New views of the Universe

Dragan Huterer University of Michigan

Illustris simulation

Three key questions in cosmology

Three big questions in cosmology

Dark Matter

Coma cluster of galaxies Coma cluster of galaxies

Fritz Zwicky "Dunkle Materie",1933

Modern evidence for Dark Matter

Modern evidence for Dark Matter

Direct searches: Cross-section vs mass constraints

Indirect detection

Numerous alarms about "bumps" in spectra seen from Galaxy, and from dwarf galaxies (Reticulum, etc)

So far, none are convincing or truly statistically significant

Exciting and fast-developing field, but will be hard to have a convincing detection of DM just from indirect detection

Three big questions in cosmology

Evidence for Dark energy from type Ia Supernovae

Current evidence for dark energy is impressively strong

PhD 2016

Fine Tuning Problem: "Why so small"?

Vacuum Energy: Quantum Field Theory predicts it to be determined by cutoff scale

$$\rho_{\rm VAC} = \frac{1}{2} \sum_{\rm fields} g_i \int_0^\infty \sqrt{k^2 + m^2} \, \frac{d^3 k}{(2\pi)^3} \simeq \sum_{\rm fields} \frac{g_i k_{\rm max}^4}{16\pi^2}$$

Measured: $(10^{-3} \text{eV})^4$ SUSY scale: $(1 \text{ TeV})^4$ Planck scale: $(10^{19} \text{ GeV})^4$

60-120 orders of magnitude smaller than expected!

Lots of theoretical ideas, few compelling ones: Very difficult to motivate DE **naturally**

String landscape? \rightarrow A sumptom of desperation

 \Rightarrow A symptom of desperation.

 $m M_{PL}^{-120}\,M_{PL}^{4}$

Landscape "predicts" the observed Ω_{DE}

Early Universe

 0Λ

 M_{PL}^4

Kolb & Turner, "Early Universe", footnote on p. 269: "It is not clear to one of the authors how a concept as lame as the "anthropic idea" was ever elevated to the status of a principle"

A difficulty:

DE theory target accuracy, in e.g. w=p/q, not known *a priori* Contrast this situation with:

1. Neutrino masses:

$$(\Delta m^2)_{sol} \approx 8 \times 10^{-5} \text{ eV}^2$$

 $(\Delta m^2)_{atm} \approx 3 \times 10^{-3} \text{ eV}^2$

$$\sum_{i=0.11 \text{ eV}^* \text{ (inverted)}} \sum_{i=0.11 \text{ eV}^* \text{ (inverted)}} \sum_{i=0.11 \text{ eV}^* \text{ (inverted)}}$$

2. Higgs Boson mass (before LHC 2012): m_H ≤ O(200) GeV (assuming Standard Model Higgs)

What if gravity deviates from GR? For example:

Modified gravity

Dark energy

Notice: there is no way to distinguish these two possibilities just by measuring expansion rate H(z)!

Can we distinguish between DE and MG? Yes; here is how:

• In standard GR, H(z) determines distances and growth of structure

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi\rho_M\delta = 0$$

• So check if this is true by measuring separately

Geometry

(as known as kinematic probes) (a.k.a. 0th order cosmology)

Probed by supernovae, CMB, weak lensing, cluster abundance

Growth

(a.k.a. dynamical probes) (a.k.a. 1st order cosmology)

Probed by galaxy clustering, weak lensing, cluster abundance

Dark Energy suppresses the growth of density fluctuations

(a=1/4 or z=3)1/4 size of today

(a=1/2 or z=1)1/2 size of today

(a=1 or z=0) Today

with DE

DE

Huterer et al, Snowmass report, 1309.5385

The Virgo Consortium (1996)

Idea: compare geometry and growth Our approach:

Double the standard DE parameter space $(\Omega_{M}=1-\Omega_{DE} \text{ and } w):$ $\Rightarrow \Omega_{M}^{\text{geom}}, w^{\text{geom}} \Omega_{M}^{\text{grow}}, w^{\text{grow}}$ [In addition to other, usual parameters]

