Dark Energy two decades after: Cosmological Probes and Consistency Tests

Dragan Huterer University of Michigan

A bit of my background

- Theorist, but working very close to data
- First appearance of phrase "dark energy" in:

PHYSICAL REVIEW D, VOLUME 60, 081301

Prospects for probing the dark energy via supernova distance measurements

Dragan Huterer

Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637-1433

Michael S. Turner

Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637-1433; Department of Astronomy & Astrophysics, Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637-1433; and NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 (Received 18 August 1998; revised manuscript received 6 April 1999; published 30 August 1999)

- These days interested in using data to "break" LCDM model and also test isotropy, tensions, etc.
- Chris Smeenk's housemate at Oxford (summer 1994)

Recent (2011) constraints on dark energy density

Current evidence for dark energy is impressively strong

Daniel Shafer, 2017

Rep. Prog. Phys 2018

A difficulty:

DE theory target accuracy, in e.g. w=p/ρ, not known *a priori*

Contrast this situation with:

1. Neutrino masses:

$$(\Delta m^2)_{sol} \approx 8 \times 10^{-5} \text{ eV}^2$$

 $(\Delta m^2)_{atm} \approx 3 \times 10^{-3} \text{ eV}^2$

$$\sum_{i=0.11 \text{ eV}^* \text{ (inverted)}} \sum_{i=0.11 \text{ eV}^* \text{ (inverted)}} \sum_{i=0.11 \text{ eV}^* \text{ (inverted)}}$$

2. Higgs Boson mass (before LHC 2012): m_H ≤ O(200) GeV (assuming Standard Model Higgs)

Combined-

CMB

SN la

0.5

 Ω_m

Fine Tuning Problem: "Why so small"?

Vacuum Energy: Quantum Field Theory predicts it to be determined by cutoff scale

$$\rho_{\rm VAC} = \frac{1}{2} \sum_{\rm fields} g_i \int_0^\infty \sqrt{k^2 + m^2} \, \frac{d^3 k}{(2\pi)^3} \simeq \sum_{\rm fields} \frac{g_i k_{\rm max}^4}{16\pi^2}$$

Measured: $(10^{-3} \text{eV})^4$ SUSY scale: $(1 \text{ TeV})^4$ Planck scale: $(10^{19} \text{ GeV})^4$

60-120 orders of magnitude smaller than expected!

Lots of theoretical ideas, few compelling ones: Very difficult to motivate DE **naturally**

For DE, data are well ahead of theory at the moment

String landscape?

 $m J = 10^{-120} \, M_{PL}^4$

 $_{\rm MPL^4} \rho_{\Lambda}$

Landscape + anthropic "predicts" the observed Ω_{DE}

Early Universe

Kolb & Turner, "Early Universe", footnote on p. 269: "It is not clear to one of the authors how a concept as lame

as the "anthropic idea" was ever elevated to the status of a principle"

Current status of DE measurements

- Excellent precision on DE already
- However, CMB is "done", while SNe and BAO are already pretty well-developed ⇒ future improvements using standard DE probes will be ever-more challenging
- •Most promise is in **large-scale structure**: galaxy clustering, weak lensing, redshift-space distortions
- Key challenges:
 - Theory modeling on small spatial scales
 - Systematic errors from sky and instrument (atmosphere, dust, observing-induced, etc etc)

Major ongoing or upcoming DE expt's:

• Ground photometric:

Kilo-Degree Survey (KiDS)

Dark Energy Survey (DES)

Hyper Supreme Cam (HSC)

Large Synoptic Survey Telescope (LSST)

• Ground spectroscopic:

- Hobby Eberly Telescope DE Experiment (HETDEX)
- Prime Focus Spectrograph (PFS)
- Dark Energy Spectroscopic Instrument (DESI)
- Space:
 - Euclid
 - Wide Field InfraRed Space Telescope (WFIRST)

Mapping the Universe with Dark Energy Survey

Blanco telescope at Cerro Tololo, Chile

Dark Energy Survey

- 3 sq deg camera on the Blanco 4m telescope in Chile
- 5000 sqdeg (in Y5)
- 5 filters (grizY); 10 passes on sky
- 5.5 yrs of observation
- Major cosmological probes:
 1.Galaxy Clustering
 2.Weak lensing Shear
 3. Clusters of galaxies
 - 3. Clusters of galaxies
 - 4. Type la Supernovae
- collaboration of >400 scientists
- just (Jan 2019) finished all 5.5 yrs of observing; Y3 analysis in progress

Cerro Tololo, Chile

Dark Energy Survey (DES)

Blanco Telescope

Dark Energy Survey Y1 highlights

- About 1300 sqdeg (~1/4 of final area)
- 35 million galaxies with shear measurements
- Redshift range roughly z<1; photometric redshifts for all objects (two independent methods agree well)
- "3x2" analysis includes galaxy shear, galaxy-galaxy lensing, galaxy clustering (papers out; discuss next)
- blinded analysis
- "double pipeline" for everything
- Supernova analysis (papers out)
- BAO: 4% distance out to z=0.81 (paper out)
- cluster counts, strong lensing (papers coming soon)
- Close to 200 papers already out

image: LSST science book

DES 3x2 analysis highlights

A total of ~26 parameters: (6 cosmological, ~20 astrophysical/systematic)

and a fanatical devotion to controlling the systematic errors:

Two independent pipelines for everything

- 1. Two shear measuring/calibration pipelines
- 2. Two redshift calibration algorithms
- 3. Two theory covariance matrices
- 4. Two parameter sampling (likelihood) codes

and

All cosmology results are **blinded**

DES Y1 Measurements: shear clustering, galaxy-galaxy lensing, gal clustering

Shear clustering:

Shear-galaxy correlations ("galaxy-galaxy lensing")

DES 3x2 results: Ω_m-S₈ plane

DES collaboration, arXiv:1708.01530

DES 3x2 results: constraints on w

DES Year1 results (October 2018) extensions to ACDM, incl. modified gravity

Watch out for DES Y3 results (out in 2019)!

