Mapping the Universe with Dark Energy Survey

Dragan Huterer Physics Department University of Michigan

Blanco telescope at Cerro Tololo, Chile

Ann Arbor, Michigan

University of Michigan

Michigan Stadium (115,000)

LCTP focuses on: 1. Particle theory 2. Douticle phone

- 2. Particle pheno
- 3. Cosmology

Tl;dr for this talk:

- In a few weeks, DES will release Y3 results, more than tripling the area covered by any deep photometric survey
- •Results will be interesting; and hopefully out in time that Michael Troxel's (Dec 17) Joint Colloquium
- Here I will present background, as well as results of some of the accompanying ("essential") Y3 papers

Current evidence for dark energy is impressively strong

Daniel Shafer, 2017

A difficulty:

DE theory target accuracy, in e.g. $w=p/\rho$, not known *a priori*

Contrast this situation with:

1. Neutrino masses:

$$(\Delta m^2)_{sol} \approx 8 \times 10^{-5} \text{ eV}^2$$

 $(\Delta m^2)_{atm} \approx 3 \times 10^{-3} \text{ eV}^2$

$$\sum_{i=0.11 \text{ eV}^* \text{ (inverted)}} \sum_{i=0.11 \text{ eV}^* \text{ (inverted)}} \sum_{i=0}^* (assuming m_3=0)}$$

2. Higgs Boson mass (before LHC 2012): m_H ≤ O(200) GeV (assuming Standard Model Higgs)

Combined-

CMB

SN la

0.5

 Ω_m

Hubble tension

Type Ia supernovae + Cepheid distances give

 $H_0 = 74.0 \pm 1.4 \text{ (km/s/Mpc)}$

Cosmic Microwave Anisotropies give $H_0 = 67.4 \pm 0.4$ (km/s/Mpc)

These two measurements are discrepant at about five sigma!*

* once strong-lensing constraints are added, which come out high (H $_0\sim73)$

Hubble tension - a gift to cosmology!

- exciting, real tension in cosmology
- •all major analysis very thorough
- •no obvious systematics (as yet)
- theory models surprisingly hard to concoct (e.g. very finely tuned scalar field models that *also* don't really work)

Major ongoing or upcoming DE expt's:

• Ground photometric:

Kilo-Degree Survey (KiDS)

Dark Energy Survey (DES)

Hyper Supreme Cam (HSC)

Large Synoptic Survey Telescope (LSST)

• Ground spectroscopic:

- Hobby Eberly Telescope DE Experiment (HETDEX)
- Prime Focus Spectrograph (PFS)
- Dark Energy Spectroscopic Instrument (DESI)
- Space:
 - Euclid
 - Wide Field InfraRed Space Telescope (WFIRST)

Dark Energy Survey

- 3 sq deg camera on the Blanco 4m telescope in Chile
- 5000 sqdeg (in Y5)
- 5 filters (grizY); 10 passes on sky
- 5.5 yrs of observation
- Major cosmological probes:
 - 1.Galaxy Clustering
 - 2.Weak lensing Shear
 - 3. Clusters of galaxies
 - 4. Type la Supernovae
- Intern. collaboration of ~700 scientists
- in Jan 2019 finished all 5.5 yrs of obs.;
 Y3 analysis in progress almost done

Cerro Tololo, Chile

Dark Energy Survey (DES)

Blanco Telescope

Dark Energy Survey Y1 highlights

- About 1300 sqdeg (~1/4 of final area)
- 35 million galaxies with shear measurements
- Redshift range roughly z<1; photometric redshifts for all objects (two independent methods agree well)
- "3x2" analysis includes galaxy shear, galaxy-galaxy lensing, galaxy clustering (papers out; discuss next)
- blinded analysis
- "double pipeline" for everything (next slides)
- Supernova analysis (papers out)
- BAO: 4% distance out to z=0.81
- cluster counts, strong lensing
- Over 250 papers already out

Covariance of 3x2 datavector

Krause, Eifler et al (2017)

DES Y1 3x2 analysis highlights

A total of ~26 parameters: (6 cosmological, ~20 astrophysical/systematic)

and a fanatical devotion to controlling the systematic errors:

Two independent pipelines for everything

- 1. Two shear measuring/calibration pipelines
- 2. Two redshift-distribution algorithms
- 3. Two data-vector (theory) codes
- 4. Two parameter sampling codes

and

All cosmology results are **blinded**

DES collaboration, LCDM extensions key paper (arXiv:1810.02499)

DES Y1 Measurements: shear clustering, galaxy-galaxy lensing, gal clustering

Shear clustering:

Shear-galaxy correlations ("galaxy-galaxy lensing")

DES Y1 3x2 results: Ω_m-S₈ plane

DES collaboration, arXiv:1708.01530

DES-only Y1 constraints on DE

"This is the first time a low-redshift survey has been capable of independently constraining these properties of dark energy to this level of precision"

> DES collaboration, arXiv:1811,02375 PRL 2019

DES Year1 results: extensions to ACDM, incl. modified gravity

DES collaboration, arXiv:1810.02499; PRD Editor's suggestion

What if gravity deviates from GR?