Eduardo Ruiz, PhD 2014

Ruiz & Huterer, PRD 2015

Sensitivity to geometry and growth

Cosmological Probe	Geometry	Growth
SN Ia	$H_0 D_L(z)$	
BAO	$\left(\frac{D_A^2(z)}{H(z)}\right)^{1/3}/r_s(z_d)$	
CMB peak loc.	$R \propto \sqrt{\Omega_m H_0^2} D_A(z_*)$	
Cluster counts	$rac{dV}{dz}$	$rac{dn}{dM}$
Weak lens 2pt	$\frac{r^2(z)}{H(z)}W_i(z)W_j(z)$	$P\left(k = \frac{\ell}{r(z)}\right)$
RSD	$F(z) \propto D_A(z) H(z)$	$f(z)\sigma_8(z)$

Standard parameter space

EU = Early Universe prior from Planck ($\Omega_M h^2$, $\Omega_B h^2$, n_s , A) SH = Sound Horizon prior from Planck ($\Omega_M h^2$, $\Omega_B h^2$)

w (eq of state of DE): geometry vs. growth

Ongoing or upcoming DE experiments:

• Ground photometric:

- Dark Energy Survey (DES)
- Pan-STARRS
- Hyper Supreme Cam (HSC)
- Large Synoptic Survey Telescope (LSST)

• Ground spectroscopic:

- Hobby Eberly Telescope DE Experiment (HETDEX)
- Prime Focus Spectrograph (PFS)
- Dark Energy Spectroscopic Instrument (DESI)

• Space:

- Euclid
- Wide Field InfraRed Space Telescope (WFIRST)

Dark Energy Survey (DES)

Evrard, Gerdes, Huterer, McKay, Miller, Schubnell, Tarlé

Cerro Blanco, Chile

Dark Energy Spectroscopic Instr. (DESI) Gerdes, Huterer, Miller, Schubnell, Tarlé

Three big questions in cosmology

But: in the 1970s, it is known that standard cosmological model has some problems

• Horizon problem: the CMB is (very nearly) uniform, while we can show that regions greater than about 1° apart could not have been in a causal contact

- Flatness problem: the universe is close to flat (flat geometry), while, if you work out basic equations, it tends to diverge from flat. Therefore, present-day flatness implies extreme fine tuning (to flat) in early universe
- Origin of Structure: the CMB (and our sky) show structures: hot and cold spots first, and then later galaxies etc. CMB shows that you need a seed density perturbation of δρ/ρ≈10⁻⁵ (ρ is density)

Inflation: basic picture

<u>Generic</u> Inflationary Predictions:

Millenium simulation

- Flat spatial geometry; $\Omega_{\rm K} = 0.000 \pm 0.005 \sqrt{1000}$ Nearly scale-inv spectrum; $n_s = 0.965 \pm 0.005 \sqrt{1000}$ What energy scale? Background of gravity waves $(r \leq 0.1)$? How many fields? (Nearly) gaussian ICs $f_{NL} = 0.8 \pm 5.0$ What interactions?

Standard Inflation, with...

- 1. a single scalar field
- 2. the canonical kinetic term
- 3. always slow rolls
- 4. in Bunch-Davies vacuum
- 5. in Einstein gravity

produces unobservable NG

Therefore, measurement of nonzero NG would point to a **violation** of one of the assumptions above

NG from 3-point correlation function

"Local NG" (squeezed triangles) is defined as $\Phi = \Phi_G + f_{\rm NL} \left(\Phi_G^2 - \left\langle \Phi_G^2 \right\rangle \right)$

"Local", "Equilateral", "orthogonal" f_{NL} - refers to triangle shapes \Rightarrow test number of fields & their interactions

Threshold for new physics: $f_{NL}^{any kind} \gtrsim O(1)$

Alvarez et al, arXiv:1412.4671

Planck Temp + Pol: $f_{NL} = 0.8 \pm 5.0$

Does galaxy/halo bias depend on NG?