DES collaboration, arXiv:1810.02499

Current notable tensions in cosmology

- 1. The amplitude of mass fluctuations (σ_8) is higher in the CMB ($\sigma_8=0.83$) than in cluster abundance / weak lens ($\sigma_8=0.80$)
- 2. Hubble constant measured by the Planck collaboration $(H_0=67.3\pm1.0)$ disagrees with that from the distance ladder measurements $(H_0=73.52\pm1.62)$; the two are **3.8 sigma** apart

My totally personal view of these:

- 1. is an accidental "scattering around central value" and will go away basically
- is much more serious, because of excellent, rigorous analyses by CMB and distance ladder teams, and may be pointing toward new physics (or non-trivial systematics). Moreover, cosmic variance (fact we live in a "high local H₀" part of universe) contributes negligibly to the (H₀^{local} -H₀^{CMB}) difference (Wu & Huterer 2017)

DES H₀ constraints

DES collaboration, arXiv:1711.00403

Amazing fact:

these 5 measurements of H0 are basically independent

All 5 combined give: $H_0 = 69.1^{+0.4}_{-0.6}$

More general comments regarding confronting DE data with theory

- •We are doing our best to use statistics properly and treat systematics thoroughly. [This area has undergone huge development over the past ~20 yrs.]
- •We are not trying to sweep under the rug any reasonable explanations for DE many are simply ruled out by data!
- [We could of course be missing some essential ingredient in the underlying theory model.]
- In my opinion, the most promising direction is to test the internal consistency of the model (LCDM, FRW, isotropy...) using data and hope for "bumps"
- •Also a big fan of measuring general Lagrangian-level functions (e.g. Luca's $h_i(k, z)$), but realistically you can only expect data on a few DE parameters from cosmology, not functions

What if gravity deviates from GR?

For example:

Modified gravity

Dark energy

Notice: there is no way to distinguish these two possibilities just by measuring expansion rate H(z)!

Can we distinguish between DE and MG? Yes; here is how:

• In standard GR, H(z) determines distances and growth of structure

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi\rho_M\delta = 0$$

• So check if this is true by measuring separately

Geometry

(as known as kinematic probes) (a.k.a. 0th order cosmology)

Probed by supernovae, CMB, weak lensing, cluster abundance

Growth

(a.k.a. dynamical probes) (a.k.a. 1st order cosmology)

Probed by galaxy clustering, weak lensing, cluster abundance Specifically: compare geometry and growth in order to stress-test the LCDM model and see if it "breaks"

Our approach: Double the standard DE parameter space $(\Omega_{M}=1-\Omega_{DE} \text{ and } w):$ $\Rightarrow \Omega_{M}^{\text{geom}} \otimes \Omega_{M}^{\text{grow}} \otimes W^{\text{grow}}$

[In addition to other, usual parameters]

Ruiz & Huterer, PRD 2015

Sensitivity to geometry and growth

Cosmological Probe	Geometry	Growth
SN Ia	$H_0 D_L(z)$	
BAO	$\left(\frac{D_A^2(z)}{H(z)}\right)^{1/3}/r_s(z_d)$	
CMB peak loc.	$R \propto \sqrt{\Omega_m H_0^2} D_A(z_*)$	
Cluster counts	$rac{dV}{dz}$	$rac{dn}{dM}$
Weak lens 2pt	$\frac{r^2(z)}{H(z)}W_i(z)W_j(z)$	$P\left(k = \frac{\ell}{r(z)}\right)$
RSD	$F(z) \propto D_A(z) H(z)$	$f(z)\sigma_8(z)$

Ruiz & Huterer, 2015

Standard parameter space

EU = Early Universe prior from Planck ($\Omega_M h^2$, $\Omega_B h^2$, n_s , A) SH = Sound Horizon prior from Planck ($\Omega_M h^2$, $\Omega_B h^2$)

w (eq of state of DE): geometry vs. growth

Coming up: geometry-growth tests with DES

Story so far:

- Cosmology definitely in the precision regime
- Impressive constraints on DM, DE and inflation...
- ...but some big questions unanswered
- Lots of potential from upcoming surveys

Danger of declaring currently favored model to be the truth \implies blinding new data is key

Blinding the DES analysis

Muir, Elsner, Bernstein, Huterer, and DES collab.

Our requirements:

- Preserve inter-consistency of cosmological probes
- Preserve ability to test for systematic errors

Our choice is specifically:

$$\xi_{ij}^{\text{blinded}}(k) = \xi_{ij}^{\text{measured}}(k) \left[\frac{\xi_{ij}^{\text{model 1}}(k)}{\xi_{ij}^{\text{model 2}}(k)} \right]$$

Tests passed, black-box code ready. First application expected for clustering measurements in DES year-3 data.

Conclusions

- Impressive variety of new constraints on DE; current frontier is large-scale structure
- Dark energy is definitely out there! w(z), DE vs MG, and ultimately DE's nature are of course open questions
- More likely than not, game-changing new insight from theory needed, but none found yet
- •Regarding data: sophisticated statistical tools, as well as blinding in analysis, will be key
- Like particle physicists, we would really like to see some "bumps" in the data (e.g. Hubble tension?)