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Observation of even a single massive cluster, especially at high redshift, can falsify the standard

cosmological framework consisting of a cosmological constant and cold dark matter (!CDM) with

Gaussian initial conditions by exposing an inconsistency between the well-measured expansion history

and the growth of structure it predicts. Through a likelihood analysis of current cosmological data that

constrain the expansion history, we show that the!CDM upper limits on the expected number of massive,

distant clusters are nearly identical to limits predicted by all quintessence models where dark energy is a

minimally coupled scalar field with a canonical kinetic term. We provide convenient fitting formulas for

the confidence level at which the observation of a cluster of mass M at redshift z can falsify !CDM and

quintessence given cosmological parameter uncertainties and sample variance, as well as for the expected

number of such clusters in the light cone and the Eddington bias factor that must be applied to observed

masses. By our conservative confidence criteria, which equivalently require masses 3 times larger than

typically expected in surveys of a few hundred square degrees, none of the presently known clusters falsify

these models. Various systematic errors, including uncertainties in the form of the mass function and

differences between supernova light curve fitters, typically shift the exclusion curves by less than 10% in

mass, making current statistical and systematic uncertainties in cluster mass determination the most

critical factor in assessing falsification of !CDM and quintessence.
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I. INTRODUCTION

It is well known that the presence of even a single high
redshift cluster with sufficient mass can falsify the standard
cosmological model where such objects grow from
Gaussian initial conditions under the gravitational insta-
bility of cold dark matter in a cosmological constant domi-
nated universe (!CDM) [1–6]. Robust upper bounds on the
number of high mass clusters in !CDM arise from the
exponential suppression of the dark matter halo number
density with mass and the fact that, in the !CDM para-
digm, geometric constraints on the expansion history de-
termine the growth of structure. Indeed, recently detected
massive clusters at high redshift [7–9] have led to claims of
tension with !CDM [5,10–12].

More generally, for any given paradigm for dark energy,
geometric constraints in combination with CMB con-
straints on the initial amplitude of fluctuations can be
translated into upper bounds on the abundance of high
mass clusters. Observational violation of these upper
bounds would therefore falsify all models of that given
paradigm. In particular, in previous work [13] we estab-
lished that the linear growth function of all quintessence
models, where dark energy is a canonical, minimally
coupled scalar field, is bounded above to be within a few
percent of the!CDM values. Here we translate these upper
bounds on the linear growth rate to upper bounds on the
number of clusters above a given mass and redshift. In
particular, we make a conservative assessment of the limit-

ing mass and redshift of a cluster that would rule out all
quintessence models that is robust to our present knowl-
edge of cosmological parameters, supernova light curve
fitters, sample variance, and simulation-based calibration
of the cluster abundance.
The predictions we present here incorporate cosmologi-

cal constraints from several recent data sets. In addition to
placing limits on the expansion history of the Universe,
these data also provide important information about the
amplitude of matter density fluctuations which directly
feeds into cluster predictions. In particular, observations
of cosmic microwave background (CMB) anisotropy con-
strain the amplitude of perturbations at the epoch of last
scattering, z ¼ 1090. In contrast to many previous studies
of the effects of dark energy on the growth of structure, we
do not take this constraint on the density fluctuations at
early times to mean that the amplitude of perturbations at
z ¼ 0, often characterized by the parameter!8, is also well
constrained. Instead, we combine CMB constraints with
the linear growth functions of quintessence models to set
!8 so that these models are fully consistent with present
CMB data.
We begin in Sec. II by developing methodology to

extract cluster abundance probability distributions from
expansion history measurements in the context of a given
dark energy paradigm. In Sec. III we show how to convert
these distributions into confidence levels at which a
cluster of a given mass and redshift excludes !CDM and
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quintessence. We consider statistical errors due to parame-
ter and sample variance as well as systematic shifts from
uncertainties in observational mass determination, the
form of the mass function, and the analysis of supernova
data. We discuss these results in Sec. IV.

In Appendix A we provide convenient fitting functions
for the relationships between cluster masses, redshifts,
numbers, and confidence levels, as well as the slope of
the mass function for bias corrections. In Appendix B we
discuss the impact of the CMB normalization of structure,
especially in the context of early dark energy. Finally, in
Appendix C we discuss two different types of biases in-
duced by measuring observable proxies for mass in the
presence of a steep mass function.