For example:

$$H^{2} - F(H) = \frac{8\pi G}{3}\rho, \quad \text{or} \quad H^{2} = \frac{8\pi G}{3}\left(\rho + \frac{3F(H)}{8\pi G}\right)$$

Modified gravity Dark energy

Notice: there is no way to distinguish these two possibilities just by measuring expansion rate H(z)!

Growth of structure comes to the rescue: in standard GR, H(z) determines distances **and** growth of structure

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi\rho_M\delta = 0$$

 \Rightarrow measure geometry [D(z), Vol(z)] and growth [Pk(z)]

Sensitivity to geometry and growth

Cosmological Probe	Geometry	Growth
SN Ia	$H_0 D_L(z)$	
BAO	$\left(\frac{D_A^2(z)}{H(z)}\right)^{1/3}/r_s(z_d)$	
CMB peak loc.	$R \propto \sqrt{\Omega_m H_0^2} D_A(z_*)$	
Cluster counts	$rac{dV}{dz}$	$rac{dn}{dM}$
Weak lens 2pt	$\frac{r^2(z)}{H(z)}W_i(z)W_j(z)$	$P\left(k = \frac{\ell}{r(z)}\right)$
RSD	$F(z) \propto D_A(z) H(z)$	$f(z)\sigma_8(z)$

Ruiz & Huterer, 2015

Specifically: compare geometry and growth in order to stress-test the LCDM model and see if it "breaks"

Our approach: Double the standard DE parameter space $(\Omega_M=1-\Omega_{DE} \text{ and } w)$:

 $\Rightarrow \Omega_{M^{geom}, W^{geom}} \Omega_{M^{grow}, W^{grow}}$

[In addition to other, usual parameters]

Zhang et al (2005); Wang et al (2007); Ruiz & Huterer (2015); Bernal et al (2016)

Geometry-growth tests with DES Y1

Geometry-growth tests with DES Y1

Jessie Muir (Stanford)

Muir et al (DES collab.), arXiv:2010.05935

How do you measure (N-dim) tensions?

In 1D it's easy, but in \geq 2D, ambiguous how to estimate

Lemos, Raveri et al (DES collab.), in prep (arXiv in ~2 weeks)

How do you measure (N-dim) tensions?

Principal result: tension metrics (roughly) agree

Lemos, Raveri et al (DES collab.), in prep (arXiv in ~2 weeks)

How do you measure (N-dim) tensions?

Lemos, Raveri et al (DES collab.), in prep (arXiv in ~2 weeks)

Harmonic vs real space analysis - same information??

Systematics cleaning (of LSS maps)

- Map contamination: a key systematic in LSS
- due to variety of observ/astro/instrumental reasons
- •visible "by eye" at large scales
- important for all galaxy-clustering, shear etc
- esp important for large-spatial-scale science (f_{NL})
- multiplicative, so small scales affected too

Systematics cleaning (of LSS maps)

Weaverdyck & Huterer, arXiv:2007.14499

Story so far:

- Cosmology definitely in the precision regime
- Impressive constraints on DM, DE and inflation...
- ...but some big questions unanswered
- Lots of potential from upcoming surveys

Danger of declaring currently favored model to be the truth \implies blinding new data is key

Blinding the DES analysis

Our requirements:

- Preserve inter-consistency of cosmological probes
- Preserve ability to test for systematic errors

Jessie Muir (Stanford)

Our choice is specifically:

 $\xi_{ij}^{\text{blinded}} = \xi_{ij}^{\text{measured}} + [\xi_{ij}^{\text{th model 1}} - \xi_{ij}^{\text{th model 2}}]$

Applied to DES Y3!

Muir, Bernstein, Huterer, et al., arXiv:1911.05929

DES Y3 key paper: cosmological results

- •Almost 5000 sqdeg
- ~ 100 million source galaxies for lensing
- •Improved methodology across board
- •Analysis was 3 years in the making
- •Results unblinded, out in ~few weeks

Conclusions

- Dark Energy is a premier mystery in physics/cosmology; physical reason for accelerating universe still an open question
 - •Impressive variety of new data; new telescopes planned
- Like particle physicists, we would really like to see some "bumps" in the data (e.g. Hubble tension!).
- Forthcoming DES Y3 results will dramatically improve constraints from photometric LSS, may hold surprises

Extra slides

Prior-volume effect illustrated

DES Y1 3x2 results: constraints on w

