How to Falsify a Dark Energy Paradigm

Dragan Huterer Physics Department University of Michigan

[On sabbatical at MPA and Excellence Cluster, Jan-Aug 2015]

Key Collaborators: Eduardo Ruiz, Dan Shafer (grad students, Michigan)

Makeup of universe today

Visible Matter (stars 0.4%, gas 3.6%)

Dark Matter (suspected since 1930s established since 1970s)

> Also: radiation (0.01%)

Evidence for Dark energy from type Ia Supernovae

Union2 SN compilation binned in redshift

 $w \equiv \frac{p_{\rm DE}}{\rho_{\rm DE}}$

Current evidence for dark energy is impressively strong

Hints that w < -1??

Shafer & Huterer, 1312.1688

Only if $H_0 \ge 71$ and Planck assumed

Shafer & Huterer, 1312.1688

SN datasets and dark energy constraints

Big questions

- 1. Is DE something other than vacuum energy?
- 2. Does GR self-consistently describe cosmic acceleration?

Current constraints on w(z): largely from geometrical measures

Planck XIV, "Dark Energy and Modified Gravity", arXiv:1502.01590

Remainder of talk

Part I: testing DE with geometry and growth Part II: making predictions for DE observables

Dark Energy suppresses the growth of density fluctuations

(a=1/4 or z=3) 1/4 size of today (a=1/2 or z=1) 1/2 size of today

(a=1 or z=0) Today

with DE

without DE

Huterer et al, Snowmass report, 1309.5385

The Virgo Consortium (1996)

Idea: compare geometry and growth

e.g. Wang, Hui, May & Haiman 2007

Our approach:

Double the standard DE parameter space $(\Omega_{M}=1-\Omega_{DE} \text{ and } w):$ $\Rightarrow \Omega_{M}^{\text{geom}}, w^{\text{geom}} \Omega_{M}^{\text{grow}}, w^{\text{grow}}$ [In addition to other:

standard parameters: $\Omega_{M}h^{2} \Omega_{B}h^{2}$, n_s, A) nuisance parameters: probe-dependent]

Ruiz & Huterer, arXiv:1410.5832

(Current) Data used

CMB (Planck peak location) Weak Lensing (CFHTLens) BAO (6dF, SDSS LRG, BOSS CMASS)

Sensitivity to geometry and growth

Cosmological Probe	Geometry	Growth
SN Ia	$H_0 D_L(z)$	
BAO	$\left(\frac{D_A^2(z)}{H(z)}\right)^{1/3}/r_s(z_d)$	
CMB peak loc.	$R \propto \sqrt{\Omega_m H_0^2} D_A(z_*)$	
Cluster counts	$rac{dV}{dz}$	$rac{dn}{dM}$
Weak lens 2pt	$\frac{r^2(z)}{H(z)}W_i(z)W_j(z)$	$P\left(k = \frac{\ell}{r(z)}\right)$
RSD	$F(z) \propto D_A(z) H(z)$	$f(z)\sigma_8(z)$

Standard parameter spaces

EU = Early Universe prior from Planck ($\Omega_M h^2$, $\Omega_B h^2$, n_s , A) SH = Sound Horizon prior from Planck ($\Omega_M h^2$, $\Omega_B h^2$)

Ruiz & Huterer, arXiv:1410.5832

Omega matter: geometry vs. growth

* SN not the recalibrated JLA compilation - need to update; will move Ω_M^{grow} up

w (eq of state of DE): geometry vs. growth

Evidence for $w^{grow} > w^{geom}$: $3.3-\sigma$

Redshift Space Distortion data

RSD prefer $w^{grow} > -1$ (slower growth than in LCDM)

(Pretty high) neutrino mass can relieve the tension

Ruiz & Huterer, arXiv:1410.5832

Remainder of talk

Part I: testing DE with geometry and growth Part II: making predictions for DE observables

Falsifying DE Paradigms

Underlying Philosophy:

- For any given class of DE models, current data predict the possible range in fundamental cosmological functions D(z), H(z), G(z), etc ...
- ... which therefore provide 'target' quantities (in redshift) for ruling out classes of DE models with upcoming data

Mortonson, Hu & Huterer, 2009-2011

Methodology

1. Start with the parameter set:

$$\Omega_{\mathrm{M}}, \Omega_{\mathrm{K}}, H_0, w(z), w_{\infty}$$

2. Use either the current data or future data (current = Union2 SN + WMAP + BAO_{z=0.35} + H₀ future = Planck + Space DE)