II. METHODOLOGY

Following Refs. [13,14], we use current constraints on
the expansion history of the Universe to make falsifiable
predictions for observables related to the growth of struc-
ture under specific dark energy paradigms. Here we briefly
summarize this technique and highlight changes in the
methodology that enable us to obtain robust predictions
for the cluster abundance. We begin with descriptions of
the data sets we use to constrain the expansion history and
the initial amplitude of density fluctuations (Sec. II A),
followed by a summary of the likelihood analysis that
determines which models in the !CDM and quintessence
paradigms satisfy the observational constraints (Sec. II B).
Finally, we show how we use the output of this analysis to
compute probabilities for the abundance of massive, dis-
tant clusters in the context of various dark energy para-
digms (Sec. II C).

A. Data sets

The main observational constraints that inform our
predictions for cluster abundances are relative distance
measures from type Ia supernovae (SNe), the CMB tem-
perature and polarization power spectra, baryon acoustic
oscillation (BAO) distance measures, and local distance
measures of the Hubble constant (H0).

The type Ia SN sample we use is the compilation of 288
SNe from Ref. [15], consisting of data from the first season
of the Sloan Digital Sky Survey-II (SDSS-II) Supernova
Survey, the ESSENCE survey [16], the Supernova Legacy
Survey [17], Hubble Space Telescope SN observations
[18], and a collection of nearby SN data [19]. The light
curves of these SNe have been uniformly analyzed by [15]
using both the MLCS2k2 [19] and SALT2 [20] methods.
We use the MLCS2k2-analyzed data for most of our results
since it leads to the more conservative bound on massive
clusters. For example, for flat !CDM using MLCS2k2 SN
data increases !8"

0:5
m by #7% relative to SALT2. In

Sec. III C we address the impact of the choice of SN
analysis method and also compare with constraints from
the Union2 compilation [21] of 557 SNe, which includes

the CfA3 sample [22] and a number of SN data sets
previously combined in the first Union compilation [23].
For the CMB, we use the most recent, 7-year release of

data from the WMAP satellite (WMAP7) [24] employing a
modified version of the likelihood code available at the
Legacy Archive for Microwave Background Data Analysis
Web site [25] which is substantially faster than the standard
version while remaining sufficiently accurate [26,27]. We
compute the CMB angular power spectra using the code
CAMB [28,29] modified with the parametrized post-
Friedmann (PPF) dark energy module [30,31] to include
models with general dark energy equation of state evolu-
tion where wðzÞ may cross w ¼ !1.
We use the BAO constraints from Ref. [32], which

combines data from SDSS and the 2-degree Field Galaxy
Redshift Survey that determine the ratio of the sound
horizon at last scattering to the quantity DVðzÞ &
½zD2ðzÞ=HðzÞ(1=3 at redshifts z ¼ 0:2 and z ¼ 0:35. Since
these constraints actually come from galaxies spread over a
range of redshifts, and our most general dark energy model
classes allow the possibility of significant variations in
HðzÞ and DðzÞ across this range, we implement the con-
straints by taking the volume average of DV over 0:1<
z< 0:26 (for z ¼ 0:2) and 0:2< z < 0:45 (for z ¼ 0:35).
The effect of this volume averaging on the final combined
constraints from current data is relatively small.
Finally, we include the recent Hubble constant measure-

ment from the SHOES team [33], based on SN distances
at 0:023< z < 0:1 that are linked to a maser-determined
absolute distance using Cepheids observed in both the
maser galaxy and nearby galaxies hosting type Ia SNe.
The SHOES measurement determines the absolute dis-
tance to a mean SN redshift of z ¼ 0:04 which we imple-
ment as Dðz¼ 0:04Þ¼ 0:04c=ð74:2)3:6 kms!1Mpc!1Þ.

B. Markov chain Monte Carlo (MCMC) analysis

To predict the cluster abundance using constraints from
current data, we use a MCMC likelihood analysis. We take
a set of parameters ! that completely describes a given
dark energy class and use a modified version of the code
COSMOMC [34,35] to sample from the joint posterior dis-
tribution of the parameters:

P ð!jxÞ ¼ Lðxj!ÞP ð!ÞR
d!Lðxj!ÞP ð!Þ ; (1)

where Lðxj!Þ is the likelihood of the data x given the
model parameters ! and P ð!Þ is the prior probability
density. We test convergence of the samples to a stationary
distribution by applying a conservative Gelman-Rubin cri-
terion [36] of R! 1 & 0:01 across a minimum of four
chains for each model class.
For the !CDM class we take the parameters

! ! ¼ f"m;"K;"mh
2;"bh

2; ns; lnAs; "g: (2)
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We will mainly consider the flat !CDM class here where
"K ¼ 0. Additional parameters such as H0 and "DE are
derived from this fundamental set. In particular, the present
amplitude of the linear power spectrum !8 is a derived
parameter (see Appendix B). Our normalization parameter
is As, the amplitude of the initial curvature power spectrum
at k ¼ 0:05 Mpc!1. For all parameters in Eq. (2) we take
flat priors that are wide enough that they do not limit the
MCMC constraints from current data.

