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Supernova Hubble diagram (binned)

Frieman, Turner & Huterer, Ann. Rev. Astro. Astroph., 2008
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Figure 3. The CMASS correlation function before (left) and after (right) reconstruction (crosses) with the best-fit models overplotted (solid lines). Error bars
show the square root of the diagonal covariance matrix elements, and data on similar scales are also correlated. The BAO feature is clearly evident, and well
matched to the best-fit model. The best-fit dilation scale is given in each plot, with the �2 statistic giving goodness of fit.

Figure 4. Average of the mock correlation functions before and after recon-
struction showing that the average acoustic peak sharpens up significantly
after reconstruction. This indicates that, on average, our reconstruction tech-
nique effectively removes some of the smearing caused by non-linear struc-
ture growth, affording us the ability to more precisely centroid the acoustic
peak.

where ⇤d is the measured correlation function and ⇤m(�) is the best-
fit model at each �. C is the sample covariance matrix, and we use
a fitting range of 28 < r < 200h�1 Mpc. We therefore fit over 44
points using 5 parameters, leaving us with 39 degrees-of-freedom
(dof). Assuming a multi-variate Gaussian distribution for the fitted
data (this is tested and shown to be a good approximation in Manera
et al. 2012), the probability distribution of � is

p(�) ⇤ e�⇥2(�)/2. (28)

The normalisation constant is determined by ensuring that the dis-
tribution integrates to 1. In calculating p(�), we also impose a 15
per cent Gaussian prior on log(�) to suppress values of � ⇥ 1
that correspond to the BAO being shifted to the edge of our fit-
ting range at large scales. The sample variance is larger at these

scales, and the fitting algorithm is afforded some flexibility to hide
the acoustic peak within the larger errors.

The standard deviation of this probability distribution serves
as an error estimate on our distance measurement. The standard
deviation ⇥� for the data and each individual mock catalog can be
calculated as ⇥2

� = ⌅�2⇧ � ⌅�⇧2, where the moments of � are

⌅�n⇧ =
�

d� p(�)�n . (29)

Note that ⌅�⇧ refers to the mean of the p(�) distribution in this
equation only.

In reference to the mocks, ⌅�⇧ will denote the ensemble mean
of the � values measured from each individual mock, and �̃ will
denote the median. The term “Quantiles” will denote the 16th/84th

percentiles, which are approximately the 1⇥ level if the distribution
is Gaussian. The scatter predicted by these quantiles suffers less
than the rms from the effects of extreme outliers.

5.3 Results

Using the procedure described in §5.2, we measure the shift in the
acoustic scale from the CMASS DR9 data to be � = 1.016±0.017
before reconstruction and � = 1.024± 0.016 after reconstruction.
The quoted errors are the ⇥� values measured from the probabil-
ity distributions, p(�). Plots of the data and corresponding best-
fit models are shown in Fig. 3 for before (left) and after (right)
reconstruction. We see that for CMASS DR9, reconstruction has
not significantly improved our measurement of the acoustic scale.
However, in the context of the mock catalogues, this result is not
surprising.

Fig. 5 shows the ⇥� values measured from the mocks before
reconstruction versus those measured after reconstruction from the
correlation function fits. The CMASS DR9 point is overplotted as
the black star and falls within the locus of mock points. However,
we see that before reconstruction, our recovered ⇥� for CMASS
DR9 is much smaller than the mean expected from the mocks. For
typical cases, reconstruction improves errors on �, but if one has a
“lucky” realisation that yields a low error to begin with, then recon-
struction does not produce much improvement. The mock catalog
comparison in Figure 5 shows that the BOSS DR9 data volume
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Figure 18. BAO in the power spectrum measured from the reconstructed
CMASS data (solid circles with 1� errors, lower panel) compared with un-
reconstructed BAO recovered from the SDSS-II LRG data (solid circles
with 1� errors, upper panel). Best-fit models are shown by the solid lines.
The SDSS-II data are based on the sample and power spectrum calculated in
Reid et al. (2010) and analysed by Percival et al. (2010); it has been shifted
to match the fiducial cosmology assumed in this paper. Clearly the CMASS
errors are significantly smaller than those of the SDSS-II data, and we also
benefit from reconstruction, reducing the the BAO damping scale.

