Large-Scale Structure: Next Frontier for Tests of NG

> Dragan Huterer University of Michigan

Next Frontier: Large-Scale Structure

	CMB	LSS
dimension	$2\mathrm{D}$	$3\mathrm{D}$
# modes	$\propto l_{\rm max}^2$	∝k _{max} ³
systematics & selection func.	relatively clean	relatively messy
temporal evol. no		yes
can slice in	λonly	λ, M, bias

LSS tracers and their statistical probes

Clusters of galaxies

▶ 1-point function - cluster counts (dn/dlnM), sens to DE ▶ 2-pt function - sensitive to f_{NL}

Galaxies: LRG, ELG, also quasars 2-point function: pretty well understood, easily measured 3-pt function: powerful, but issues in predicting b_G(k, a, env) also galaxy-CMB cross-correlation

Shear from WL:

2-point function: measurements systematics dominated
3-pt function: future; systematics a huge challenge
also gal-gal (γ-g), shear peaks,

Forecasts for $f_{NL}(k) = f_{NL}^* \left(\frac{k}{k}\right)$

Projected errors $\sigma(f_{\rm NL}^*)$ and $\sigma(n_{f_{\rm NL}})$, and the corresponding pivots					
Variable	BigBOSS	BigBOSS+Planck C_{ℓ} s	Planck bispec	BigBOSS+all Planck	
$\sigma(f_{\rm NL}^*) \\ \sigma(n_{f_{\rm NL}})$	$\begin{array}{c} 3.0\\ 0.12 \end{array}$	2.6 0.11	$\begin{array}{c} 4.4 \\ 0.29 \end{array}$	$\begin{array}{c} 2.2 \\ 0.078 \end{array}$	
$\mathrm{FoM}^{(\mathrm{NG})}$	2.7	3.4	0.78	5.8	
k_{piv}	0.33	0.35	0.080	0.24	

area in f_{NL}^* - n_{fNL} plane

NB: The LSS forecasts are very uncertain, much more so than the CMB

Becker, Huterer & Kadota, 2012; see also Giannantonio et al, 2012

$f_{NL}(k)$ forecasts

Dark Energy Survey Instrument (DESI)

- Huge spectroscopic survey on Mayall telescope (Arizona)
- ~5000 fibres, ~15,000 sqdeg, ~20 million spectra
- LRG in 0 < z < 1, ELG in 0 < z < 1.5, QSO 2.2 < z < 3.5
- Great for DE (RSD, BAO)
- Great for NG 3D P(k, z), bispectrum...
- start 2018, funding DOE + institutions

But... systematics!

QSO power spectra from SDSS; open circle points not used since they may be systematicscontaminated!

Agarwal, Ho & Shandera, on arXiv very shortly...

Large-Scale Structure in Three Easy Steps:

Step 1: Produce theory predictions (including from simulations)

Simulations with non-Gaussianity (f_{NL})

375 Mpc/h

Same initial conditions, different f_{NL}
 Slice through a box in a simulation N_{part}=512³, L=800 Mpc/h

Under-dense region evolution decrease with f_{NL}

Over-dense region evolution increase with f_{NL}

80 Mpc/h

...and now with baryons!

z = 9.86z = 9.86z = 9.86 $f_{\rm NL}=0$ $f_{NL}=100$ $f_{\rm NL}=1000$ z = 6.16z = 6.16z = 6.16z = 2.00 z = 2.00z = 2.00 z = 0.00 z = 0.00 z = 0.00

Zhao, Li, Shandera & Jeong, arXiv:1307.5051 Step 2: Use multiple LSS probes in dataset, and figure out statistics of their signal

Using LSS (and CMB) tracers - correlation functions

Giannantonio et al. 2013

Covariance of weak lensing probes

Step 3: Control the Systematic Errors

Poster child for the systematics: photometric redshift errors

Ma, Hu & Huterer 2006

For the NG measurements, photo-z but also: (photometric) calibration errors

Detector sensitivity: sensitivity of the pixels on the camera vary along the focal plane. Sensitivity of a given pixel can change with time.

• **Observing conditions**: spatial and temporal variations.

Bright objects: The light from foreground bright stars and galaxies affects the sky subtraction procedure, which impairs the surveys' completeness near bright objects.

