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Abstract. We revisit the effect of peculiar velocities on low-redshift type Ia supernovae.
Velocities introduce an additional guaranteed source of correlations between supernova mag-
nitudes that should be considered in all analyses of nearby supernova samples but has largely
been neglected in the past. Applying a likelihood analysis to the latest compilation of nearby
supernovae, we find no evidence for the presence of these correlations, although, given the
significant noise, the data is also consistent with the correlations predicted for the standard
ΛCDM model. We then consider the dipolar component of the velocity correlations — the
frequently studied “bulk velocity” — and explicitly demonstrate that including the velocity
correlations in the data covariance matrix is crucial for drawing correct and unambiguous
conclusions about the bulk flow. In particular, current supernova data is consistent with
no excess bulk flow on top of what is expected in ΛCDM and effectively captured by the
covariance. We further clarify the nature of the apparent bulk flow that is inferred when the
velocity covariance is ignored. We show that a significant fraction of this quantity is expected
to be noise bias due to uncertainties in supernova magnitudes and not any physical peculiar
motion.
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1 Introduction

Motions of objects in the universe are not entirely random. Objects which are physically close
to one another respond similarly to the pull of large-scale structure, and as a result their
peculiar velocities are correlated. Correlations between galaxy peculiar velocities are an old
subject [1–7], and these velocities have already been used to constrain cosmological models, in
particular the amount of matter in the universe (see [8] for a review). More recently, peculiar
velocities have become important in the analysis of type Ia supernova (SN Ia) data. At low
redshift (z . 0.05), typical peculiar velocities of ∼ 300 km/s are a significant contribution to
the SN redshift (for instance, cz = 3, 000 km/s at z = 0.01). These peculiar velocities are a
nuisance if one is interested in using the SNe to constrain expansion history and dark energy,
and it is common practice to propagate this extra dispersion into the error budget (e.g. add
300 km/s × 5/(cz ln 10) in quadrature to the statistical uncertainty of each SN magnitude).
However, this neglects significant covariance between the velocities of different SNe.

Alternatively, one can consider the SN peculiar velocity field itself to be a signal, one
that should contain useful information about the amount and distribution of matter in the
universe. Nearby SNe are much fewer in number than nearby galaxies, and given the volume
limitation for both, this will likely still be the case in the future. On the other hand, SNe are
more useful on a per-object basis because their individual distances can be inferred directly
and with relative precision — roughly 7% for each SN, depending on the quality of the
observations. Therefore, there has been a resurgence of interest in how SN peculiar velocities
are modeled and used [9, 10].

In this paper, we perform a careful study of the SN velocity correlations in current data,
in particular the way in which they are used to draw conclusions about the so-called “bulk
velocity” — the motion, relative to the cosmic microwave background (CMB) rest frame, of
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the patch of the universe centered on us and containing the nearby sample. Though we focus
on SNe, our methodology is not restricted to SNe and equally applies to analysis of galaxy
peculiar velocities.

The paper is organized as follows. In section 2, we review the physics of how peculiar
velocities affect SN magnitudes. In section 3, we describe the SN samples and how we use
them. In section 4, we define a general likelihood that is the basis for our analyses, which
include a test for the presence of velocity correlations (section 5), a test for the presence of
excess bulk velocity beyond that encoded in the correlations predicted in ΛCDM (section 6),
and a comparison to previous work that studied bulk flows without the velocity covariance
(section 7). We summarize our conclusions in section 8.

2 Theoretical framework

2.1 Magnification and SN magnitude residuals at low redshifts

The magnitude residuals of standard candles like SNe Ia are directly related to the magnifica-
tion µ, which is defined as the fractional perturbation in the angular diameter and luminosity
distances (see [9, 11]),

− 1

2
µ =

∆dL
d̄L(z)

=
∆dA
d̄A(z)

, (2.1)

where d̄A(z) and d̄L(z) denote the background distances evaluated at the observed redshift
z. The second equality, relating luminosity and angular diameter distances, follows from the
conservation of the photon phase space density. That is, µ describes both the change in the
apparent angular size of a spatial ruler as well as the change in observed flux of a standard
candle.

Covariant expressions for the magnification at linear order in cosmological perturbations
have been given in [11–14]. In the conformal-Newtonian (cN) gauge, where the metric is
written as

ds2 = a2(τ)
[
− (1 + 2Ψ) dτ2 + (1 + 2Φ) δij dx

idxj
]
, (2.2)

the magnification is given, in the notation of [14], by1

µ =

[
− 2 +

2

aHχ̃

]
∆ ln a− 2Φ + 2κ− 2v‖o −

2

χ̃

∫ χ̃

0
dχ (Ψ− Φ) , (2.3)

where χ̃ ≡ χ(z) is the coordinate distance inferred using the observed redshift, and

κ =
1

2

∫ χ̃

0
dχ

χ

χ̃
(χ̃− χ)∇2

⊥(Ψ− Φ) , (2.4)

∆ ln a = Ψo −Ψ + v‖ − v‖o +

∫ χ̃

0
dχ
[
Φ′ −Ψ′

]
(2.5)

are the convergence and fractional redshift perturbation, respectively. The latter contains the
gravitational redshift, Doppler shift, and integrated Sachs-Wolfe effect. Further, ∇2

⊥ denotes
the Laplacian on a sphere of radius χ, v‖ = vin̂i denotes the peculiar velocity projected
along the line of sight n̂, integrals over χ denote integrals along the past lightcone, and a

1Here, we have neglected a term that is present if the luminosity of the standard candle depends on time;
in any case, it is subdominant in the limit we will consider. We have also neglected two pure monopole
contributions, motivated by the discussion in section 2.2.
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subscript o denotes a quantity evaluated at the location of the observer. Note that κ, ∆ ln a,
and any other terms appearing in eq. (2.3) are coordinate-dependent quantities, and only the
combination given in eq. (2.3) corresponds to an actual (gauge-invariant) observable. This
can be verified by considering gauge transformations and various test cases [14, 15].