 $P_h(k,z) = \frac{b^2(k,z)}{P_{\rm DM}(k,z)}$

(theorem:) Large-scale bias is scale-independent (b doesn't depend on k) if the short and long modes are uncorrelated that is, if structure distribution is Gaussian

Scale dependence of NG halo bias

Verified using a variety of theory and simulations. ~500 papers on subject so far.

Dalal, Doré, Huterer & Shirokov 2008

SPHEREx

proposal for telescope dedicated to measuring NG ${}_{\mbox{(and other science)}}$

spherex.caltech.edu

- •97 bands (!) with Linearly Variable Filters (LVF)
- $\bullet\,\lambda$ between 0.75 and 4 μm
- small (20cm) telescope, big field of view
- \bullet whole sky out to z~1
- goal: $\sigma(f_{\rm NL}) \lesssim 1$

Non-Gaussianity vs inflation recap:

If we find:

- $f_{NL}^{local} \gtrsim O(1) \Rightarrow$ multiple fields
- $f_{NL}^{equil} \gtrsim O(1) \Rightarrow strong coupling (non-slow roll)$

 $f_{NL}^{any kind} < O(1)$ [no detection] \Rightarrow consistent with slow-roll, weakly coupled single field

Connecting the early and late universe (inflation and dark energy):

Which part of the CMB signal comes from the **late** universe?

Jessie Muir

Integrated Sachs-Wolfe effect

$$\frac{\Delta T}{\bar{T}}\Big|_{\text{ISW}}(\hat{n}) = \frac{2}{c^2} \int_{t_*}^{t_0} dt \, \frac{\partial \Phi(\vec{r}, t)}{\partial t}, \\ \frac{\partial \Phi(\vec{r}, t)}{\partial t}, \\ \frac{\partial \Phi(\vec{r}, t)}{\partial t} = \frac{1}{2} \int_{t_*}^{t_0} dt \, \frac{\partial \Phi(\vec{r}, t)}{\partial t} \, dt \, \frac{\partial \Phi(\vec{r}, t)}{\partial t},$$

Nonzero when universe is *not* matter-dominated, so:

- right after recombination (`early ISW')
- when dark energy starts to dominate (`late ISW')

$$\frac{\Delta T}{\bar{T}}(\hat{n}) = \frac{\Delta T}{\bar{T}}\Big|_{\text{prim}}(\hat{n}) + \frac{\Delta T}{\bar{T}}\Big|_{\text{ISW}}(\hat{n}) \longrightarrow$$

Idea: use a galaxy survey to map out $d\Phi/dt$, then get $(dT/T)_{ISW}$

But what about systematic errors?? Astrophysical - instrumental - theoretical

Real-data of ISW

reconstruction:

(Peacock & Francis 2010)

We performed end-to-end simulation to answer this:

Main conclusion: in reconstructing ISW maps, direction-dependent calibration errors can be devastating

Muir & Huterer, Phys Rev D, 2016

Quality of ISW map reconstruction with multiple surveys

Weaverdyck, Muir & Huterer

Story so far:

- Cosmology definitely in the precision regime
- Impressive constraints on DM, DE and inflation...
 - ...but some big questions unanswered
- Lots of potential from upcoming surveys

Danger of declaring currently favored model to be the truth \implies blinding new data is key

Blinding the DES analysis

Muir, Elsner, Bernstein, Huterer, Peiris and DES collab.

Our requirements:

- Preserve inter-consistency of cosmological probes
- Preserve ability to test for systematic errors

Our choice is specifically:

$$\xi_{ij}^{\text{blinded}}(k) = \xi_{ij}^{\text{measured}}(k) \left[\frac{\xi_{ij}^{\text{model 1}}(k)}{\xi_{ij}^{\text{model 2}}(k)} \right]$$

Tests passed, black-box code ready. First application expected for clustering measurements in DES year-3 data.

Conclusions

- •Huge variety of new observations in cosmology, particularly in the large-scale structure
- 3 big questions: dark matter, dark energy, inflation
- •Ability to measure parameters, test theories, at the 1% level
- Blinding in analysis (along with sophisticated statistical tools) will be key
- •Like particle physicists, we would really like to see some "bumps" in the data