Cosmological anomalies: a holistic view

> Dragan Huterer Physics Department University of Michigan

based mostly on work with Copi, Schwarz & Starkman (2004-2016) and Jessica Muir (2016-2018)

review (of CMB anomalies after Planck) in Schwarz, Copi, Huterer & Starkman (2016), arXiv:1510.07929

Cosmic anomalies: pros and cons

Cosmological principle is well worth investigating:

- May bring fascinating new insights into early-universe physics
- May bring insights into dark energy
- Should be (imo) near forefront of efforts with future surveys

BUT:

Extraordinary claims require extraordinary evidence:

- To account for the look-elsewhere effect
- To have respect for the effect of systematic errors
- Not every anomaly is equally "special" beware of random things being off

Anomaly Philosophy

Anomalies are almost always *a posteriori* nature – they are not (*a priori*) predicted

Not every 'anomaly' is equally compelling. The pecking order goes as follows:

- 1. Large-scale anomalies (CMB mostly...)
- 2. Medium-scale anomalies (LSS, clustering)
- 3. Small-scales anomalies (galaxy morphology, satellites, etc)

This talk: only 1. For 2. and 3., the bar should be VERY high to claim cosmological anomalies. CMB anomaly Summary (maybe incomplete list - but don't double-count!):

- 1. Angular 2-pt function C(θ) vanishes for $\theta \ge 60 \text{ deg}$
- 2. Quadrupole and octopole are unusually planar, and the plane is nearly perpendicular to some special directions on the sky
- 3. There is a N/S power asymmetry
- 4. There is an unusually cold spot
- 5.There is an "ISW anomaly" too much ISW in CMBxLSS

Missing Large-Angle Power

Power at θ≈60 deg vanishes in cut-sky maps

Low power: COBE and WMAP

Spergel et al 2003: 0.2% of sims have less power at angles >60 deg

$S_{1/2}$ statistic: (Spergel et al 2003)

 $S_{1/2} \equiv \int_{-1}^{1/2} [C(\theta)]^2 d(\cos \theta)$

	U74		KQ75y9		
Map	$S_{1/2} \; (\mu { m K})^4$	$p\left(\% ight)$	$S_{1/2} \; (\mu { m K})^4$	p (%)	
WMAP ILC 7yr	1620.3	0.208	1247.0	0.090	
WMAP ILC 9yr	1677.5	0.232	1311.8	0.109	
<i>Planck</i> SMICA	1606.3	0.202	1075.5	0.053	
Planck NILC	1618.6	0.208	1096.2	0.058	
<i>Planck</i> SEVEM	1692.4	0.239	1210.5	0.082	
<i>WMAP W</i> 7yr	1839.0	0.304	1128.5	0.064	
WMAP W 9yr	1864.2	0.317	1138.3	0.066	
Planck HFI 100	1707.5	0.245	916.3	0.028	
<i>WMAP V</i> 7yr	1829.2	0.300	1276.2	0.099	
WMAP V 9yr	1840.4	0.304	1268.8	0.097	
Planck LFI 70	1801.7	0.287	1282.1	0.101	

(frequentist) significance $\geq 99.7\%$ in all cases

Remarkably consistent across experiments, frequencies, foreground cleanings:

Summary of missing-power statistics

	$S_{1/2} \equiv \int_{-1}^{1/2} \left[\mathcal{C}(\theta) \right]^2 \mathrm{d}(\cos \theta)$	Probability
LCDM	50,000 $\mu\mathrm{K}^4$	50%
best-fit theory (e.g. WMAP C _l)	8,000 μK4	5%
WMAP cut-sky <t<sub>i T_j></t<sub>	1,000 μK4	0.03%

Large-scale alignments in the CMB

ℓ = 2, 3 are aligned and planar

$$\hat{L}_{\ell}^{2} \equiv \frac{\sum_{m=-\ell}^{\ell} m^{2} |a_{\ell m}|^{2}}{\ell^{2} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^{2}}$$

 ℓ =3 is planar: P~1/20

 ℓ =2,3 is are aligned: P~1/60

de Oliveira-Costa, Tegmark, Zaldarriaga & Hamilton 2004

... and still are

	Unco	prrected	DQ	DQ corrected	
Map	$ m{\hat{n}}_2\cdotm{\hat{n}}_3 $	p-value (%)	$ m{\hat{n}}_2\cdotm{\hat{n}}_3 $	p-value (%)	
WMAP ILC 7yr	0.9999	0.006	0.9966	0.327	
WMAP ILC 9yr	0.9985	0.150	0.9948	0.511	
<i>Planck</i> NILC	0.9902	0.955	0.9988	0.118	
<i>Planck</i> SEVEM	0.9915	0.825	0.9995	0.055	
Planck SMICA	0.9809	1.883	0.9965	0.338	

• Based on 10^6 simulated maps

- We inpaint Planck maps with Galactic cuts numerically heavy part of calculation
- Correcting for the kinematic quadrupole (DQ) is important

Copi et al, arXiv:1311.4562

Multipole vectors of our sky

Cop, Huterer & Starkman, 2004

Copi et al, arXiv:1311.4562

Movie by Craig Copi

Are the CMB large-scale anomalies correlated?