For low-redshift SNe, where z � 1 so that χ̃� 1/(aH), the terms involving the velocity
are the most significant. This is because the lensing convergence is suppressed for small source
distances and because the scales probed are much smaller than the horizon. Then, the terms
involving the potentials Φ and Ψ are also suppressed by roughly aHχ̃ relative to the velocity.
In this case, we obtain

µ
z�1
=

2

aHχ̃
(v‖ − v‖o) . (2.6)

This expression for the magnification, proportional to the relative velocity along the line
of sight between source and observer, simply arises due to the fact that we evaluate the
luminosity distance to a supernova using the background distance-redshift relation, while the
actual redshift is perturbed by the Doppler shift. One can easily verify numerically that this
approximation is better than 1% for z . 0.1, which is the redshift range we will consider in
this paper. Note that [9] includes the term −2 in the ∆ ln a prefactor in eq. (2.3); however,
this is not strictly consistent, since the terms involving Ψ in ∆ ln a, as well as the aberration
term −2v‖o in eq. (2.3) are of comparable magnitude to this correction (see also [16]). We will
thus work with eq. (2.6) as the proper low-z limit of eq. (2.3). Note that this relation remains
valid even if µ becomes of order unity, as long as the velocities v‖ remain small compared
to the speed of light. On very small scales (z < 0.01), the velocities are no longer described
accurately by linear perturbation theory. However, since the SN samples considered here
are restricted to z & 0.01, we will work with velocities derived from linear perturbation
theory. Note that, in principle, nonlinear corrections to the velocity could also be relevant
for higher-redshift SNe, if two SNe happen to be physically close. However, we have verified
that nonlinear corrections to the velocities have a small effect (see below).

As eq. (2.6) shows, the relevant quantity for the magnification at low z is the relative
velocity between the source and the observer projected along the line of sight. This also
includes small-scale motions such as the velocity of the Solar System with respect to the
Milky Way center, which are uncorrelated with large-scale cosmological velocity fields. For
this reason, we correct the observed SN redshifts to the CMB rest frame using the measured
CMB dipole moment (see section 3). Then, the magnification becomes

µ|zCMB =
2

aHχ̃
(v‖ − v‖,CMB) , (2.7)

where the relevant quantity is now the velocity of the SN relative to the CMB rest frame.
This simplifies the interpretation, since v‖ − v‖,CMB is well described by linear perturbation
theory. In fact, by performing the calculation in the CMB rest frame (as is normally done), we
can set vCMB = 0. The following relations will always assume that we work with CMB-frame
redshifts and in the CMB rest frame.

It is straightforward to convert a perturbation in the luminosity distance (as in eq. (2.1))
into a perturbation of the SN magnitude from the homogeneous background value:

δm = − 5

2 ln 10
µ
z�1
= − 5

ln 10

v · n̂
aHχ̃

. (2.8)
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Note that this relation assumes that µ� 1 and is thus not applicable at very low redshifts.
While it is straightforward to derive the proper nonlinear relation for δm, this is not necessary
for our purposes, since z & 0.01 in our SN samples.

Now consider one object at redshift zi in direction n̂i on the sky, and a second at (zj , n̂j).
We can derive the covariance of their residuals,

Sij ≡ 〈δmi δmj〉 =

[
5

ln 10

]2 ai
a′iχi

aj
a′jχj

ξij

=

[
5

ln 10

]2 (1 + zi)
2

H(zi)dL(zi)

(1 + zj)
2

H(zj)dL(zj)
ξij , (2.9)

where ξij is the velocity covariance given by

ξij ≡ ξvelij ≡ 〈(vi · n̂i)(vj · n̂j)〉

=
dDi

dτ

dDj

dτ

∫
dk

2π2
P (k, a = 1)

∑
`

(2`+ 1)j′`(kχi)j
′
`(kχj)P`(n̂i · n̂j) . (2.10)

Here, primes denote derivatives of the Bessel functions with respect to their arguments, τ is
the conformal time, dτ = dt/(a2H), Di is the linear growth function evaluated at redshift
zi, and χi = χ(zi). The power spectrum P (k, a) is evaluated in the present (a = 1) and, at
the large scales we are interested in, only the first ' 10 terms in the sum over the multipoles
contribute. As mentioned above, we use velocities derived from linear theory and thus insert
the linear matter power spectrum for our numerical results. We have verified that using
a prescription for the nonlinear matter power spectrum in eq. (2.10) does not significantly
affect our results. We thus conclude that the linear treatment is sufficient for our purposes.
Physically, this is because the dominant contribution to the covariance comes from fairly
large-scale modes. Note that in our approach, 〈(δmi)

2〉 is assumed to capture the random
motion contribution to the variance of SN residuals.2 While this is not expected to be
completely accurate when using the linear matter power spectrum, the difference in the
diagonal covariance elements is not very significant.3

We have denoted this covariance matrix S to emphasize that this is a cosmologically
guaranteed “signal” to be added to the “noise” covariance matrix that accounts for the
combination of statistical and systematic errors that affects SN distance measurements, such
as intrinsic variations in the SN luminosity (see section 3). We again point out that the
two geometric prefactors in eq. (2.9) each differ by an additive factor of 1 relative to those
in [9] because we drop the term −2 in eq. (2.3) in order to achieve a consistent low-redshift
expansion; we have checked that all neglected terms would contribute negligibly at z . 0.1.

