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The nature of dark energy can be probed not only through its equation of state but also through its

microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure.

As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both

cosmic microwave background and matter power spectra. We show that current data can put no significant

constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can

begin to show more interesting results for early dark energy models. For example, the best fit model for

current data has a slight preference for dynamics [wðaÞ ! #1], degrees of freedom distinct from

quintessence (cs ! 1), and early presence of dark energy [!deða $ 1Þ ! 0]. Future data may open a

new window on dark energy by measuring its spatial as well as time variation.
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I. INTRODUCTION

Although dark energy dominates the energy density of
the universe and drives the accelerating cosmic expansion,
we know remarkably little about it. Over the course of the
past decade, cosmologists have devoted considerable effort
to devising new and sharpening known methods for deter-
mining the equation of state of dark energy. The equation
of state, defined as the pressure to energy density ratio, is
generally a time dependent function and fully specifies the
temporal evolution of dark energy density. The dark energy
density in turn (along with the matter density) determines
the expansion rate of the universe, as well as geometrical
measures (distances and volumes).

The equation of state wðzÞ does not, however, tell us
about the microphysics of dark energy, nor does it describe
all of the cosmological signatures. For example, even a
perfectly measured wðzÞ does not tell us whether dark
energy arises from a canonical, minimally coupled scalar
field, a more complicated fluid description, or modification
of gravitational theory on large scales. The properties of
the perturbations to the dark energy, which must exist
unless it is simply a cosmological constant, do carry such
extra information.

Perturbations to the energy density and pressure can be
described through the sound speed, c2s ¼ !p=!". The
sound speed carries information about the internal degrees
of freedom: for example, rolling scalar fields (quintes-
sence) necessarily have sound speed equal to the speed
of light, cs ¼ 1. Detection of a sound speed distinct from
the speed of light would indicate further degrees beyond a
canonical, minimally coupled scalar field.

A low sound speed enhances the spatial variations of the
dark energy, giving inhomogeneities or clustering.
Heuristically, the sound speed determines the sound hori-
zon of the fluid, ls ¼ cs=H, where H is the Hubble scale.

On scales below this sound horizon, the fluid is smooth; on
scales above ls, the fluid can cluster. Since for quintessence
cs ¼ 1, the sound horizon equals the cosmic horizon size
and there are essentially no observable inhomogeneities.
However, if the sound speed is smaller, then dark energy
perturbations may be detectable on correspondingly more
observable (though typically still large) scales. These per-
turbations act in turn as a source for the gravitational
potential, and affect the propagation of photons. For ex-
ample, clustering dark energy influences the growth of
density fluctuations in the matter and large scale structure,
and an evolving gravitational potential generates the inte-
grated Sachs-Wolfe (ISW) effect [1] in the cosmic micro-
wave background. The observational signatures of these
effects offer a way of probing the dark energy inhomoge-
neity and sound speed.
In this paper we study the signatures of the sound speed

of dark energy. We revisit and extend previous studies of
dark energy clustering [2–21], clarifying and quantifying
the physical effects caused by the nonstandard values for
the speed of sound. We then study models where the dark
energy density was non-negligible at early times, which
offer much better prospects for observable cs signatures
than the fiducial near-"CDM case. Finally, using current
cosmological data, we constrain the speed of sound jointly
with 7–8 other standard cosmological parameters.
This paper is organized as follows. In Sec. II we describe

dark energy perturbations and the physical influence of the
sound speed and equation of state, deriving the dark energy
density power spectrum. Section III describes the dark
energy models we consider, and Sec. IV treats the impact
of dark energy inhomogeneity on the cosmic microwave
background (CMB), matter power spectrum, and their
cross correlation. We consider models with both constant
and time varying equation of state and sound speed in
Sec. V and present constraints from current data.
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II. DARK ENERGY PERTURBATIONS

We briefly review the growth of density perturbations, in
both the matter and dark energy, focusing on the role of the
sound speed. See [22–24] for more details. To derive the
influence of the sound speed on dark energy inhomogene-
ity, and dark energy perturbations on the matter distribu-
tion, we assume adiabatic initial conditions for all
components including dark energy and solve the perturbed
Einstein equations for the density perturbations !"i, pres-
sure perturbations !pi, and velocity (divergence) perturba-
tions #i. We do not consider an anisotropic stress.

In the conformal Newtonian gauge, the perturbed
Friedmann-Robertson-Walker metric takes the form

ds2 ¼ að$Þ2½#ð1þ 2c Þd$2 þ ð1# 2%Þd~r2(; (1)

where a is the scale factor, $ is the conformal time, ~r
represents the three spatial coordinates, and c and % are
the metric potentials. Conservation of the stress-energy
tensor (T&'

;' ¼ 0) of a perfect fluid gives the following
equations in Fourier space (see, e.g., [24]) from the time-
time and space-space parts:
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where ~k is the wave vector, dots are derivatives with respect
to conformal time, H ¼ _a=a is the conformal Hubble
parameter, ! ) !"=" is the density perturbation, ð" þ
pÞ# ) _{kj!T0

j is the velocity perturbation, and w ¼ p="

is the equation of state. These equations hold for each
individual component, i.e. matter or dark energy.