3. Employ the likelihood machine Markov Chain Monte Carlo likelihood calculation, between ~2 and ~15 parameters constrained

4. Compute predictions for D(z), G(z), H(z) (and $\gamma(z)$, f(z))

Structure of graphs to follow

Sketch by M. Mortonson

Grey: flat Blue: curved

D, G to <1% everywhere H(z=1) to 0.1% for flat LCDM

Therefore:

Whole classes of DE models are highly falsifiable

Therefore:

Whole classes of DE models are highly falsifiable

Straightforward to make predictions for actually observable quantities for a given survey, given the class of DE models

Vanderveld, Mortonson, Hu & Eifler 2012

Dark Energy Survey Instrument (DESI)

- Huge spectroscopic survey on Mayall telescope (Arizona)
- ~5000 fibres, ~15,000 sqdeg, ~20 million spectra
- LRG in 0 < z < 1, ELG in 0 < z < 1.5, QSO 2.2 < z < 3.5
- Great for **dark energy** (RSD, BAO)
- \bullet Great for primordial non-Gaussianity P(k, z), bispectrum...
- Start ~2018, funding DOE + institutions

Conclusions

So far, all measurements are in excellent agreement with Lambda (i.e. w = -1)...

...despite occasional alarms to the contrary:

▶ Planck + BAO + SN + high H_0^{local}

Separating growth from geometry is a good way to get a) constraints b) insights into DE constraints; it now indicates a 3-sigma growth ≠ geometry discrepancy

We now have accurate, tight predictions for D(z), G(z), H(z) and the observable quantities for each class of DE models \Rightarrow way to rule them out.

EXTRA SLIDES

To shed light on dark energy: search for 'something else' in the data

- Variation of eq. of state w \rightarrow (none yet)
- Clustering of DE
- DM-DE interactions
- Early dark energy
- Modified gravity (MG)

- \rightarrow (super hard)
- \rightarrow (none yet)
- \rightarrow (none yet)
- \rightarrow (none yet)

BAO data

Survey	$z_{ m eff}$	Parameter	Measurement
6 dFGS [33]	0.106	r_s/D_V	0.336 ± 0.015
SDSS LRG $[34]$	0.35	D_V/r_s	8.88 ± 0.17
BOSS CMASS $[35]$	0.57	D_V/r_s	13.67 ± 0.22

TABLE III. BAO data measurements used here, together with the effective redshift for the corresponding galaxy sample.

TABLE IX. Mean mass (and their number) of clusters with a richness within the given bin.

RSD (BOSS paper)

Measured 2-pt correlation func from CFHTLens

Parameter	Unsplit, $w = -1$	Unsplit, w free	Split, $w = -1$	Split, w free
$\Omega_M \left\{ \Omega_M^{\text{geom}} \right\}$	0.303 ± 0.008	0.299 ± 0.010	0.302 ± 0.008	0.283 ± 0.011
$\int \Omega_M^{\mathrm{grow}}$			0.321 ± 0.017	0.311 ± 0.017
$\Omega_M h^2$	0.140 ± 0.001	0.141 ± 0.002	0.140 ± 0.001	0.142 ± 0.002
$\Omega_b h^2$	0.0221 ± 0.0002	0.0220 ± 0.0003	0.0221 ± 0.0002	0.0221 ± 0.0003
$w \int w^{\text{geom}}$		-1.03 ± 0.05		-1.13 ± 0.06
$w = w^{\text{grow}}$		1.00 ± 0.00		-0.77 ± 0.08
$10^{9}A$	1.95 ± 0.09	1.91 ± 0.10	1.96 ± 0.09	2.17 ± 0.13
n_s	0.961 ± 0.005	0.959 ± 0.006	0.962 ± 0.005	0.961 ± 0.006
σ_8	0.786 ± 0.015	0.788 ± 0.016	0.782 ± 0.016	0.771 ± 0.017
h	0.680 ± 0.006	0.687 ± 0.012	0.661 ± 0.017	0.677 ± 0.018
$lpha_s$	1.44 ± 0.11	1.44 ± 0.11	1.44 ± 0.11	1.44 ± 0.11
eta_{c}	3.26 ± 0.11	3.26 ± 0.11	3.26 ± 0.11	3.27 ± 0.11
$\ln(N M_1)$	2.36 ± 0.06	2.37 ± 0.06	2.29 ± 0.08	2.33 ± 0.08
$\ln(N M_2)$	4.15 ± 0.09	4.16 ± 0.09	4.09 ± 0.11	4.15 ± 0.11
σ_{NM}	0.359 ± 0.057	0.357 ± 0.057	0.378 ± 0.059	0.367 ± 0.060
β	1.041 ± 0.050	1.045 ± 0.051	1.018 ± 0.054	1.036 ± 0.055
σ_{MN}	0.462 ± 0.081	0.459 ± 0.082	0.486 ± 0.085	0.464 ± 0.084