2.2 Monopole subtraction

The magnification eq. (2.1) and its low-redshift version eq. (2.6) still have a monopole com-
ponent, that is, a contribution that is uniform on the sky. However, since the SN magnitude

2An alternative approach by [17] models velocities with perturbation theory based on a density field derived
from other surveys, and complements them with a “thermal” component of ∼ 150 km/s added in quadrature
to account for nonlinearities. In contrast to our approach, this thus relies on external data sets. A detailed
comparison between the covariances obtained using these different approaches would be interesting but is
beyond the scope of this paper.

3For the low-redshift SNe we consider, nearly all of the redshifts are derived from host galaxy spectra, and
so the motion of the SN within its host does not contribute to the residuals.
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residuals are defined with respect to the best-fit distance-redshift relation, this monopole is
mostly absorbed in the fit. While there could technically be a residual monopole signal due
to the fact that our fit (to a flat ΛCDM model, see section 4) is very restricted, we will
assume here that the bulk of the monopole is removed. Thus, eq. (2.9) needs to be corrected.

To this end, we define the mean magnitude residual at redshift i as

δm(zi) =

∫
δm(zi, n̂)W (n̂) d2n̂ , (2.11)

where W (n̂) is the survey window function, which is normalized such that
∫
W (n̂) d2n̂ = 1.

Then, noting that we actually measure δ̂mi = δmi − δm(zi), the proper covariance is

Sij ≡ 〈δ̂mi δ̂mj〉 = 〈
[
δm(zi, n̂i)− δm(zi)

][
δm(zj , n̂j)− δm(zj)

]
〉 , (2.12)

which can be worked out to be

Sij =

[
5

ln 10

]2 (1 + zi)
2

H(zi)dL(zi)

(1 + zj)
2

H(zj)dL(zj)

dDi

dτ

dDj

dτ

∫
dk

2π2
P (k, a = 1)

×
∑
`

(2`+1)j′`(kχi)j
′
`(kχj)

[
P`(n̂i · n̂j)−

4π

2`+1

[
w`(n̂i) + w`(n̂j)

]
+ 4πW`

]
, (2.13)

where the survey footprint has been expanded in spherical harmonics,

W (n̂) =
∑
`m

w`mY`m(n̂) , (2.14)

and the coefficients w`(n̂i) and W` are defined as

w`(n̂) ≡
∑
m

w`mY`m(n̂) , W` ≡
∑

m |w`m|2

2`+ 1
. (2.15)

The extra terms in the square brackets in eq. (2.13) are corrections due to the survey window.
The W` are therefore just the angular power spectrum (more precisely, the “pseudo-C`”) of
the map, while w`(n̂) is the ` portion of the survey mask at an arbitrary location. Note that,
due to the required normalization of W , its value where the survey observes is not unity, but
rather

W (n̂) =


1

Ωsky
(observed sky)

0 (unobserved sky).
(2.16)

The term in the square parentheses in the last line of eq. (2.13), which includes the
subtraction of the mean, is therefore a new result that has not, to our knowledge, been
derived and included in previous analyses (although the existence of such a term has been
pointed out in [9, 16]). For a full-sky window, it is easy to show that this term becomes
P`(n̂i · n̂j)− 1 for ` = 0 and remains equal to the original expression P`(n̂i · n̂j) for the other
multipoles.

We find that the monopole-subtracted formula leads to small but noticeable changes in
the results, such as the constraints on the parameter A in section 5, and we recommend that
it be used in future analyses.
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3 SN Ia data and noise covariance

For our primary SN Ia dataset, we use the joint light-curve analysis (JLA) [18] of SNe from the
Supernova Legacy Survey (SNLS) and the Sloan Digital Sky Survey (SDSS). JLA includes a
recalibration of SNe from the first three years of SNLS [19, 20] along with the complete SN
sample from SDSS, making it the largest combined SN analysis to date. The final compilation
includes 740 SNe, ∼ 100 low-redshift SNe from several subsamples, ∼ 350 from SDSS at low
to intermediate redshifts, ∼ 250 from SNLS at intermediate to high redshifts, and ∼ 10 high-
redshift SNe observed with the Hubble Space Telescope.

We combine the individual covariance matrix terms provided4 to compute the full co-
variance matrix, which includes statistical errors (correlated uncertainties in the light-curve
measurements, intrinsic scatter, lensing dispersion) and a variety of systematic errors (photo-
metric calibration, uncertainty in the bias correction, light-curve model uncertainty, potential
non-Ia contamination, uncertainty in the Milky Way dust extinction correction, and uncer-
tainty in the host galaxy correction).

Although we compute the covariance matrix as described in the JLA analysis, we
leave out two contributions to the total error. First, we leave out the additional scatter
of 150 km/s× 5/(cz ln 10) added in quadrature to the other statistical errors on the diagonal
to account for peculiar velocity. This peculiar velocity scatter does not apply because pe-
culiar velocities are not a source of noise in our analysis; instead, they are modeled by the
formalism discussed in section 2. We also leave out the systematic error term corresponding
to uncertainty in the peculiar velocity correction applied to the low-z JLA redshifts. Since
our aim is to study the peculiar velocities themselves, we want to avoid this correction and
then leave out the systematic error associated with it. To this end, we obtain the CMB-frame
redshifts zCMB directly from the measured heliocentric redshifts zhel. Specifically, for each
SN we compute

1 + zCMB = (1 + zhel)

[
1 +

vCMB

c
(n̂CMB · n̂)

]
, (3.1)

where n̂ is the sky position of the SN, n̂CMB is the CMB dipole direction, and vCMB is
the velocity of the Solar System barycenter relative to the CMB rest frame implied by the
dipole amplitude. We use the measured values vCMB = 369 km/s and n̂CMB ≡ (l, b) =
(263.99◦, 48.26◦), where the quoted uncertainties [21] are negligible for our purposes.