We define the effective (or rest frame) sound speed cs
through (see, e.g., [25])

!p
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; (3)

where the adiabatic sound speed squared is
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In terms of cs, Eqs. (2) and (3) read

_!
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¼ 3H ðw# c2sÞ
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!
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þ c : (6)

One can readily see that the source term in a €! equation
will have a negative term involving c2sk

2 from _# [take the

derivative of Eq. (5) and substitute in Eq. (6)], indicating
that growth is suppressed on small scales, k >H =cs.
However, perturbations will exist in the dark energy den-
sity even for cs ¼ 1, albeit at a very low level within the
Hubble scale k >H . As cs drops below unity, the sup-
pression is itself suppressed and inhomogeneities in the
dark energy can be sustained. All such perturbations will
vanish though as 1þ w ! 0, regardless of c2s . In the
combination of Eqs. (5) and (6) into a single second order
equation for !, the terms involving the metric in this
equation are all proportional to 1þ w (or derivatives
thereof) so that in the limit 1þ w ! 0 the perturbations
decouple from the metric and do not experience a gravita-
tional force leading to growth.
The dark energy perturbations affect the metric pertur-

bations, and thus the perturbations in the matter, through
the Poisson equation

k2% ¼ #4(Ga2
X

i

"i

!
!i þ 3H ð1þ wiÞ

#i

k2

"
; (7)

where the sum runs over all components. For a perfect
fluid, there is no anisotropic stress so c ¼ %.

FIG. 1 (color online). The deviation of the power spectrum of
the matter density perturbations (Newtonian gauge) from the
cs ¼ 1 case is plotted vs wave number k. Three regions—above
the Hubble scale (small k), below the sound horizon (large k),
and the transition in between—can clearly be seen. The models
have w ¼ #0:8 (deviations will be smaller for w closer to #1)
and constant sound speed as labeled. For the cs ¼ 0:1 case, we
also show the result (dashed curve) in terms of the gauge
invariant variable Dg as defined in [49] (in that work $ is equal
to minus our %). This illustrates that the low k behavior is
strongly gauge dependent.
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Therefore we expect the density power spectrum to be
affected by the dark energy sound speed in distinct ways on
different scales. On superhorizon scales, k <H , the den-
sity power spectrum becomes independent of the dark
energy sound speed. Here the perturbations are determined
by the curvature fluctuation [22,26]. Between the Hubble
scale and the sound horizon, H & k & H =cs, a sound
speed cs < 1 will enhance the density inhomogeneities
(modulo gauge dependence around the Hubble scale).
Finally, on smaller scales, k * H =cs, inhomogeneity
growth is always suppressed and the exact value of the
sound speed becomes irrelevant. We illustrate these behav-
iors in Fig. 1. (All power spectra in this paper are for linear
theory and shown at a ¼ 1, and are calculated using
CAMB [27] and CMBeasy [28,29].) Note that the strength
of the deviation from the cs ¼ 1 behavior is a steep func-
tion of cs for cs & 0:1.

III. DARK ENERGY MODELS

We study three classes of dark energy models to eluci-
date the role of sound speed and 1þ w, from early to late
times.

(1) Constant w models.—We begin with the simplest
model of dark energy with sound speed different
from the speed of light: a constant equation of state
w and a constant sound speed cs. This is mostly for
historical comparison to [7], since the current con-
straint on constant equation of state isw ¼ #0:97*
0:08 [30] (using only geometric data independent of
the sound speed), and so the effects of sound speed
are suppressed due to 1þ w + 0.

(2) Early dark energy with constant speed of sound
(cEDE).—In order to allow for a period where w is
further from #1 and so the sound speed has more
influence, we also consider a model with varying
equation of state but constant sound speed. We
choose the phenomenological early dark energy
model of [31] but allow cs to be a free (constant)
parameter. At early times w approaches 0 in this
model, and so the value of cs can have observational
consequences. The model parameters are the frac-
tion of dark energy density at early times !e (this
approaches a constant), the equation of state today
w0, and cs. We call this generalization the cEDE
model. Here

!deðaÞ ¼
!de #!eð1# a#3w0Þ

!de þ!ma
3w0

þ!eð1# a#3w0Þ;

(8)

wðaÞ ¼ # 1

3½1#!deðaÞ(
d ln!deðaÞ

d lna
þ wotherðaÞ;

(9)

where the current dark energy density !de ¼ 1#

!m and wotherðaÞ ) potherðaÞ="otherðaÞ ¼
1
3"rðaÞ=ð"rðaÞ þ "mðaÞÞ is the effective equation
of state of the nondark energy components, i.e.
matter and radiation (including neutrinos). In this
model, cs ¼ const. We show an example of wðaÞ in
Fig. 2.