Figure 19. A plot of the distance-redshift relation from various BAO mea-
surements from spectroscopic data sets. We plot DV (z)/rs times the fidu-
cial rs to restore a distance. Included here are this CMASS measurement,
the 6dF Galaxy Survey measurement at z = 0.1 (Beutler et al. 2011), the
SDSS-II LRG measurement at z = 0.35 (Padmanabhan et al. 2012a; Xu
et al. 2012; Mehta et al. 2012), and the WiggleZ measurement at z = 0.6
(Blake et al. 2011a). The latter is a combination of 3 partially covariant data
sets. The grey region is the 1 � prediction from WMAP under the assump-
tion of a flat Universe with a cosmological constant (Komatsu et al. 2011).
The agreement between the various BAO measurements and this prediction
is excellent.

Figure 20. The BAO distance-redshift relation divided by the best-fit flat,
�CDM prediction from WMAP (⇥m = 0.266, h = 0.708; note that
this is slightly different from the adopted fiducial cosmology of this paper).
The grey band indicates the 1 � prediction range from WMAP (Komatsu
et al. 2011). In addition to the SDSS-II LRG data point from Padmanabhan
et al. (2012a), we also show the result from Percival et al. (2010) using a
combination of SDSS-II DR7 LRG and Main sample galaxies as well as
2dF Galaxy Redshift Survey data; because of the overlap in samples, we
use a different symbol. The BAO results agree with the best-fit WMAP
model at the few percent level. If ⇥mh2 were 1 � higher than the best-
fit WMAP value, then the prediction would be the upper edge of the grey
region, which matches the BAO data very closely. For example, the dashed
line is the best-fit CMB+LRG+CMASS flat �CDM model from § 9, which
clearly is a good fit to all data sets. Also shown are the predicted regions
from varying the spatial curvature to ⇥K = 0.01 (blue band) or varying
the equation of state to w = �0.7 (red band).

place the acoustic peak at other nearby locations and particularly
at smaller scales is rejected at 8 �.

Fig. 18 repeats this comparison with the power spectrum from
the SDSS-II LRG analysis presented in Reid et al. (2010) and Per-
cival et al. (2010). This analysis did not use reconstruction, but one
can see good agreement in the BAO and significant improvement
in the error bars with the CMASS sample.

In Fig. 19, we plot DV (z) constraints from measurements of
the BAO from various spectroscopic samples. In addition to the
SDSS-II LRG value at z = 0.35 (Padmanabhan et al. 2012a) and
the CMASS consensus result at z = 0.57, we also plot the z =
0.1 constraint from the 6dF Galaxy Survey (6dFGS) (Beutler et al.
2011) and a z = 0.6 constraint from the WiggleZ survey (Blake
et al. 2011a). WiggleZ quotes BAO constraints in 3 redshift bins,
but these separate constraints are weaker and there are significant
correlations between the redshift bins. We choose here to plot their
uncorrelated data points for 0.2 < z < 1.0. Each data point here is
actually a constraint on DV (z)/rs, and we have multiplied by our
fiducial rs to get a distance.

As described further in Mehta et al. (2012), the WMAP curve
on this graph is a prediction, not a fit, assuming a flat �CDM cos-
mology. For each value of ⇥mh2 and ⇥bh

2, one can predict a sound
horizon, and the angular acoustic scale measured by WMAP plus
the assumptions about spatial curvature and dark energy equation
of state then provide a very precise breaking of the degeneracy be-
tween ⇥m and H0 and hence a unique DV (z)/rs. Taking the 1�
range of ⇥mh2 and ⇥bh

2 produces the grey band in Fig. 19. There
is excellent agreement between all four BAO measurements and the
WMAP �CDM prediction.

c⇥ 2011 RAS, MNRAS 000, 2–33
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But, with separation of radial and angular modes, 
can measure DA(z) and H(z) separately



Weak Gravitational Lensing

Key advantage: measures distribution of matter, not light

Credit: NASA, ESA and 
R. Massey (Caltech)

http://www.lsst.org
http://www.lsst.org
http://www.lsst.org
http://www.lsst.org


Weak Gravitational Lensing
current constraints on DE are weak

CFHTLenS: cosmological model comparison using 2D weak lensing 15
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Figure 10.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(red) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is flat
ΛCDM (left panel) and curved ΛCDM (middle and right panel), respec-
tively.
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Figure 11.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(magenta) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is
flat wCDM.

Since the magnitude of the covariance is much smaller than the
statistical uncertainties, the cosmological results are virtually un-
changed.