For quintessence we extend the parameter set of Eq. (2)
by taking a principal component (PC) decomposition of the
dark energy equation of state for z < 1:7:

wðzÞ þ 1 ¼
XNmax

i¼1

#ieiðzÞ; (3)

where #i are the PC amplitudes and Nmax ¼ 10 is the
number of components required to form a complete basis
with respect to growth and distance measures [13]. These
principal components are constructed from the eigenvec-
tors of a projection for the Planck CMB and SuperNova
Acceleration Probe SN covariance matrix for wðzÞ in suf-
ficiently fine redshift bins to approximate continuous equa-
tion of state variations, as described in detail in Ref. [14].

We parametrize the dark energy equation of state at
z > 1:7 by a constant:

wðz > 1:7Þ ¼ w1: (4)

While this parametrization does not completely describe
all possible behaviors for the equation of state, it does
allow for dark energy that is a non-negligible fraction of
the total at high redshift or ‘‘early dark energy’’ (EDE). For
more restricted model classes without EDE, we fix
w1 ¼ !1 since a constant dark energy density rapidly
becomes negligible relative to the matter density at in-
creasing redshift.

In summary, our quintessence parameters are

! Q ¼ f!!;#1; . . . ;#10; w1g: (5)

Note that flat !CDM is a special case of quintessence with
f#i; 1þ w1;"Kg ¼ 0. We also consider a restricted quin-
tessence class of models which are flat and do not have
significant EDE, corresponding to f1þ w1;"Kg ¼ 0.
Quintessence models describe dark energy as a scalar field
with kinetic and potential contributions to energy and
pressure. Barring models where large kinetic and (nega-
tive) potential contributions cancel (e.g. [37]), quintes-
sence equations of state are restricted to !1 + wðzÞ + 1.
Following [14], this bound is conservatively implemented
with independent top-hat priors on the PC amplitudes #i.
Any combination of PC amplitudes that is rejected by these
priors must arise from an equation of state that violates the
bound on wðzÞ, but not all models that are allowed by the
priors strictly satisfy this bound. This prior is thus appro-
priate for making conservative statements on the falsifi-
ability of quintessence. For EDE, quintessence requires

w1 , !1, and we additionally impose w1 + 0 to main-
tain the usual matter- and radiation-dominated epochs at
high redshift. We adopt a flat prior on expðw1Þwhich gives
greater weight to models with w1 near 0.

C. Cluster abundance

As described in [14], the MCMC approach allows us to
straightforwardly calculate confidence regions for observ-
able quantities determined by the evolution of large-scale
structure. The first step is to compute the posterior proba-
bility of the linear growth function GðzÞ from the joint
posterior of the dark energy parameters. Note that the
growth function we use here scales out the growth of
density perturbations during matter domination, $ / a,
so GðzÞ / ð1þ zÞ$ with normalization Gðz ¼ 103Þ ¼ 1.
Given the predicted growth function, we compute the

abundance of clusters by integrating the product of the halo
mass function dn=d lnM and the comoving volume ele-
ment over cluster mass and redshift. Since we are inter-
ested in the most massive and most distant clusters, we
integrate above thresholds in mass and redshift to obtain
the expected number of clusters in the full sky with mass
>M and redshift >z:

#NðM; zÞ ¼
Z 1

z
dz0

4%D2ðz0Þ
Hðz0Þ

Z 1

M

dM0

M0
dn

d lnM
ðM0; z0Þ;

(6)

where 4%D2=H is the comoving volume element for the
full sky written in terms of the comoving angular diameter
distance DðzÞ and the Hubble expansion rate HðzÞ. Note
that since the high mass, high redshift mass function falls
off rapidly with increasing mass and redshift, #NðM; zÞ is
typically dominated by the abundance near the threshold
values of M and z.
The form of the mass function can be inferred by fitting

to the abundance of dark matter halos identified in numeri-
cal simulations. The cosmological dependence of the mass
function is typically expressed as

dn

d lnM
¼ &m;0

M

!!!!!!!!
d ln!

d lnM

!!!!!!!!fð!; zÞ; (7)

where !ðM; zÞ is the rms of linear density fluctuations
smoothed over spheres of comoving radius R ¼
ð3M=4%&m;0Þ1=3 and &m;0 ¼ 3"mH