For comparison, we separately consider the Union2 SN Ia analysis [22] from the Super-
nova Cosmology Project.5 We use the full covariance matrix provided for the Union2 SN
magnitudes, but as with JLA, we remove the peculiar velocity scatter (300 km/s here) that
was added to the diagonal. The redshifts given for the Union2 SNe are just the heliocentric
redshifts transformed to the CMB rest frame, so we use them directly.

Note that the Union2 compilation of 557 SNe has been superseded by the Union2.1
compilation [23] of 580 SNe, but here the goal is a fair comparison to previous work that
analyzes the Union2 data. Since the primary change in Union2.1 is the addition of a set of
high-redshift SNe, and since only low-redshift SNe are relevant for our analysis, we would
expect the two compilations to produce very similar results. When substituting Union2.1 for
Union2, our results do not change qualitatively, but there are some minor differences due to
new estimates for some corrected SN magnitudes and their errors. Union2.1 also includes a

4http://supernovae.in2p3.fr/sdss snls jla/.
5http://supernova.lbl.gov/Union/.
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host-mass correction (see below) that Union2 does not, but this is relatively small and only
accounts for part of the magnitude differences.

Finally, we briefly consider the low-z compilation from the older analysis of [24], also
for comparison with other work. This compilation does not include an analysis of systematic
errors, so the uncertainty in a SN magnitude is just a combination of the light-curve mea-
surement errors and the derived intrinsic scatter of σint = 0.08 mag. Again, we do not include
the peculiar velocity scatter of 300 km/s prescribed for a cosmological analysis. Although
CMB-frame redshifts are given, we transform the given heliocentric redshifts into CMB-frame
redshifts ourselves using eq. (3.1).

Because SNe Ia are not perfect standard candles, it is necessary to correct the observed
peak magnitude of each SN for the empirical correlations between the SN Ia absolute mag-
nitude and both the stretch (broadness) and color measure associated with the light-curve
fitter. More recently, it has become common to fit for a constant offset in the absolute
magnitude for SNe in high-stellar-mass host galaxies. For JLA, the corrected magnitude is
therefore given by

mcorr = m+ α× (stretch)− β × (color) + P ∆M , (3.2)

where α, β, and ∆M are nuisance parameters describing, respectively, the stretch, color, and
host-mass corrections. The measured P ≡ P (M∗ > 1010M�) is the probability that the SN
occurred in a high-stellar-mass host galaxy. Note that, as mentioned above, Union2 does not
include this host-mass correction; also, the analysis of [24] uses a different light-curve fitter
with different (but related) light-curve corrections.

For each of the three datasets, we fix the SN Ia nuisance parameters to their best-
fit values from a fit to the Hubble diagram (for JLA, we perform this fit and correct the
magnitudes ourselves; for the other datasets, we use precorrected magnitudes). In a proper
cosmological analysis, one should vary the SN nuisance parameters simultaneously with any
cosmological parameters. In practice, however, the nuisance parameters are well-constrained
by the Hubble diagram with little dependence on the cosmological model, so holding them
fixed should be a good approximation, especially for our purposes here.

4 Likelihood

We write the full covariance C as the sum of two contributions, C = S + N, where S is the
signal covariance, dominated by velocities at low z and discussed in section 2, and N is the
noise covariance, described in section 3.

Assuming a given cosmological model that allows us to calculate S (eq. (2.9)), the
optimal way to determine whether the data favors peculiar velocities is to consider evidence
for the detection of the full signal matrix S. This approach uses more information in the data
than the search for any particular moment, such as the dipole, of the peculiar velocity field.

Here we would like to detect evidence for coherent departures of supernova magnitudes
from the mean — that is, clustering. To do this, we introduce a new dimensionless parameter
A and let S→ AS, where A = 1 for the fiducial model. A = 0 corresponds to the case that
magnitude residuals are purely due to noise and systematics in the SN Ia data. We would
like to test whether A is consistent with one and different from zero. Including the new
parameter A, the full covariance becomes

C = AS + N , (4.1)

where 0 ≤ A <∞.

– 7 –
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On the other hand, allowing for an excess bulk flow component is interesting as well, as
it can be used to search for signatures beyond the fiducial ΛCDM model and also allows us to
compare our results with the existing literature (see section 6). In this case, the magnitude
residuals are affected by an additional bulk velocity vbulk (e.g. [9]):

∆mbulk
i ≡ ∆mbulk(vbulk; zi, n̂i) = −

(
5

ln 10

)
(1 + zi)

2

H(zi)dL(zi)
n̂i · vbulk , (4.2)

where zi and n̂i are the redshift and sky position of the SN, while vbulk is a fixed three-
dimensional vector. In the quasi-Newtonian picture, vbulk corresponds to the bulk motion of
the SN sample; however, in the context of non-standard cosmological models (such as those
breaking homogeneity or isotropy), this should really be seen as a convenient parametrization
of the dipole of SN magnitude residuals.