(3) Barotropic (‘‘aether’’) dark energy models.—The
third model we treat is a particular case of the
barotropic class of dark energy, where there is an
explicit relation determining the pressure as a func-
tion of energy density. Several physical models for
the origin of dark energy fall in this class and have
attractive properties as discussed below.
Reference [32] showed that all such viable models
could be written as a sum of an asymptotic constant
energy density "1 (with w1 ¼ #1) and a baro-
tropic fluid, or aether, with positive equation of state
wAE > 0. The sound speed is equal to the adiabatic
sound speed, cs ¼ ca, and is thus completely deter-
mined by wAE. In particular, it has the property that
c2s , wAE. Moreover, to admit an early matter domi-
nated era, wAEða $ 1Þ ! 0, and hence c2sða $
1Þ ! 0. We adopt the form wAE ¼ )as so

"deðaÞ ¼ "1 þ "AEðaÞ; (10)

FIG. 2 (color online). The equation of state (lower three
curves) and sound speed (upper three curves) as a function of
scale factor are illustrated for two models. The aether model
takes s ¼ 3 (solid curves) or s ¼ 1 (dashed curves) and w0 ¼
#0:99; the early dark energy density !e is determined from
these parameters. Note that the cEDE model (dotted curves, also
taking w0 ¼ #0:99, and here setting cs ¼ 0) is a close match to
the aether model.
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"AEðaÞ ¼ "AE;0a
#3e3)ð1#asÞ=s; (11)

wðaÞ ¼ # "1
"1 þ "AEðaÞ

þ wAEðaÞ
"AEðaÞ

"1 þ "AEðaÞ
;

(12)

c2sðaÞ ¼ wAEðaÞ #
s

3

wAEðaÞ
1þ wAEðaÞ

; (13)

where "1 ¼ "de;0 # "AE;0. There are two free pa-
rameters in addition to the dark energy density to-
day: ) and "AE;0—one less than in the cEDE case
(we will fix s ¼ 3 usually). Note that the effective
early dark energy density !e + ð"AE;0="m;0Þe3)=s

and the present equation of state is w0 ¼
#1þ ð"AE;0="de;0Þð1þ )Þ. As discussed by [32],
the barotropic model strongly ameliorates the coin-
cidence problem, motivating why w + #1 today.

Our three models thus span constant w and constant cs,
varying w and constant cs, and varying w and varying cs
(but with cs determined by w). We illustrate their equation
of state and sound speed behaviors in Fig. 2. We expect a
cEDE early dark energy model with cs ¼ 0 to show the
greatest effect of sound speed on the observables. Since
cEDE can look so much like the barotropic model, in wðaÞ
and more approximately in cs, we do not treat the baro-
tropic model separately in the following sections, but
rather consider it as a motivation for cEDE. The barotropic
model possesses the advantage of having cs ¼ 0 at early
times (and w0 + #1 at late times) being determined by
physics rather than being adopted as phenomenology.

IV. IMPACT ON COSMOLOGICAL
OBSERVATIONS

We now consider angular power spectra of cosmological
observables that are sensitive to the speed of sound of dark
energy, with the aim of comparing the predictions to
current observations (so we do not here include higher
order correlations, leaving for future work such signatures
and their effect on constraining non-Gaussianity).

A. Angular power spectra

The matter density fluctuations, potential fluctuations,
and the radiation field are influenced by the dark energy
sound speed as discussed in Sec. II. From these we can
form, and measure, the angular auto- and cross-power
spectra. We consider the CMB temperature anisotropy
power spectrum, the power spectra of the galaxy (or other
large scale structure tracer) overdensities in redshift bins
(labeled by i), and the cross correlations between galaxy
overdensity and CMB temperature, giving the power spec-
tra CXY

l , where fXYg ¼f TT; Tgi; gigjg. See the Appendix
for a review of how the angular power spectra relate to the
potential power spectrum.

Figure 3 shows a typical temperature power spectrum.
The signal from the sound speed dependence enters
through the ISW effect, which is also plotted separately
in the figure. The extra power from the ISW effect arises
from the decay of the potential as the dark energy impacts
matter domination at late times; in the concordance model
the cosmological constant dark energy causes a decay in
the potentials of about 25% between the matter dominated
era and the present. While the decay arises from the change
in the expansion history due to the dark energy equation of
state, it can be ameliorated by increased dark energy
clustering if the dark energy sound speed is small.
Figure 4 illustrates the influence of the sound speed.
The ISWeffect can be measured [33–42], and one might

hope to constrain the sound speed in this way. However,
since the effect occurs only on the largest angular scales,
cosmic variance swamps the signal. This is demonstrated
in the left panel of Fig. 4 for a cosmic variance limited
experiment scanning 3=4 of the whole sky. The right panel
explicitly displays the low signal to noise for each multi-
pole, with the difference between cs ¼ 0 and cs ¼ 1
amounting to only S=N ¼ 1 when summed over all
multipoles.
For the galaxy or matter density fluctuations, the dark

energy sound speed can have a larger effect. Note that the
dark energy perturbations themselves remain small relative
to the matter inhomogeneities, despite a low sound speed
having a dramatic effect on the dark energy clustering.
Figure 5 shows that on superhorizon scales the level of
dark energy power is ð1þ wÞ2 relative to the dark matter
power (because at superhorizon scales the perturbations
remain adiabatic and the ratio !DE=!DM ¼ 1þ w). On

FIG. 3 (color online). CMB temperature power spectrum for
w ¼ #0:8 and cs ¼ 1, explicitly showing the contribution of the
late-time (z < 10) ISW effect.