Large scales only. The largest ratio of signal-to-noise for cosmic
shear is on small, non-linear scales. Unfortunately, those scales are
the most difficult to model, because of uncertainties in the dark-
matter clustering, and baryonic effects on the total power spectrum.
To obtain more robust cosmological constraints, we exclude small
scales from the 2PCFs in two cases, as follows. First, we use the
cut-off ϑc = 17 arc minutes. At this scale, the non-linear halofit
prediction of ξ+ is within 5 per cent of the linear model. Baryonic
effects, following Semboloni et al. (2011), are reduced to sub per
cent level. The component ξ−, being more sensitive to small scales,
is still highly non-linear at this scale. However, since most of the
constraining power is contained in ξ+, the resulting cosmological
constraints will not be very sensitive to non-linearities. Neverthe-

c© 2009 RAS, MNRAS 000, 1–18

... but WL still has a lot of promise! (no bias)

Kilbinger et al (CFHTLens), arXiv:1212.3338
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Figure 10.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(red) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is flat
ΛCDM (left panel) and curved ΛCDM (middle and right panel), respec-
tively.
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Figure 11.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(magenta) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is
flat wCDM.

Since the magnitude of the covariance is much smaller than the
statistical uncertainties, the cosmological results are virtually un-
changed.

Large scales only. The largest ratio of signal-to-noise for cosmic
shear is on small, non-linear scales. Unfortunately, those scales are
the most difficult to model, because of uncertainties in the dark-
matter clustering, and baryonic effects on the total power spectrum.
To obtain more robust cosmological constraints, we exclude small
scales from the 2PCFs in two cases, as follows. First, we use the
cut-off ϑc = 17 arc minutes. At this scale, the non-linear halofit
prediction of ξ+ is within 5 per cent of the linear model. Baryonic
effects, following Semboloni et al. (2011), are reduced to sub per
cent level. The component ξ−, being more sensitive to small scales,
is still highly non-linear at this scale. However, since most of the
constraining power is contained in ξ+, the resulting cosmological
constraints will not be very sensitive to non-linearities. Neverthe-
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Since the discovery of acceleration, 
constraints have converged to w ≈ −1

Ωm
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SN + BAO + CMB(WMAP) data:

Ruiz, Shafer, Huterer & Conley, 1207.4781



In principal, constraints are good...
(components)

Ruiz, et al. 1207.4781

αi       = PC amplitude
ei(z) = PC shape

Red = with SN systematics



Systematic errors 
‣ Already limiting factor in measurements

‣ Will definitely be limiting factor with future data

‣ Quantity of interest: (true sys. − estimated sys.) 
difference

‣ Self-calibration : measuring systematics internally 
from the survey - 

‣e.g., parametrize systematics, solve internally for 
those parameters



Systematics summary
for the “big four”38 Frieman, Turner & Huterer

Table 2: Comparison of dark energy probes.

Method Strengths Weaknesses Systematics

WL growth+geometric, CDM assumption image quality,
statistical power photo-z

SN purely geometric, standard candle evolution,
mature assumption dust

BAO largely geometric, large samples bias,
low systematics required non-linearity

CL growth+geometric, CDM assumption determining mass,
X-ray+SZ+optical selection function

8 DARK ENERGY PROJECTS

A diverse and ambitious set of projects to probe dark energy are in progress or
being planned. Here we provide a brief overview of the observational landscape.
With the exception of experiments at the LHC that might shed light on dark
energy through discoveries about supersymmetry or dark matter, all planned
experiments involve cosmological observations. Table 3 provides a representative
sampling, not a comprehensive listing, of projects that are currently proposed or
under construction and does not include experiments that have already reported
results. All of these projects share the common feature of surveying wide areas
to collect large samples of objects — galaxies, clusters, or supernovae.

The Dark Energy Task Force (DETF) report (Albrecht et al. 2006) classified
dark energy surveys into an approximate sequence: on-going projects, either
taking data or soon to be taking data, are Stage II; near-future, intermediate-scale
projects are Stage III; and larger-scale, longer-term future projects are designated
Stage IV. More advanced stages are in general expected to deliver tighter dark
energy constraints, which the DETF quantified using the w0-wa figure of merit
(FoM) discussed in the Appendix (§11.1). Stage III experiments are expected
to deliver a factor ∼ 3 − 5 improvement in the DETF FoM compared to the
combined Stage II results, while Stage IV experiments should improve the FoM
by roughly a factor of 10 compared to Stage II, though these estimates are only
indicative and are subject to considerable uncertainties in systematic errors (see
Fig. 16).