Putting these ingredients together, we construct a multivariate Gaussian likelihood6

L(A,vbulk) ∝ 1√
|C|

exp

[
− 1

2
∆mᵀC−1∆m

]
, (4.3)

where the elements of the vector ∆m are

(∆m)i = mcorr
i −mth(zi,M,Ωm)−∆mbulk

i (vbulk) , (4.4)

where mcorr
i are the observed, corrected magnitudes and mth(zi,M,Ωm) are the theoretical

predictions for the background cosmological model (see below). The M parameter corre-
sponds to the (unknown) absolute calibration of SNe Ia; we analytically marginalize over it
in all analyses (e.g. appendix of [25]).

We emphasize that, since the covariance depends on the parameter A that we are
interested in constraining, we need to include a term for the 1/

√
|C| prefactor in addition to

the usual χ2 quantity. Since the covariance is a strictly increasing function of A, neglecting
the prefactor would lead to the clearly erroneous result that the likelihood is a maximum
for A→∞.

The likelihood in eq. (4.3) is the principal tool we will use for our analyses. In this
most general form, the likelihood depends on two input quantities (four parameters, since
the velocity has three components): the normalization A of the signal component of the
covariance matrix and the excess bulk velocity vbulk not captured by the velocity covariance.
Note that, in the fiducial model, A = 1 and vbulk = 0.

Throughout our analyses, we assume a flat ΛCDM model (w = −1, Ωk = 0) with free
parameters fixed to values consistent with data from Planck [26] and other probes. That is, we
fix Ωm = 0.3, physical matter density Ωmh

2 = 0.14, physical baryon density Ωbh
2 = 0.0223,

scalar spectral index ns = 0.965, and amplitude of scalar fluctuations As = 2.22× 10−9. The
corresponding derived value of the Hubble constant is h = 0.683, and that of the amplitude of
mass fluctuations is σ8 = 0.79. Within the ΛCDM model, these parameters are determined
very precisely using Planck data alone, and we have explicitly checked that modest changes
in the cosmological model, larger than those allowed by Planck, have a negligible effect on

6Note that SN flux, or a quantity linearly related to it, might be a better choice for the observable than
the magnitude, given that we expect the error distribution of the former to be more Gaussian than the latter.
Nevertheless, this choice should not impact our results, as the fractional errors in flux are not too large, and
we have explicitly checked that the distribution of the observed magnitudes around the mean is approximately
Gaussian. Therefore we follow most literature on the subject and work directly with magnitudes.

– 8 –



J
C
A
P
1
2
(
2
0
1
5
)
0
3
3

100× z
CMB

1.1 1.4 1.7 2.2 2.5 3.0 3.5 4.4

1
0
0
×
z
C
M
B

1.1

1.4

1.7

2.2

2.5

3.0

3.5

4.4

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

100× z
CMB

1.1 1.4 1.7 2.2 2.5 3.0 3.5 4.4

1
0
0
×
z
C
M
B

1.1

1.4

1.7

2.2

2.5

3.0

3.5

4.4

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Signal Noise

Figure 1. Comparison of the signal (left panel) and noise (right panel) contributions to the full
covariance matrix for the 111 SNe at z < 0.05 from the JLA compilation.

our results. We can therefore conclude that adding Planck priors and marginalizing over
these parameters would not significantly affect our constraints. This is not surprising. The
background cosmology only affects the monopole of the Supernova magnitudes, and even this
dependence is weak at very low redshifts (since we marginalize overM). Only a much larger
change in the parameters would affect the expected pairwise covariance, which we do not
expect to be able to measure precisely in the first place.

In figure 1, we compare the noise covariance N to the signal covariance S for our fiducial
cosmology. While the noise contribution is typically larger than the signal, the signal is not
negligible, and it actually dominates for the lowest-redshift SNe. The noise, unlike the signal,
becomes effectively smaller as more SNe are used in the analysis, making the signal important
for the whole redshift range considered (see also the discussion in [27]).

5 Constraints on the amplitude of signal covariance

We first consider whether the data itself shows a preference for the presence of the velocity
(signal) covariance. Therefore, we explore the constraints on A using the likelihood in eq. (4.3)
and fixing vbulk = 0.

The constraints on the parameter A, which determines the fraction of the velocity
covariance added to the full covariance C, are shown in figure 2, with the numerical results
given in table 1. We have adopted a uniform prior on A such that our Bayesian posterior is
proportional to the likelihood in eq. (4.3). All data choices consistently use the available SNe
out to z = 0.05. This leaves 111 objects in the JLA analysis and 132 in the Union2 analysis.
We have explicitly checked that the results are insensitive to the precise redshift cutoff; they
are driven by the lowest-redshift SNe, and z < 0.05 comfortably captures all of them.

The solid black curve shows JLA, the most current and rigorously calibrated dataset.
JLA does not rule out the A = 0 hypothesis; in fact, the likelihood peaks near this value.
Nevertheless, JLA is fully consistent with the standard value A = 1, with a probability of
0.07 for A > 1.
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not statistically inconsistent. Note that differences remain even after restricting to the rather large
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P (A) (figure 2) vmax-like
bulk (figure 3) vangle-avgbulk (figure 4)

Survey ML 95% C.L. ∆χ2
∣∣
A=0

∆χ2
∣∣
A=1

ML 95% C.L. 95% C.L.

