- Easy to compute and intuitive

Disadvantages:

- Fails to capture non-canonical w(z) models, or ones with early DE
- Does not address anything about modified gravity vs. DE
- Not particularly designed to measure departures from LCDM

Extending the DETF FoM: using principal components (PCs)

- Shows where sensitivity of any given survey is greatest
- Can be used to study optimization of surveys
- Can be used to make "model-independent" statements about DE

(see also FoMSWG; Albrecht et al 2009)

But what about Modified Gravity FoM?

$$g(a) \equiv \frac{\delta}{a} = \exp\left[\int_0^a d\ln a' [\Omega_M(a')^\gamma - 1]\right]$$

Excellent fit to GR with dark energy with any w(z):

$$\gamma = 0.55 + 0.05[1 + w(z = 1)]$$

 \Rightarrow Search for deviation from 0.55 (± small correction) Adopted, in addition to PC FoM, by FoMSWG (Albrecht et al 2009)

Advantages and disadvantages:

Pros: extremely easy to use/calculate Cons: growth in MG is typically scale-dependent, g = g(a,k)

Falsifying general classes of DE models

Predictions on D/G/H (68% and 95%) from **current data** (SN+CMB+BAO+H₀)

Allowed deviations around best-fit LCDM value shown

Red curve: sample model consistent with data

Mortonson, Hu & Huterer 2010

Systematic errors

- Already limiting factor in measurements
- Will definitely be limiting factor with WFIRST-type quality data
- Quantity of interest: (true sys. estimated sys.) difference
- Self-calibration: measuring systematics internally from survey

Specifically for 3 probes:

Supernovae: each SN provides info about DE; can choose a "golden subsample" to limit systematics

BAO: relatively systematics-free (additional info in RSD and P(k), but also additional systematics!)

Weak lensing: control of systematics most challenging, but great potential, esp in providing info on growth

Poster child of systematics: photometric redshift errors

Example

Requirements

Ma, Hu & Huterer 2006

Note: scatter σ , or even $\sigma(z)$ and bias(z), are NOT sufficient to describe effects of photo-z errors on DE

Cunha, Huterer, Busha & Wechsler 2012

Spectroscopic failures (shown below) lead to increased photo-z errors, and thus DE biases

Increasing quality threshold (R) of spectroscopic zs

Final requirement (based on end-to-end simulation): must have <1% fraction of wrong spectroscopic redshifts

Cunha et al, in prep.

Another example (WL): Multiplicative errors in shear (g_i) $\gamma(z_i) = \gamma(z_i) \times g_i$

Requirement: (few)×10⁻³ averaged over redshift bin

Theory Systematics example (WL)

Using simulations to calibrate power spectrum at nonlinear scales

From space, one automatically ameliorates or altogether avoids some of the most pernicious systematics!

Example: most common **calibration errors** e.g. atmospheric spatially varying extinction.

Conclusions

- Sophisticated figures of merit exist to quantify mapping expansion history; simple ones for growth
- Tests of growth/expansion beyond FoMs
- Systematic control is key to Stage III experiments and beyond
- Self-calibrating is powerful, but can't self-calibrate everything
- ▶ From space, circumvent some dangerous systematics; others remain ⇒ their careful modeling and understanding is key