Dust extinction: Dust in the Milky Way absorbs light from the distant galaxies.

Star-galaxy separation: In photometric surveys, faint stars can be erroneously included in the galaxy sample. Conversely, galaxies are sometimes misclassified as stars and culled from the sample. Remember, stars are *not* randomly distributed across the sky.

Deblending: Galaxy images can overlap, and it can be difficult to cleanly separate photometric and spectroscopic measurements for the blended objects.

Huterer et al 2013

Example II: LSS calibration errors

- dominate on large angular scales
- can be measured, removed using same or other data

Leistedt et al 2013

Non-Gaussianity constraints are special: they come from large angular/spatial scales

Calibration errors unleashed: effects on cosmological parameters and requirements for large-scale structure surveys

Dragan Huterer,¹* Carlos E. Cunha^{1,2} and Wenjuan Fang^{1,3}

¹Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109-1040, USA ²Kavli Institute for Particle Astrophysics and Cosmology, 452 Lomita Mall, Stanford University, Stanford, CA 94305, USA ³Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Accepted 2013 April 15. Received 2013 April 12; in original form 2012 November 26

How do the **most generic calibration errors** look (in the power spectrum)? How do they affect NG (and DE) parameters?

Related works: Pullen & Hirata 2012, Leistedt et al 2013, Agarwal et al, in prep.

(True) Galaxy density field:

$$\frac{N(\hat{\mathbf{n}}) - \bar{N}(\hat{\mathbf{n}})}{\bar{N}(\hat{\mathbf{n}})} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$$

Calibration defined:

 $N_{\rm obs}(\hat{\mathbf{n}}) = c(\hat{\mathbf{n}})N(\hat{\mathbf{n}})$

Calibration expanded in spherical harmonics:

$$c(\hat{\mathbf{n}}) = 1 + \sum_{\ell m} c_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$$

Statistical properties of two fields:

$$\langle a_{\ell m} \rangle = 0; \quad \langle a_{\ell m} a_{\ell m}^* \rangle = \delta_{m m'} \delta_{\ell \ell'} C_{\ell}$$

$$\langle c_{\ell m} \rangle = c_{\ell m}; \quad \langle c_{\ell m} c_{\ell m}^* \rangle = |c_{\ell m}|^2$$

Defining the observed overdensity: t_{lm} coefficients

$$\delta^{\text{obs}}(\hat{\mathbf{n}}) \equiv t(\hat{\mathbf{n}}) = \sum_{\ell m} t_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$$

Final result for the **observed** power spectrum is:

where
$$U_{m_2m}^{\ell_2\ell} \equiv \sum_{\ell_1m_1} c_{\ell_1m_1} R_{m_1m_2m}^{\ell_1\ell_2\ell}$$

 $R_{m_1m_2m}^{\ell_1\ell_2\ell} \equiv (-1)^m \sqrt{\frac{(2\ell_1+1)(2\ell_2+1)(2\ell+1)}{4\pi}} \begin{pmatrix} \ell_1 & \ell_2 & \ell \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \ell_1 & \ell_2 & \ell \\ m_1 & m_2 & -m \end{pmatrix}$

Huterer et al 2013

Bias/error ratios per calib error in *single* multipole

what I called 'calibration error'

is the faint-end slope of the LF

Calibration bias: Worked Example 1

DES magnitude limit (J. Annis)

Calibration bias: Worked Example 2

SFD dust map

PG10 corrections to map

Challenges for NG/LSS program ... and approximate current status

• Motivate NG models \checkmark (single-field, multiple fields, self-int)

 \bullet Utilize a variety of observables in LSS and CMB to get at NG \checkmark

- Develop fast, near-optimal estimators to extract NG from the CMB \checkmark and LSS $\checkmark \nearrow$
- Develop theory to relate NG models to LSS observables $\checkmark \times$ (messy; still need to check with sims)
- Develop theory to use LSS info from 1, 2 pt function of halos \checkmark and galaxies/QSO \checkmark \checkmark (both with concerns)
- Control the systematic errors, esp large-scale LSS \checkmark
- Use galaxy bispectrum \swarrow and weak lensing bispectrum \bigstar to get at primordial NG [eg f_{NL}^{equil}]

EXTRA SLIDES

Bias/error for calib error in *a range of* multipoles