Not correlated, except for the "obvious" ones

			Depends on		(Quantity	Description	Multipoles	Section	
			Two-point functions only		ly	$S_{1/2}$	Amount of angular power at $\theta > 60^{\circ}$	2–100	III A 1	
							$egin{array}{c} C_2 \ C_3 \end{array}$	Quadrupole amplitude Octopole amplitude	2 3	III A 2 III A 3
							σ_{16}^2	Variance of temperature fluctuations at $N_{\text{side}} = 16$	2–47	III A 4
C2 -	0.79						<i>R</i> ₂₇	Ratio of power between even and odd multipoles	2–27	III A 5
02							$C(\pi)$	Angular correlation at $\theta = 180^{\circ}$	2–191	III A 6
C ₃ -	0.19	0.012	Phase	s of $a_{\ell m}$			$S_{\rm QO}$	Quadrupole-octopole alignment	2,3	III B 1
			2				$A_{\rm LV}$	Hemispherical power asymmetry	2–191	III B 2
$\sigma_{16}^2 - R_{27} - R_{27}$	0.8	0.71	0.36	0.24						
С(п) -	0.6	0.7	-0.36	0.51	0.72				6	
S _{QO} -	-0.025	-0.022	-0.014	-0.02	-0.0074	-0.014			A.	Z
A_{LV} -	0.027	0.031	0.034	0.079	0.021	0.019	0.015			
	$\log S_{\frac{1}{2}}$	Ċ ₂	Ċ ₃	σ_{16}^{2}	R ₂₇	<i>C</i> (π)	S_{QO}		Jessie (Perim	Muir leter)

Muir, Adhikari & Huterer, arXiv:1806.02354

CMB cold spot

The "cold spot"

Reviewed in: Vielva 2004

Cold spot in the galaxy distribution?? In same direction as the CMB cold spot

Szapudi et al, 1405.1566

- Detected in Pan-STARRS1 in same angular direction as CMB cold spot!
- However, ISW effect from this Pan-STARRS "hole" only explains 10% of the CMB cold spot (Zibin 2014, Nadathur et al 2014)

No compelling theoretical (or systematic) explanations for large-angle anomalies as yet

Can other observations confirm or refute the anomalies?

Large-scale structure? CMB polarization?

Can one see effect of such large-angle power suppression in future LSS surveys?

Answer: yes, though it will be challenging; below, hypothesis that P(k) is suppressed, using LSST

Gibelyou, Huterer & Fang 2010

If this is a statistical fluke, CMB polarization <u>may</u> successfully confirm that

Copi et al, MNRAS 434, 3590 (2013),

ISW anomaly (CMB + DES or BOSS)

ISW anomaly

Detect superclusters and voids in BOSS/DES
 Look at CMB temperature in those directions

The temperature averages out to zero, except for the ISW part.

Kovacs et al, arXiv:2107.013038

ISW anomaly: Planck + BOSS QSO

Kovacs et al, arXiv:2107.013038

Planck + [DES Y1, BOSS QSO] summary

[A_{ISW} = 1 is the standard LCDM value]

Kovacs et al, arXiv:1811.07812 (DES Y1); arXiv:2107.013038 (BOSS QSO)

Conclusions

• Anomalies are interesting and investigating them is important...

• ... but one has to be both careful and reasonable in interpreting their significance

• For non-CMB anomalies, the bar for claiming something is wrong with basic physics or LCDM should be very high

• For CMB anomalies, the most compelling ("special"?) still seems to be large-angle missing power, alignments

 Future surveys (LSS optical and radio in particular) should be able to significantly test the existing anomalies
 ⇒ we should make predictions on what they will find!

Dangers of working on anomalies: geocentrists are very interested!

Entertaining story by Adam Becker on Story Collider: "How to save your PhD supervisor"

https://soundcloud.com/the-story-collider/adam-becker-how-to-save-your-phd-supervisor