ROLAND DE PUTTER, DRAGAN HUTERER, AND ERIC V. LINDER PHYSICAL REVIEW D 81, 103513 (2010)

103513-4



subhorizon scales, the ratio depends strongly on the dark
energy sound speed. For cs ¼ 0, the ratio is scale indepen-
dent in the subhorizon regime: during matter domination,
one can show analytically that then

PDE

PDM
¼

!
1þ w

1# 3w

"
2

ðmatter dominatedÞ; (14)

but this ratio becomes smaller by roughly a factor of 2 by
today. For a canonical sound speed cs ¼ 1, the dark energy
power is strongly suppressed relative to the dark matter
power, with the ratio scaling as k#4.
The matter power spectrum itself, however, is affected

by the dark energy sound speed through the potential
perturbations induced by the dark energy inhomogeneities.
Figure 6 shows in the left panel the absolute comparison of
the dark matter and dark energy power (in contrast to the
relative difference between the two in Fig. 5). For the
constant w model with no early dark energy, one cannot
easily see the influence of the dark energy sound speed on
the dark matter power on this log scale. Therefore, the right
panel plots the deviation with respect to the cs ¼ 1 case.
We see that the deviation due to cs ¼ 0 is at the percent
level in the matter density power and the tens of percent
level in the potential perturbation power.
The density and potential are related through the Poisson

equation. For example, for w ¼ #0:8 and cs ¼ 0, the
amplitude of the dark energy perturbations is about 4%
of the dark matter perturbation (i.e. the power ratio is about
1:6- 10#3 on subhorizon scales as seen from Fig. 5).
According to the Poisson equation, Eq. (7), this translates
into about a 12% increase in % going from cs ¼ 1 to cs ¼
0, because today "DE + 3"m and because in the cs ¼ 1
case the dark energy contribution to the Poisson equation is
negligible. Hence, as shown in the right panel of Fig. 6, we
get about a 25% increase in the power spectrum of %.

FIG. 5 (color online). The ratio of the dark energy to dark
matter density power spectra (Newtonian gauge) is plotted for
various values of constant w and cs. Although cs ¼ 0 gives
dramatically more power on subhorizon scales than cs ¼ 1, the
direct ratio of the dark energy power to the matter power is
negligible.

FIG. 4 (color online). Left panel: CMB temperature power spectrum for cs ¼ 0, and its difference from the cs ¼ 1 case, are plotted
for w ¼ #0:8, along with the cosmic variance. Right panel: The signal relative to the noise (here just cosmic variance) is low, with the
total summed over all multipoles S=N ’ 1:0. Compensating the difference between the models by varying the other cosmological
parameters would make the S=N even smaller.
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Note that the (late) ISW effect is proportional to the
change in potential %% between matter domination and
today. In the standard case, this decay is about 1=4 of the
potential during matter domination and thus about 1=3 of
the potential today, i.e. %% ) %0 # %MD + # 1

4 %MD +
# 1

3%0. Hence, the change in the potential at present of
12% due to enhanced dark energy clustering corresponds
to a change in the ISWeffect of approximately 3- 12% ¼
36% (i.e. in ½%%ðcs ¼ 0Þ #%%ðcs ¼ 1Þ(=%%ðcs ¼ 1Þ).
This enhancement gives the ISW effect extra sensitivity
to dark energy clustering relative to other probes.

The matter density perturbation is, of course, also af-
fected, but with only about a 1% increase in its amplitude.
This effect on the potential today through the Poisson
equation is therefore subdominant to the direct effect of
the dark energy perturbation itself.

Now that we have seen the basic effects of the dark
energy sound speed and equation of state on the observ-
ables, we consider the specific instances of the constant w
model and cEDE model. We can already guess that to
obtain reasonable constraint on the sound speed we will
want a model that has as large a 1þ w and as small a cs as
is consistent with the observations, for a substantial part of
cosmic history.