We divide our discussion into ground- and space-based surveys. Ground-based
projects are typically less expensive than their space-based counterparts and can
employ larger-aperture telescopes. The discovery of dark energy and many of the
subsequent observations to date have been dominated by ground-based telescopes.
On the other hand, HST (high-redshift SN observations), Chandra (X-ray clus-
ters), and WMAP CMB observations have played critical roles in probing dark
energy. While more challenging to execute, space-based surveys offer the advan-
tages of observations unhindered by weather and by the scattering, absorption,
and emission by the atmosphere, stable observing platforms free of time-changing
gravitational loading, and the ability to continuously observe away from the sun
and moon. They therefore have the potential for much improved control of sys-
tematic errors.

Frieman, Turner & Huterer, Ann. Rev. Astro. Astroph., 2008



Theory Systematics: calibrating the 
matter (and, later, gal) P(k) at large k
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Poster child of systematics:
photometric redshift errors

•Measure zphot from colors

•Calibrate P(zphot|zspec) relation 
from spectroscopic follow-up

•Need accurate characterization 
of “islands”, not just sigma_error 
of the “core” of distribution

C. Cunha

•Major challenge: spectroscopic surveys typically much 
shallower than photometric 

Example 
2



SFD Galactic dust 
extinction map

Photometric calibration errors

Correction to the extinction map

•“seeing” and weather
•thickness of atmosphere
•instrumental effects
•need to avoid bright stars
•....

Photometric calibration also can be due to:

Very generic!

Peek & Graves 2010

Example 
3



How do calibration errors affect the 
measured galaxy angular power spectrum?
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Final result for the observed power spectrum is:

where

True power Calibration (biases)

Cancels effects of 
calibration
monopole

tℓ𝓁m − observed galaxy field
cℓ𝓁m − calibration (systematics) field
Cℓ𝓁  − true galaxy clustering power

Huterer, Cunha & Fang, arXiv:1211:1015



SFD dust map PG10 corrections to map

angular power of corrections bias/error in cosmology

Calibration bias: Worked Example 1

Huterer, Cunha & Fang, arXiv:1211:1015
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FIG. 6: Top panel: i-band magnitude limits estimated for the upcoming observations of the Dark Energy Camera at CTIO
as a function of angular position. The pattern of variations in the magnitude limits are set by the variations in the observing
conditions and the survey tiling strategy over the five years of the survey. Bottom left: power spectrum of the map on the
left, extracted using Polspice and shown without the usual ⇥(⇥ + 1)/(2�) term so that the relative contribution of di�erent
multipoles can be more easily seen. Bottom right: biases in the cosmological parameters vs. the faint-end slope of the luminosity
function s(z) assuming calibration error maps is consistent with a fixed fraction of 10% of amplitude (or 1% of power) of the
magnitude-limit map shown in the top (bottom left) panel. The desired bias/error limit (horizontal dashed line) is exceeded
for s(z) � 1.

lar distribution of galaxy counts according to Eq. (2).
This modulation translates into additive and multiplica-
tive changes to the observed density fluctuation field, cf.
Eqs. (6) and (9), which in turn generate additive and
multiplicative changes to the observed power spectrum.

As shown in Eq. (11), photometric variations across
the survey masquerade as apparent violations of statisti-
cal isotropy. Hence, explicit tests of statistical isotropy
could provide a useful way to identify unaccounted-for
variations in the photometry. In this paper, we focused
on the e�ects in the angle-averaged power-spectrum, cf.
Eq. (14). We found that large-angle modulations of
power (dipole, quadrupole, etc), are particularly dam-
aging to cosmological analysis. We demonstrate this ex-
plicitly (cf. Eq. (30) and Fig. 2) for the case where the
variance in the photometric calibration error field is con-
centrated in one multipole �1 at a time. Note that the
spatially uniform photometric decrement or increment
across the sky (i.e. the monopole, �1 = 0) is unobservable
since it only a�ects the mean number of galaxies in the

survey.

Specializing in the angle-averaged power spectrum as
done in Eq. (14), one can explicitly show that largest-
angle fluctuations are dominant (for a fixed induced vari-
ance on the calibration error field c(n̂)). (Fig. 2). More-
over, highest-redshift clustering measurements are most
susceptible to the photometric variations, essentially be-
cause their angular power is the smallest and thus is more
a�ected by the photometric variation.