JLA 0.19 (0, 1.15) 0.24 4.13 187 (−108, 485) (0, 376)

Union2 1.19 (0.19, 3.27) 13.2 0.07 265 (−37, 568) (0, 456)

Table 1. Summary of numerical results. For both JLA and Union2, we show the best-fit, maximum-
likelihood (ML) values and 95% confidence intervals for A. We also show the quantity ∆χ2 (that is,
−2∆ lnL) between the best-fit value and special values A = 0 (no velocity signal) and A = 1 (ΛCDM
velocity signal). We also show ML and 95% intervals for bulk velocity in the best-fit direction and
95% intervals for angle-averaged bulk velocity (here we do not report ML values, which are near zero).
All velocities are in units of km/s.

The solid red curve shows the result from the Union2 dataset. While it is noticeably
different than the JLA result, the two likelihoods are mutually consistent; in particular,
A = 1 is a satisfactory fit to both. Nevertheless, Union2 is different in that it strongly
disfavors A = 0.

In order to gain additional insight into the difference between the two datasets, we have
identified SNe at z < 0.05 that overlap between the two datasets, a total of 96 objects.
Performing the analysis on this overlap (dashed lines in figure 2), we see that the results are
in better agreement but still somewhat disagree, despite both analyses using the same SN set.
Part of the reason is that JLA and Union2 determine the magnitudes differently; however,
even some redshifts do not match. We find a root-mean-square (rms) redshift difference of
1.4% for the object-to-object comparison of the 96 overlapping SNe, and the largest difference
is 5%. A further exploration of precisely why the SN redshifts and magnitudes differ is beyond
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the scope of this study, but we have explicitly checked that the difference between JLA and
Union2 for the overlap set is largely due to differences in the estimated apparent magnitudes,
not the redshifts.7

We also make connection to previous work in [28], where the first cosmological con-
straints from the correlations of SN Ia peculiar velocities have been obtained. Instead of
parametrizing the covariance with a multiplicative amplitude, they jointly constrained the
cosmological parameters Ωm and σ8. Using the earlier SN dataset from [24], they found
constraints broadly consistent with ΛCDM values. Using the same dataset, we roughly agree
with [28], our likelihood favoring A ' 1.4 with a large uncertainty but effectively ruling out
A = 0. However, we note that the dataset of [24] includes some SNe with extremely low
redshifts (as low as z = 0.002), which are not in the Hubble flow and for which the assump-
tion of small residuals in eq. (2.8) breaks down (see also discussion after eq. (2.10)). Objects
at such extremely low redshifts are mutually separated by distances of a few tens of Mpc;
their relative velocities are therefore expected to have important nonlinear corrections, in
addition to the linear relation eq. (2.8) breaking down, and the analysis would have to be
carefully generalized to take this into account. When we exclude all SNe with z < 0.01 from
the dataset of [24], the likelihood for A actually looks very similar to the JLA constraints in
figure 2, favoring A = 0 but still statistically consistent with A = 1.

To summarize, we find that JLA, the most current and rigorous dataset, does not favor
the presence of SN velocity covariance guaranteed in the ΛCDM model, but is nonetheless
consistent with it. We also find that there is considerable variation in the SN data in terms
of their constraints on the velocity covariance, and in particular that the optimistic-looking
results found in [28] were due to some very-low-redshift SNe that may be too nearby for
accurate modeling with linear theory.

The covariance of SN flux residuals has the potential to provide additional information
about cosmological parameters and other interesting physics [29–33]. Our results suggest
that current data do not yield interesting constraints. This will likely change with larger,
homogeneous samples with greater sky coverage, such as those expected from the Large
Synoptic Survey Telescope (LSST), currently under construction.

6 Constraints on excess bulk velocity

The optimal way to search for the effect of SN velocity correlations in the context of a fidu-
cial cosmological model is to test for the presence of the full signal covariance, as we did in
section 5. However, we can also use the SN magnitude residuals to search for a dipolar dis-
tortion (for example, due to bulk motion) beyond what is expected in ΛCDM. This provides
constraints on physics beyond the concordance cosmology, such as a breaking of statistical
isotropy or homogeneity, or the presence of a single large long-wavelength perturbation. The
search for bulk flows is the subject of a significant body of literature. Here we use a different
approach, and we make the connection to previous literature in the next section.

Bulk velocity is usually defined as the motion of the volume spanned by SNe Ia and the
rest frame defined by the CMB. Moving the SN redshifts to the CMB frame, we are looking
for an overall motion between the SN volume and the rest frame. Since we aim to search for
an excess bulk flow beyond ΛCDM, we include the velocity correlations S in the likelihood,

7We have checked that the sky positions of JLA and Union2 overlapping SNe do precisely agree. We have
also found that the subset of these SNe that are also found in the sample of [24] — 40 in total — have redshifts
that mostly agree very well with JLA, but show larger discrepancies with Union2.
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Figure 3. A slice through the 3D likelihood for excess bulk velocity. The direction is fixed to be
n̂max-like (different for each dataset), while the amplitude of the dipole is varied and allowed to be
positive or negative. Conclusions about the bulk flow would differ significantly if the velocity signal
covariance were set to zero (dashed lines), as in most previous work on the subject.

fixing A = 1. Since S includes all velocity correlations within ΛCDM, including the dipole,
we expect the posterior for the bulk flow to be consistent with zero if ΛCDM provides a
good description of the SN data. Of course, this assumes that our linear modeling of the
velocity correlations is accurate for the SN sample and also that there are no unaccounted-for
systematic errors in the SN data that could masquerade as an excess bulk flow.