B. Estimating constraints in constant w model

We begin by estimating the chances of constraining the
sound speed using the *2 between two extremes: cs ¼ 0
and cs ¼ 1. Since we consider angular power spectra and
cross correlations of observables on the sky (labeled by
capital letters below), *2 is in general given by

*2 ¼
X

‘

X

fXYg;fZWg
%CXY

‘ ðCov‘Þ#1
XY;ZW%C

ZW
‘ ; (15)

where %CXY
‘ ) CXY

‘ ðcs ¼ 1Þ # CXY
‘ ðcs ¼ 0Þ is the differ-

ence in spectra between the two cases and the covariance is
given by

ðCov‘ÞXY;ZW ¼ 1

ð2‘þ 1Þfsky
ð ~CXZ

‘
~CYW
‘ þ ~CXW

‘
~CYZ
‘ Þ; (16)

with

~CXY
‘ ¼ CXY

‘ þ NXY
‘ ; (17)

where fsky is the fraction of the sky that is observed, CXY
‘

are the fiducial spectra andNXY
‘ are the noise power spectra

so that ~C‘ are the observed power spectra that include the
noise. (See the Appendix for further details.) For the *2

estimates of this section we consider only the CMB tem-
perature power spectrum, and we will consider the cosmic
variance dominated limit where the noise power spectrum
is much smaller than the fiducial power spectrum, NTT

‘ ¼
0. Hence, Eq. (15) simplifies to

*2 ¼ 1

2
fsky

X

‘

ð2‘þ 1Þ
!
%CTT

‘

CTT
‘

"
2
: (18)

Assuming Gaussian likelihood, the quantity *2 is
equivalent to the signal to noise squared with which we
can distinguish cs ¼ 1 from our fiducial cs ¼ 0 if all the
other parameters were known exactly. Since in reality we
should marginalize over the other parameters as well, *2 is
an upper bound on the signal to noise squared for distin-

FIG. 6 (color online). Left panel: dark energy (lower four, thin curves) and dark matter (upper, thick curves) density power spectra
for different choices of the dark energy equation of state and sound speed. Right panel: relative differences in the potential (%) and
matter density (!m) power spectra between cs ¼ 0 and cs ¼ 1 (matter and dark energy perturbations in Newtonian gauge).
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guishing the two sound speeds. Therefore if we find a low
*2, then there is little hope of constraining cs with the
assumed data set. To amplify the chances of detection, we
examinew ¼ #0:8, since in the limitw ! #1 dark energy
perturbations become irrelevant regardless of the value of
the sound speed; given that w ¼ #0:8 is already an un-
likely value given current data, the calculated signal to
noise squared ðS=NÞ2 could be an overoptimistic estimate
of the true value.

Figure 4 confirms that the discrimination between sound
speeds through the CMB temperature autocorrelation is
poor, as discussed in the previous subsection. Cosmic
variance swamps the difference between even the ex-
tremes, cs ¼ 0 and cs ¼ 1, and the total ðS=NÞ2 + 1.
Note that this took cosmic variance to be calculated from
the most optimistic case, cs ¼ 0, where the noise is sig-
nificantly lower, so one truly cannot determine cs with the
CMB temperature anisotropy despite all the most optimis-
tic assumptions.

The overall significance of the mere existence of the
ISW effect (i.e. the *2 between the CMB power with the
ISW effect artificially removed and the true CMB) is only
ðS=NÞ2ISW ¼ 3:7. The potential decay in a model with dark
energy sound speed cs ¼ 0 is a little less than half the
contribution in the cs ¼ 1 case, thus explaining the
ðS=NÞ2%cs¼1 + ð1=4ÞðS=NÞ2ISW ¼ 1:0 quoted above. Thus

the ISW signal in the CMB temperature spectrum is too
blunt a tool to explore dark energy sound speed.

We must go beyond the CMB temperature spectrum to
consider the galaxy-galaxy power and temperature-galaxy
cross correlation data. Rather than proceeding further with
halfway measures such as calculating the signal to noise to
determine whether we would be able to place constraints
on cs while fixing all other parameters, we instead carry out
a full likelihood analysis in Sec. V.

C. Estimating constraints in cEDE model

In the early dark energy case, we find that the ISW signal
in both the CMB temperature autocorrelation and
temperature-galaxy cross correlation is comparable to the
signal in the case of ordinary dark energy (which typically
has an energy density fraction relative to matter of .10#9

at CMB last scattering). However, there is another source
of distinction. Dark energy in the cEDE model has w + 0
at CMB last scattering; if in addition cs ¼ 0, then cEDE
behaves at early times just like dark matter, with significant
clustering of the dark energy. This will affect not only the
large scale, late-time ISW contribution to the CMB but also
the early Sachs-Wolfe effect and the acoustic peaks.

Therefore we expect a clearer observational signature of
the sound speed than for ordinary dark energy. Figure 7
shows the effect of changing the sound speed in the cEDE
model. The CMB temperature autocorrelation alone deliv-
ers ðS=NÞ2 + 9- 103 (for ‘max ¼ 2000). This seems more

promising for constraining the sound speed, and again we
proceed to a full likelihood analysis.