2
0=ð8%GÞ is the present

matter density. Here fð!; zÞ is a function determined by the
fit to simulations that depends primarily on !ðM; zÞ but is
also weakly dependent on redshift [38,39].
We study the dependence of our predictions on the

specific choice of mass function and describe those tests
in the next section, but for definiteness we adopt the Tinker
et al. [38] mass function for our main results:

fð!; zÞ ¼ A
"#
!

b

$!a
þ 1

%
e!c=!2

; (8)
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with A ¼ 0:186ð1þ zÞ!0:14, a ¼ 1:47ð1þ zÞ!0:06, b ¼
2:57ð1þ zÞ!0:011, and c ¼ 1:19. This fit assumes M ¼
M200, defined as the mass within a spherical region around
the halo center enclosing an average density equal to 200
times the mean matter density, &m;0ð1þ zÞ3. We do not
adjust the fit parameters for variations in the dark energy
model but do test the sensitivity to the fidelity of the fit in
Sec. III C.

For the dark energy models and range of scales and
redshift that we consider here, the linear growth function
is approximately scale-independent, so we can separate the
mass and redshift dependence of the density fluctuation
rms as

!ðM; zÞ ¼ !ðM; 0Þ GðzÞ
ð1þ zÞGð0Þ : (9)

We obtain !ðM; 0Þ for each cosmological model using the
modified version of CAMB and computeGðzÞ by integrating
the differential equation for the linear growth function as
described in [14]. By using the growth function only to
scale backwards from the present epoch, this method in-
cludes all high redshift modifications to the transfer func-
tion and the CMB normalization of !ðM; 0Þ through As.
We only assume that at the low redshifts of interest
0< z < 2 the growth function is independent of scale
(see Appendix B for discussion of EDE clustering at early
times).

III. CLUSTER PREDICTIONS

From the complete parametrization of the !CDM and
quintessence model classes and the MCMC posterior
probability of the mean number of clusters #N across the
full sky above a given mass and redshift, we can assess the
confidencewith which the observation of a cluster with that
mass and redshift can falsify the model class. We first
consider the impact of parameter and statistical uncertain-
ties on the predicted number of massive, high redshift
clusters in Sec. III A. In Sec. III B we combine these into
exclusion curves in mass and redshift and evaluate the
significance of the most massive clusters in the present
high redshift sample. Finally, in Sec. III C we illustrate how
various systematic errors would shift the upper limits on
massive cluster abundances.

A. Parameter and sample confidence

We quantify two types of confidence limits for statistical
uncertainties. The first is associated with parameter uncer-
tainties on the mean number #N within the dark energy
model class. We call this parameter variance and take
the one-tailed 100p% confidence level (C.L.) upper limits
on the mean number, #NPpðM; zÞ; for example, given the
CMB, SN, BAO, and H0 constraints, there is a 95% proba-
bility that the mean number of clusters >M and >z in the
full sky is less than #NP:95. To a good approximation, the

parameter variance in our cluster abundance predictions
corresponds to variance in!ðM; zÞ or, in particular,!8. For
example, flat !CDM models at the 95% parameter C.L.
have a larger amplitude of fluctuations, !8 - 0:87, than
the median models with !8 - 0:83.
The second confidence limit we define is associated with

sample variance, under the assumption that the number of
clusters in the sample is Poisson distributed with mean #N
across the full sky. This assumption ignores the clustering
of clusters and should be a good approximation in the rare
object limit [40]. In particular, the probability to have
zero clusters in a random sample of a fraction of sky fsky is

s & e! #Nfsky . We therefore define the sample variance
100s% C.L. for models with a mean number of clusters
in the full sky as

#N SsðfskyÞ & !f!1
sky lns: (10)

That is, if the mean number of clusters above M and z
expected in the full sky is #NSs for a particular model, then
that model would be excluded at the 100s% C.L. by one or
more such observed clusters in a survey covering fsky of
the full sky. For example, the observation of one or more
clusters at redshift z with mass M observed in 300 deg2

(fsky - 0:0073) would exclude models that predict a
mean number of clusters in the full sky #NðM; zÞ less than
#NS:95 - 7:1 at the 95% sample C.L.
Some care must be taken to define the appropriate fsky

for a given cluster. For example, if out of many similar
surveys only one reported a high mass cluster, then the
appropriate sky area is the total area of the surveys, not just
the individual survey area selected to have the cluster
a posteriori. The most conservative limits are obtained
by taking fsky ¼ 1 when interpreting any observation, i.e.
assuming that all unobserved regions of the sky do not host
clusters with anomalously high masses and redshifts. In
this case #NS:95 - 0:051. Compared with, say, the median
prediction #NS:50 ¼ 95 at 300 deg2, these criteria are a
factor of #1900 more conservative in predicted number.
We combine these two types of uncertainties to compute

the maximum cluster mass and redshift within some area of
the sky predicted by a particular model class. The mass and
redshift limits corresponding to 100s% sample C.L. and
100p% parameter C.L. can be found by taking #NSsðfskyÞ ¼
#NPpðM; zÞ to get