Modeling DE

Modeling of low-z w(z): Principal Components

$$w(z_j) = -1 + \sum_{i=1}^N \alpha_i e_i(z_j)$$

100 i = 10i=9 80 i=8i=760 i=6 $e_i(z)$ i=540 i=4i=320 i=2i = 10 -0.6(0.8 ≤ 1.8 × 1.8 -1 0.5 1.5 0 Ζ

500 bins (so 500 PCs) 0.03<z<1.7

We use first ~10 PCs; (results converge $10 \rightarrow 15$)

Fit of a quintessence model with PCs

Cosmological Functions

Expansion Rate (BAO):

$$H(z) = H_0 \left[\Omega_{\rm M} (1+z)^3 + \Omega_{\rm DE} \frac{\rho_{\rm DE}(z)}{\rho_{\rm DE}(0)} + \Omega_{\rm K} (1+z)^2 \right]^{1/2}$$

Distance (SN, BAO, CMB): $D(z) = \frac{1}{(|\Omega_{\rm K}|H_0^2)^{1/2}} S_{\rm K} \left[(|\Omega_{\rm K}|H_0^2)^{1/2} \int_0^z \frac{dz'}{H(z')} \right]$

Growth (WL, clusters):

$$G'' + \left(4 + \frac{H'}{H}\right)G' + \left[3 + \frac{H'}{H} - \frac{3}{2}\Omega_{\rm M}(z)\right]G = 0$$

 $G = D_1/a$

Methodology

1. Start with the parameter set:

 $\Omega_{\mathrm{M}}, \Omega_{\mathrm{K}}, H_0, w(z), w_\infty^{\mathrm{(early \, DE \, eq \, of \, state)}}$

2. Pre-compute PCs of w(z) based on future data

3. Using either the current data or future (SNAP+Planck) data...

4. ...employ the likelihood machine... Markov Chain Monte Carlo likelihood calculation, between ~2 and ~15 parameters constrained

5. and compute predictions for D(z), G(z), H(z) etc

Predictions from **Future** Data

Assumed "data":

 SNAP 2000 SNe, 0.1<z<1.7
 (plus 300 low-z SNe); converted into distances
 Planck info on Ω_mh² and D_A(z_{rec})

 $\mathbf{Alive}^{\sigma_{\alpha}^2} = \left(\frac{0.1}{\Delta z_{\rm sub}}\right) \left[\frac{0.15^2}{N_{\alpha}} + 0.02^2 \left(\frac{1+z}{2.7}\right)^2\right]$

Dead

Predictions below shown around: fiducial model

Cosmological "observable" functions

Modeling of Early DE

$$\rho_{\rm DE}(z > z_{\rm max}) = \rho_{\rm DE}(z_{\rm max}) \left(\frac{1+z}{1+z_{\rm max}}\right)^{3(1+w_{\infty})}$$

de Putter & Linder 2008

Modeling of modified Gravity

$$G(a) = \exp\left(\int_{0}^{a} d\ln a' \left[\Omega_{M}^{\gamma}(a') - 1\right]\right)$$

Linder 2005

In *principal*, constraints are good...

$$w(z_j) = -1 + \sum_{i=1}^N \alpha_i e_i(z_j)$$

 $\alpha_i = PC$ amplitude $e_i(z) = PC$ shape

Ruiz, Shafer, Huterer & Conley 2012

Red = with SN systematics

Structure of graphs to follow

Sketch by M. Mortonson

Grey: flat Blue: curved

D, G to <1% everywhere H(z=1) to 0.1% for flat LCDM