V. MEASURING THE SPEED OF DARKNESS

To obtain accurate constraints on the dark energy sound
speed, we perform a Markov Chain Monte Carlo (MCMC)
likelihood analysis over the set of parameters
flogcs; pdark; !b;!c;!de; $; As; nsg, where pdark is either
w, in the constant w case, or fw0;!eg, in the cEDE case
(in both cases we do not allow the equation of state to go
below #1), !b ¼ !bh

2 is the present physical baryonic
energy density, !c ¼ !ch

2 is the present physical cold
dark matter energy density, !de is the present relative
energy density in the dark energy, $ is the reionization
optical depth, As is the amplitude of primordial scalar
perturbations (defined relative to a pivot scale of k ¼
0:05 Mpc#1), and ns is the spectral index of the primordial
scalar perturbations. Note that we choose logcs as the
sound speed parameter because most of the sensitivity is
at small values of cs.
For current data we include the CMB temperature power

spectrum fromWMAP5 [43], the cross correlation of these
temperature anisotropies with mass density tracers includ-
ing the 2MASS (2-Micron All Sky Survey), SDSS LRG
(Sloan Digital Sky Survey Luminous Red Galaxies), SDSS
quasars, and NVSS (NRAO VLA All Sky Survey) radio
sources, following [41], and the SDSS LRG autocorrela-
tion function from [44]. To break degeneracies with back-
ground cosmology parameters and constrain the expansion
history, we use the supernova magnitude-redshift data from
the Union2 compilation [30].
The MCMC package COSMOMC [45] is used to calcu-

late the joint and marginalized likelihoods. The results for
the marginalized 1D probability distributions are shown in
Fig. 8 for the constant equation of state case and in Fig. 9
for the early dark energy, cEDE case. Dotted lines show the
distributions when one fixes cs ¼ 1.
In the constantw case, no constraint can be placed on the

sound speed, as expected from our earlier arguments. In
addition, the other parameter distributions are essentially
unaffected by the value of cs. For the cEDE case, however,
some preference appears for a low sound speed, cs & 0:1,
and this propagates through to the other parameters. The
preference for a low sound speed does not depend strongly
on the inclusion of the large scale structure data (i.e. the
temperature-matter cross correlation and the galaxy power
spectrum). If either or both of these observables are not
included, the preference is still there, although slightly
weakened. Since early dark energy with a low sound speed
acts like additional dark matter at early times, this allows a
lower true matter density.
It is intriguing to consider whether the apparent prefer-

ence of current data for the "CDM model is merely a
consequence of overly restricting the degrees of freedom of
dark energy, and that instead a dark energy with dynamics

MEASURING THE SPEED OF DARK: DETECTING DARK . . . PHYSICAL REVIEW D 81, 103513 (2010)

103513-7



FIG. 8. Constant equation of state case, plotting the marginal-
ized one-dimensional probability distributions using data from
supernovae (Union2), CMB (WMAP5), galaxy autocorrelation
(SDSS LRG), and the cross correlation between large scale
structure tracers (see text) and CMB temperature anisotropies.
Solid lines are for the model with logðcsÞ a free parameter (with
a flat prior), whereas the dotted lines correspond to fixed cs ¼ 1.

FIG. 9. Early dark energy case, plotting the marginalized one-
dimensional probability distributions using data from superno-
vae (Union2), CMB (WMAP5), galaxy autocorrelation (SDSS
LRG), and the cross correlation between large scale structure
tracers (see text) and CMB temperature anisotropies. Solid lines
are for the model with logðcsÞ a free parameter (with a flat prior),
whereas the dotted lines correspond to fixed cs ¼ 1.

FIG. 7 (color online). Left panel: CMB temperature spectra for the early dark energy cEDE model with !e ¼ 0:03, w0 ¼ #0:8 are
plotted for cs ¼ 0 and 1. The effect of changing the sound speed on the late ISW effect is a little stronger than in the case of ordinary
w ¼ #0:8 dark energy (also shown), but the major difference comes from higher ‘, where the early dark energy exhibits significant
differences between cs ¼ 0 and cs ¼ 1, while ordinary dark energy does not. Right panel: Signal to noise squared per mode for
distinguishing cs ¼ 1 from the cs ¼ 0 fiducial is plotted vs multipole. The late ISW (treated as ‘ < 21) contributes only ðS=NÞ2 ¼ 1:8;
including higher ‘, say all ‘ , 2000, gives ðS=NÞ2 ¼ 8:8- 103. However, the differences at high ‘ can at least partly be compensated
by varying other cosmological parameters.
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(w0 + #0:95), microphysics (cs + 0:04), and long-time
presence (!e + 0:02) could be the correct model.

Figure 10 shows the 68.3%, 95.4%, and 99.7% confi-
dence level contours in the w- logcs plane for the constant
wmodel. We see that current data in this model preferw +
#1 but are completely agnostic regarding cs. For the cEDE
model, Fig. 11 shows the joint probability contours among
the dark energy parameters, in the w0- logcs, !e- logcs,
and!e-w0 planes, with all other parameters marginalized.
Here we see that the model mentioned above,
ðw0; cs;!eÞ ¼ ð#0:95; 0:04; 0:02Þ, is completely consis-
tent with the data, as is the cosmological constant
ð#1; 1; 0Þ. It will be interesting to see how the best fit
evolves with future data.