Less obviously, we find that the additive errors (e.g.
term proportional to |c�m|2 in Eq. (14)) are typically
dominant over the multiplicative biases (terms propor-
tional to the coe⇥cients U) for all redshift bins and at
large angular scales. The reason is simple: because they
couple di�erent multipoles, multiplicative terms are sup-
pressed relative to the additive ones by the fiducial an-
gular power spectrum C� factor; see the term with C�2 in
Eq. (14). Since C� � 1 even at low-z (and all �), the ad-
ditive terms dominate the error budget if all � modes are
used in the analysis. However, at slightly smaller angular

Calibration bias: Worked Example 2

DES magnitude limit (J. Annis)



Photometric Calibration 
systematics

1. Calibration breaks statistical isotropy of LSS 
signal (obvious in retrospect)

2. Large-angle errors beyond the monopole - 
dipole, quadrupole, etc - are most damaging

3. Control at level < 0.1% might be required for 
DES-type survey and beyond 

Summary of findings:



Opportunities & Missing Ingredients

28 August 2012                                        Presentation to HEPAP                         Rocky Kolb, University of Chicago

1. Advanced wide-field spectroscopic survey in time frame roughly between       
DES and LSST (& Euclid/WFIRST) 

� Stage IV BAO/RSD information
� Provide calibration data for systematic error mitigation to improve dark-

energy constraints from photometric surveys like DES & LSST (in 
particular, helps WL & CL)

2. Advance SN technique to Stage IV

� Clearest path: DOE participation in SNe at high-redshift from space 
(example: DOE-led modest upgrade to WFIRST)

� Explore vigorously ground-based alternatives (R&D effort for near-IR 
technology and sky-line suppression)

3. Pilot studies to generate new ideas for the future

� Deep spectroscopic calibration data needed for LSST.  Pilot study to 
determine exact needs and how to meet them.

� Pilot studies combining theory and targeted observations to chart an 
effective modified gravity program to study transition to modified gravity.

Recommendations of the “Rocky III” DOE/HEP report 
(Albrecht et al, 2012)



In the next 10-15 years, can expect 
measurements of:

•w (or wpivot) to 0.01 (incl systematics)
•d(z), growth(z) in bins out to z=2-3
•parametric DE vs MG consistency tests

 8 

the local Hubble flow. With the model of statistical and 
systematic errors detailed in the SDT report, the aggre-
gate precision of these measurements is 0.20% at z < 1 
(error-weighted <z> = 0.50) and 0.34% at z > 1 (<z> = 
1.32). The baryon acoustic oscillation (BAO) feature in 
galaxy clustering provides a “standard ruler” for distance 
measurement, calibrated in absolute units, independent 
of H0. The galaxy redshift survey (GRS) enables meas-
urements of the angular diameter distance DA(z) and the 
expansion rate H(z) using Hα emission line galaxies at 
z = 1 - 2 and [OIII] emission line galaxies at z = 2 – 3, 
with aggregate precision ranging from 0.40% to 1.8% 
(see figure). The imaging survey will enable measure-
ments of dark matter clustering via cosmic shear and 
via the abundance of galaxy clusters with mean mass 
profiles calibrated by weak lensing; we expect 40,000 M 
≥ 1014Msun clusters in the 2000 deg2 area of the high-
latitude survey. These data constrain the amplitude of 
matter fluctuations at 0 < z < 2 and provide additional 
leverage on the redshift-distance relation. The expected 
aggregate precision on the fluctuation amplitude as an 
isolated parameter change is ≈ 0.15% at z < 1 and 0.3-
0.5% at z > 1. Redshift-space distortions in the GRS 
provide an entirely independent approach to measuring 
the growth of structure, with aggregate precision ≈ 1% 
at z = 1-2. 

These high-precision measurements over a wide 
range of redshifts in turn lead to powerful constraints on 
theories of cosmic acceleration. If the cause of accel-
eration is a new energy component, then the key physi-
cal characteristic is the history w(z) of the equation-of-
state parameter w = P/ε, the ratio of pressure to energy 
density. A cosmological constant has w = -1 at all times, 
while dynamical dark energy models have w ≠ -1 and 
an evolutionary history that depends on the underlying 
physics of the dark energy field. If the cause of acceler-
ation is a breakdown of GR on cosmological scales, 
then it may be detected in a deviation between the 
measured growth history G(z) and the growth predicted 
by GR given the measured expansion history. Alterna-
tively, some modified gravity theories predict a mis-
match between the gravitational potential inferred from 
weak lensing (in Figure 4, cosmic shear and clusters) 
and the gravitational potential that affects motions of 
non-relativistic tracers, which governs redshift-space 
distortions in the galaxy redshift survey. Figure 5 illus-
trates the forecast precision of WFIRST-2.4 constraints 
on parameters of dark energy, in a model where w(z) is 
a linear function of expansion parameter a = (1+z)-1. 
These constraints would be a dramatic improvement on 
current knowledge, enabling robust discovery of devia-

tions from a cosmological constant that are within the 
errors of existing measurements.  