For this analysis, we therefore adopt the likelihood from eq. (4.3), setting A = 1 but
allowing the bulk velocity vbulk = (vbulk, θ, φ) to vary in magnitude and direction. In order to
get a sense of the three-dimensional likelihood L(vbulk, θ, φ), we first consider the likelihood
of the excess bulk flow amplitude in a cut through the best-fit direction, that is, as a function
of vbulk with θ and φ set to their maximum-likelihood values. This is shown in figure 3, and
note that we continue the scan past zero velocity in the direction opposite that of the best
fit by letting the amplitude of the bulk flow take negative values. Because the likelihood
is Gaussian, and because vbulk enters the observable magnitude linearly (see eq. (4.2)), the
likelihood of the bulk velocity is also guaranteed to be Gaussian. Therefore, the likelihood
ratio between the best-fit (vbulk, θ, φ) and vbulk = 0 immediately translates into the confidence
at which zero excess bulk velocity is ruled out, assuming uniform priors on each component
of the vector vbulk.

Figure 3 shows that, once the velocity covariance is properly taken into account, SN
data do not favor any bulk velocity beyond the amount expected in ΛCDM. For example,
the JLA likelihood peaks at (vbulk, l, b) = (187 km/s, 323◦, 25◦), but this likelihood is larger
than that for vbulk = 0 only by −2∆ lnL = −1.6, far too low even for 68.3% (1σ) evidence,
which in three dimensions would be −2∆ lnL ' −3.5.

We would now like to explicitly calculate the posterior distribution of the amplitude of
an excess bulk velocity. Assuming uniform priors on each component of vbulk would produce
an additional v2bulk factor in the posterior, driving it to zero for the vbulk = 0 case so that
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Figure 4. Angle-averaged posterior on the amplitude of bulk velocity in excess of the correlations
captured by the full ΛCDM velocity covariance. Both JLA and Union2 data are consistent with
zero velocity, with relatively large error. The conclusion would again be very different if the velocity
covariance were artificially set to zero (dashed lines).

vbulk = 0 is automatically ruled out. An alternative that allows us to test the vbulk = 0
assumption, implicitly (or explicitly [34]) adopted by most previous work, is to choose the
prior Pr(vbulk) ∝ 1/v2bulk or, alternatively, to consider the angle-averaged likelihood

P angle-averaged(vbulk) ∝
∫
L(vbulk) d cos θ dφ . (6.1)

We plot this likelihood in figure 4. It is immediately apparent that both JLA and
Union2 data show no preference for excess bulk velocity, though there is a large uncertainty.
Performing the same analysis but setting the velocity correlations to zero (so that C = N
with S = 0), the results are drastically different, favoring bulk flows of several hundred km/s
and, in the case of Union2, firmly ruling out the vbulk = 0 case. This is in agreement with the
conclusion found in previous work [35–40]. In the dashed curves shown in figure 4, we have
not included the 150 km/s (300 km/s) scatter that is added in quadrature to the diagonal
of the noise covariance N for JLA (Union2) data in some analyses. This clearly does not
capture the significant full covariance of SN residuals due to large-scale structure. However,
when adding back this contribution, we find nearly perfect agreement with the results of [37].

Given the importance of this issue, we stress again that the dashed lines in figures 3
and 4 do not show the proper likelihood of any peculiar velocity, ΛCDM or otherwise, since
a guaranteed component of the covariance of the data has been neglected (nevertheless, one
can still use these incorrect likelihoods to construct an estimator for bulk flow, which we will
turn to in the next section). Since the velocity covariance S gives a guaranteed source of
correlations in ΛCDM, we argue that it should always be included in likelihood analyses of
SN magnitude residuals. Neglecting this covariance will lead to suboptimal estimators and,
in general, biased results.
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7 Relation to previous bulk flow measurements

A significant body of earlier work on SN velocities neglected the velocity covariance (and
the lensing covariance, which is important at higher redshifts). These analyses often found
evidence for non-zero bulk flow, and we confirm these findings with our dashed curves in
figures 3 and 4. This bulk velocity with A = 0 is difficult to interpret, since it was obtained
in an analysis with a guaranteed contribution to the covariance of the observables artificially
set to zero.

Nevertheless, one can derive a theoretical expectation for what one should expect for
the bulk velocity derived in this way; we call it vnoise-only

bulk , and in some previous work it
corresponds to what the authors simply call “bulk velocity”. Note that this is not the excess
bulk velocity over the ΛCDM expectation considered in the previous sections.

We will adopt the likelihood from eq. (4.3) once more, but we define a new vector x via
∆mbulk(vbulk) ≡ vbulk x, where

xi ≡ −
(

5

ln 10

)
(1 + zi)

2

H(zi)dL(zi)
n̂i · n̂bulk . (7.1)

To estimate vnoise-onlybulk , we set the signal covariance to zero, assume a fixed direction
n̂bulk, and find the maximum of the likelihood; that is

v̂noise-onlybulk ←→ max
vbulk

[
L(A = 0,vbulk)

]
. (7.2)

Maximizing with respect to vbulk, one finds

v̂noise-onlybulk =
yᵀ δm

yᵀ x
, (7.3)

where we have defined for convenience a new vector y as y ≡ N−1x, and where δm is the
vector of SN magnitude residuals (eq. (4.2) without the ∆mbulk term). Assuming ΛCDM,
and still keeping the direction n̂bulk fixed, the expected (mean) velocity is of course zero since
〈δmi〉 = 0.

We are more interested in the variance of this quantity, which can be computed directly
and is equal to

〈
(
v̂noise-onlybulk

)2〉 =
yᵀ(S + N) y

(yᵀ x)2
, (7.4)

since the true SN magnitude covariance for ΛCDM is the sum of both signal and noise:
〈(δmi)(δmj)〉 = Sij +Nij . The square root of this quantity is the desired theoretical expec-
tation for the rms bulk velocity in ΛCDM when one ignores the signal covariance matrix.