VI. CONCLUSIONS

Current cosmological data are in excellent agreement
with the standard "CDM universe, with equation of state
w ¼ #1. Nevertheless, the current data are also consistent
with a wide variety of richer physics. It is not clear that it is
wise to assume that the physical explanation for dark
energy in the universe is indeed given by restriction to a
spatially smooth, constant in time energy density: the
cosmological constant. Even after allowing for dynamical
dark energy, there could be further degrees of freedom—
‘‘hidden variables’’ or microphysics—in the dark energy
sector, harbingers of deeper physics that have not yet
shown clear signatures in the data. An explicit search for
these signatures, and thus the physics behind dark energy,
should be near the top of the list of current efforts in
cosmology.
In this paper we search for degrees of freedom beyond

quintessence by examining the influence of the sound
speed of dark energy, and its resulting spatial clustering
of dark energy, on key observables and in current data. This
extends earlier analyses, quantifying the effects on the dark
matter and dark energy density perturbation power spectra,
the potential power spectrum, and their cross correlation.
Where possible, we give simple scalings with 1þ w and
cs. We also explore models with time varying equation of
state and sound speed.
In the standard model with negligible dark energy at

high redshift, the speed of sound is essentially not distin-
guishable with current data (see Fig. 8) because current
data favor w ’ #1, and the effects of clustering of dark
energy vanish in this limit. As w gets further from #1, the
influence of the sound speed increases; for models with
w + 0 at high redshift there is also the possibility of non-
negligible amounts of early dark energy density. Even just
a couple percent of the total energy density in early dark
energy dramatically improves the prospects for detecting
dark energy clustering. One can view the early dark energy

FIG. 10 (color online). Confidence level contours of 68.3%,
95.4%, and 99.7% in the dark energy model with constant
equation of state. The constraints are based on current data
including CMB, supernovae, LRG power spectrum, and cross
correlation of CMB with matter tracers. The small likelihood
variations at w ¼ #1 are not physical (the sound speed has no
observable effect when w ¼ #1), but are due to finite chain
length.

FIG. 11 (color online). Confidence level contours of 68.3%, 95.4%, and 99.7% in the cEDE early dark energy model in the w0- logcs
(left), !e- logcs (middle), and !e-w0 (right) planes. The constraints are based on current data including CMB, supernovae, LRG
power spectrum, and cross correlation of CMB with matter tracers.
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fraction !e as another degree of freedom to explore.
Indeed, carrying out a MCMC analysis, we find in
Figs. 9 and 11 that a model with dynamics, microphysics,
and persistence, ðw0; cs;!eÞ ¼ ð#0:95; 0:04; 0:02Þ, is
completely consistent with the current data (although "
remains consistent as well).

Discovery of the accelerating universe 12 years ago has
propelled the physical interpretation of dark energy into
one of the most important, exciting, and difficult problems
in physics. Although current observations indicate that the
equation of state, as a constant or broadly averaged over
time, is close to #1, this leaves considerable room for
further physics, as demonstrated here using recent data.
To go further we should explore all three frontiers of the
dynamics wðaÞ, the microphysics cs and spatial inhomo-
geneities, and the persistence !e.
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APPENDIX: ANGULAR POWER SPECTRA:
DEFINITIONS

Here we review how the observable power spectra of
various quantities on the sky are related to the three-
dimensional primordial power spectrum and the transfer
functions. We consider the CMB temperature anisotropies
and galaxy overdensities in redshift slices, or populations,
labeled with the subscript j, and write the observables in
direction n̂ as line of sight projections along comoving
radial coordinate *,

Xðn̂Þ ¼
Z

d*SXðn̂*; $0 # *Þ; (A1)

with SXð ~x; $Þ the ‘‘source term’’ as a function of comoving
position and conformal time ($0 is the age of the universe
in conformal time). Here X represents the observable,
which could be a galaxy overdensity gj in the jth redshift
bin or a CMB temperature anisotropy T. For the galaxy
overdensity gj, the source is

Sgjð ~x; $Þ ¼ Hðzð$ÞÞ njðzð$ÞÞ
nAj

bj!mð ~x; $Þ; (A2)

where njðzÞdz is the average angular galaxy density of
galaxy population j in the redshift interval (z, zþ dz),
nAj ¼ R

dznjðzÞ is the total average angular galaxy density

of population j, and bj is the galaxy bias relative to the
matter overdensity of bin j. The Hubble factor HðzÞ arises
because the source was defined in terms of an integral over
* while njðzÞ=nAj is normalized to unity in terms of an

integral over z.
For CMB temperature anisotropies, the (Fourier trans-

form of the) source is given in Eq. (12) of [46]. The
integrated Sachs-Wolfe contribution to the CMB anisot-
ropy is nonzero when the universe is notmatter dominated,
and thus the gravitational potentials % and c are not
constant. The ISW source is given by