The high statistical precision of the WFIRST-2.4 
measurements places stringent demands on the control 
of systematic biases, and the mission is designed with 
this point foremost in mind. For SNe, the use of a stable, 
space-based observing platform and near-IR measure-

Figure 5: Forecast constraints on dark energy parameters 
from WFIRST-2.4 compared to current knowledge, for a 
model in which the dark energy equation-of-state parameter 
is w(z) = w0 + wa(1-a) with a = (1+z)-1. Ellipses show Δχ2 = 1 
error contours on the value of w at redshift z = 0.47 (the 
redshift at which it is best determined by WFIRST-2.4) and 
its derivative dw/da = -wa. The green ellipse, centered here 
on the cosmological constant model (w = -1, dw/da = 0), 
represents current state-of-the-art constraints from a com-
bination of CMB, SN, BAO, and H0 data, based on Anderson 
et al. (2012). For this figure, we have imagined that the true 
cosmology is w(z=0.47) = -1.022 and dw/da = -0.18, well 
within current observational constraints. The black ellipse 
shows the error forecast for the baseline WFIRST-2.4 su-
pernova, galaxy redshift, and weak lensing surveys, com-
bined with CMB data from Planck, a local supernova cali-
brator sample, and measurements of BAO and redshift-
space distortions from the SDSS-III BOSS survey at z < 0.7. 
The red ellipse shows the “extended” case in which the 
precision of the WFIRST-2.4 measurements (but not the 
Planck, local SN, or BOSS measurements) is increased by a 
factor of two, as a result of a longer observing program in 
an extended mission, better control of systematic uncer-
tainties, or both. Legends indicate physically distinct re-
gions of the parameter space: a cosmological constant (Λ), 
scalar field models that are “freezing” towards or “thawing” 
from w = -1, and models with w < -1 (often referred to as 
“phantom energy”) in which increasing acceleration leads 
to a “big rip” at a finite time in the future. 
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•In standard GR, H(z) determines distances and growth of 
structure

•So check if this is true by measuring separately

δ̈ + 2H δ̇ − 4πρMδ = 0

Distances
(as known as kinematic probes)

(a.k.a. 0th order cosmology)

Growth
(a.k.a. dynamical probes)

(a.k.a. 1st order cosmology)

Can we distinguish between DE and MG?

Probed by SN Ia, BAO, CMB,
weak lensing, cluster abundance

Probed by galaxy clustering, 
weak lensing, cluster abundance

(Usual answer:) Yes; here is how:

(Actually...) Not without assuming that DE
has no e.g. anisotropic stress

Gµ⌫ +Xµ⌫ = 8⇡GTµ⌫ vs. Gµ⌫ = 8⇡GTµ⌫ �Xµ⌫



What if gravity deviates from GR?

H2
− F (H) =

8πG

3
ρ, or H2 =

8πG

3

(

ρ +
3F (H)

8πG

)

For example:

Modified gravity Dark energy

Notice: there is no way to distinguish these two possibilities 
just by measuring expansion rate H(z)!
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R =
p
�Mh2

Z z⇤

0

dz0

H0

p
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DA(z) with ΩMh2 fixed is basically the “CMB shift parameter” R

ΩMh2 fixed
⇒ different orientationRedshift increases

⇔ more vertical
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CMB 
lensing

CMB Lensing gives DA(z~few)

[Recall, CMB lensing additionally carries info about power spectrum P(k)]
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LCDM predictions - flat or curved

Growth
to z=1000

Distance

Hubble
parameter

Growth index

Growth
to z=0

f×G

Current data



Quintessence predictions (flat, no Early DE)
Current data



LCDM predictions 
(flat or curved)

D, G to <1% everywhere
H(z=1) to 0.1% for flat LCDM 

Grey: flat
Blue: curved

Future data