Using the JLA SNe up to redshift z = 0.05, the ΛCDM expectation for the rms velocity
varies from about 150–170 km/s as a function of n̂bulk, with a sky-averaged value of 162 km/s.
Assuming only noise in the data, 〈(δmi)(δmj)〉 = Nij , the result is 71 km/s. The Union2
data give similar results.

We have therefore found that the predicted rms value of vnoise-onlybulk , assuming ΛCDM
and SN data up to z = 0.05, is ∼ 160 km/s, and that nearly half of this value would be
generated by statistical scatter in SN magnitudes in the absence of any peculiar velocities in
the universe (such a contribution is sometimes referred to as the “noise bias”). The peak of
the JLA likelihood (black dashed line in figure 4) is in agreement with the ΛCDM expectation;
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Union2 gives a somewhat larger result. Again, however, we caution that the analysis in this
section is suboptimal, given that we do condense the data into a weighted dipole estimator
v̂noise-onlybulk rather than using the full covariance. Moreover, this estimator is significantly
affected by noise bias which needs to be subtracted. Given the uncertainties in the noise
covariance, the subtraction of noise bias will lead to additional systematic uncertainties in
the actual peculiar velocity measurement.

We have not attempted to repeat the analyses of some past work that studied the
velocity field of low-redshift SNe [38–45] or the anisotropy of the universe from the distribution
of nearby SN distances [46–51], since these studies adopted a wide variety of approaches and,
in some cases, complicated statistical procedures whose results are calibrated on simulations.
We emphasize, however, that the velocity covariance due to large-scale structure should be
included in any such analyses in order to obtain unbiased results and draw reliable statistical
conclusions about the velocity field of the nearby universe.

8 Conclusions

In this paper we have revisited the constraints on bulk velocity — the relative motion of
the volume populated by nearby SNe Ia and the rest frame defined by the CMB. Our
emphasis was on a precise and clear procedure for selecting the data, performing the analysis,
and modeling the theoretical expectation. We concentrated on SNe Ia as tracers of cosmic
structure and studied two separate (but overlapping) datasets. Our methodology applies
equally well to galaxies and other tracers of large-scale structure.

We argued, and demonstrated with explicit calculations, that inclusion of the “signal”
covariance matrix that captures the peculiar velocity correlations between SNe is crucial.
The velocities provide a guaranteed source of covariance between SNe; while the velocity
contribution is subdominant compared to the noise except at the lowest redshifts (see fig-
ure 1), it does not become smaller as more SNe are included in the analysis. Neglecting the
velocity covariance, as done by a significant body of earlier work on SN velocities and tests
of statistical isotropy, leads to results that are both biased and difficult to interpret.

Our approach was based on a likelihood that includes both the signal and noise co-
variance and four free parameters: the normalization A, specifying the fraction of the signal
added to the covariance, and three components of an excess bulk velocity vbulk beyond that
which is encoded in the signal covariance. For the fiducial ΛCDM model, A = 1 and vbulk = 0.

We first investigated whether the standard ΛCDM velocity covariance (A = 1) is pre-
ferred over the case in which the covariance is ignored (A = 0); that is, we constrained
L(A,vbulk = 0). We found that the JLA dataset, while consistent with A = 1, cannot rule
out A = 0, and in fact its likelihood peaks near zero (figure 2). Therefore, we did not find
convincing evidence in the data for the correlations expected from velocities. Although we
expect things to change with future data, when precise measurements of a quantity like A
will effectively constrain cosmological parameters such as Ωm and σ8, our results indicate
that current data are not close to providing such useful constraints.

We then pursued a different approach; we assumed a standard ΛCDM velocity covari-
ance (the A = 1 case) and tested for excess bulk velocity vbulk beyond that already captured
by the covariance — that is, we adopted the likelihood L(A = 1,vbulk) in the analysis. We
found that current SN data provide no evidence for a departure from the null hypothesis
vbulk = 0 (figures 3 and 4). This result is in sharp contrast to the inference one would have
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made by ignoring the velocity covariance (that is, setting A = 0 in the same analysis), as
some previous analyses in the literature have done.

To better understand this latter case, we separately studied inferred constraints on a
“non-excess” bulk velocity where the velocity covariance has been ignored — that is, the
L(A = 0,vnoise-only

bulk ) case. Note that this bulk velocity is more difficult to interpret since it
was obtained by ignoring a guaranteed source of correlations in the data. We showed that the
rms of the estimated vnoise-onlybulk , assuming ΛCDM and SN data up to z = 0.05, is expected to
be ∼ 160 km/s, and that nearly half of this value would be generated by a contribution purely
from intrinsic and observational scatter in the SN magnitudes. Therefore, there are really
two problems with this approach: not only is the constrained quantity difficult to interpret,
but it is also guaranteed to be nonzero even without any peculiar velocities in the universe,
which is clearly not optimal for cosmological interpretations.

The mapping of velocities in the universe using nearby tracers of large-scale structure
has had a remarkably long and productive history. With upcoming large-field, fast-scanning
surveys, it is likely that data will become of sufficiently high quality to enable peculiar veloc-
ities to progress to the next level and become competitive cosmological probes. Of course,
data analysis and theoretical modeling will have to progress as well. In this paper we have
demonstrated that, even for current data, clearly defining the quantities to be constrained
and carefully accounting for the guaranteed correlations between objects due to large-scale
structure are two factors of key importance.
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