SISWð ~x; $Þ ¼ _%ð ~x; $Þ þ _c ð ~x; $Þ; (A3)

where dots denote derivatives with respect to conformal
time.
If we expand the anisotropy field in spherical harmonics,

Xðn̂Þ ¼ P
‘ma

X
‘mY‘mðn̂Þ, the expansion coefficients are

given by

aX‘m¼
Z
d!Y/

‘mðn̂ÞXðn̂Þ

¼ð2(Þ#3=2
Z
d!Y/

‘mðn̂Þ
Z
d3 ~k

Z
d*ei

~kn̂*SXð ~k;$0#*Þ

¼
ffiffiffiffi
2

(

s
i‘
Z
d3 ~kY/

‘mðk̂Þ
Z
d*j‘ðk*ÞSXð ~k;$0#*Þ; (A4)

where we have Fourier expanded

SXð ~x; $Þ ¼
Z d3 ~k

ð2(Þ3=2
ei

~k ~xSXð ~k; $Þ; (A5)

and we have used the Rayleigh plane-wave expansion

ei
~k0n̂* ¼ 4(

X

‘;m

i‘j‘ðk*ÞY/
‘mðk̂ÞY‘mðn̂Þ; (A6)

where the j‘ is the spherical Bessel function. We now write

SXð ~k; $Þ ¼ c ið ~kÞSXðk; $Þ where c ið ~kÞ is the initial poten-
tial perturbation and SXðk; $Þ is the source for c i ¼ 1; i.e.
it is a transfer function. Because of the assumption of
homogeneity, the transfer function does not depend on
the direction of the wave number, but only on its magnitude

k ) j ~kj. The statistics of the initial perturbations are given
by

hc ið ~kÞc ið ~k0Þi ¼ Pc
i ðkÞ!ð3Þð ~kþ ~k0Þ; (A7)

where Pc
i ðkÞ is the primordial potential power spectrum.

Assuming statistical isotropy, the angular correlations be-
tween two quantities on the sky X and Y (where they may
or may not be the same) are given by the angular power
spectrum

haX‘maY/‘0m0 i ¼ CXY
‘ !‘‘0!mm0 ; (A8)
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where, using Eq. (A4),

CXY
‘ ¼ 2

ð2(Þ2
Z

d3 ~kPc
i ðkÞ

Z
d*j‘ðk*ÞSXðk; $0 # *Þ

-
Z

d*0j‘ðk*0ÞSYðk; $0 # *0Þ: (A9)

In this work, we are specifically interested in the combi-
nations fXYg ¼f TT; Tgi; gigjg, but Eq. (A9) is the general
expression for angular power or cross correlation spectra.

When the sources SX and SY vary slowly compared to
the spherical Bessel functions in Eq. (A9), the triple inte-
gral can to a good approximation be reduced to a single
integral. Setting PðkÞ ¼ Pðk ¼ ð‘þ 1=2Þ=*ðzÞÞ and using
the asymptotic (for ‘ 1 1) formula that ð2=(Þ-R
k2dkj‘ðk*Þj‘ðk*0Þ ¼ ð1=*2Þ!ð* # *0Þ, we find

CXY
‘ ¼ 2(2

ð‘þ 1=2Þ3
Z

d**%c
i

!
‘þ 1=2

*

"

- SX
!
‘þ 1=2

*
; $0 # *

"
SY

!
‘þ 1=2

*
; $0 # *

"
;

(A10)

where %ðkÞ ) k3PðkÞ=ð2(2Þ. We use the power spectra to
calculate the *2 (signal to noise) in Eq. (15).

Finally, we need to specify formulas for noise in the
observed spectraCXY

‘ . The covariances between the spectra
are given by

CovðCXY
‘ ; CZW

‘0 Þ ¼ !‘‘0
1

ð2‘þ 1Þfsky
ð ~CXZ

‘
~CYW
‘ þ ~CXW

‘
~CYZ
‘ Þ;

(A11)

where

~CXY
‘ ¼ CXY

‘ þ NXY
‘ : (A12)

Here fsky is the sky coverage, CXY
‘ are the fiducial spectra,

andNXY
‘ are the noise power spectra. For the galaxy density

fields, the white noise power spectra are given by

N
gjgj
‘ ¼ 1

nAj
; (A13)

and for the CMB it is given by

NTT
‘ ¼ %2

Te
‘ð‘þ1Þ#2

FWHM=ð8 ln2Þ; (A14)

where%T is the sensitivity and #FWHM is the full width half
maximum angle of the Gaussian beam. The noise cross-
power spectra can be assumed to vanish.
The treatment of the covariances for actual data is

typically more complicated than the above. In this paper,
we use the covariances and treatment of the observables as
given by the data packages in COSMOMC,
[41,43,44,47,48] for the angular spectra, and the Union2
supernovae covariance matrix including systematics.
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[35] P. Fosalba, E. Gaztañaga, and F. J. Castander, Astrophys. J.

Lett. 597, L89 (2003).
[36] R. Scranton et al., arXiv:astro-ph/0307335.
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