Z logð!f!1
sky lnsÞ

!1
d log #NPðlog #NjM; zÞ ¼ p; (11)

where Pðlog #NjM; zÞ is the posterior density in the expected
number of clusters above M and z for the given class of
dark energy models. For simplicity, we will often consider
the case s ¼ p and refer to this as the ‘‘100s% joint C.L.’’
for sample and parameter variance. Note that in this ap-
proach observational uncertainty in determining the mass,
which varies from cluster to cluster, is not directly included
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so that the cluster mass errors must be included when
comparing with the MðzÞ exclusion curves presented in
Sec. III B (see also Appendix C).

Finally, one can also test whether the N rarest clusters
together place a substantially stronger bound on the dark
energy paradigm than the single rarest object detected so
far. To do this, one computes the Poisson probability using
the mass and redshift threshold that includes all of those N
clusters. For example, for the two rarest clusters the mean

number #Nð2Þ
Ss corresponding to exclusion at the 100s%

sample C.L. can be found from

s ¼ ð1þ fsky #Nð2Þ
Ss Þe!fsky #Nð2Þ

Ss (12)

to be

#N ð2Þ
Ss ¼ !f!1

sky½1þW!1ðsÞ(; (13)

whereW!1 is the lower branch of the LambertW function.

If fsky #Nð2Þ
Ss . 1, #Nð2Þ

Ss - f!1
sky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1! sÞ

p
. The expected num-

ber for the 95% joint C.L. at fsky ¼ 1 is #Nð2Þ
S:95 ¼ 0:355,

compared with #NS:95 ¼ 0:051 for the single most extreme
cluster; therefore, the model is required to predict a mean
abundance 7 times larger to explain two clusters above a
given mass and redshift rather than one. This statistic is
conservative in the sense that the rarest cluster is typically
treated as if it were only as rare as the second rarest cluster
(more specifically both clusters are assigned the lowest
M; z of the pair). Thus the N ¼ 2 test can actually be
weaker than the N ¼ 1 rarest cluster test. It can be applied

sequentially to the N rarest clusters by defining #NðNÞ
Ss as the

solution to

s ¼
XN!1

i¼0

ðfsky #NðNÞ
Ss Þi

i!
e!fsky #NðNÞ

Ss : (14)

Again if fsky #NðNÞ
Ss . 1, #NðNÞ

Ss - f!1
sky½N!ð1! sÞ(1=N. In the

confidence level fitting formula of Eq. (A10) one simply
replaces

! f!1
sky lns ¼ #NSs ! #NðNÞ

Ss : (15)

Note however that the number of trials taken before finding
an anomaly must be considered in interpreting the
exclusion.

B. Model exclusion

We begin with the flat !CDM predictions. In Fig. 1 we
show the posterior distributions of log #N for representative
choices of M and z. As either increases, the mean number
drops below unity, and the observation of even a single
cluster at that mass and redshift becomes unlikely. The
dotted vertical line represents the 95% sample C.L. thresh-
old #NS:95ðfsky ¼ 1Þ. When M and z are large enough that
95% of the parameter probability distribution Pðlog #NÞ lies
below this line, we consider the flat !CDM class ruled out

at the 95% joint C.L. by an observation of even a single
cluster of mass M at redshift z.
In Appendix A, we provide a convenient fitting formula

for the dependence of these flat !CDM exclusion masses
on redshift, fsky, and the sample and parameter variance

confidence level parameters s and p [see Eq. (A9)].
Figure 2 uses these fitting formulas to illustrate how the
sample and parameter variance limits change relative to
our default 95% joint C.L. full-sky limit with variations in
fsky, s, and p.
Next we generalize these results to different dark energy

model classes. Figure 3 shows the predictions for M ¼
1015h!1M/ and z ¼ 1:48which is at the 95% joint C.L. for
flat !CDM. With nonzero curvature, the confidence level
for this choice of M and z remains nearly unchanged at
93% parameter C.L., reflecting the fact that curvature is
well constrained in the !CDM context. On the other hand,
the parameter confidence level at which models are ex-
cluded with 95% sample C.L. actually increases as the
model class widens to flat quintessence without EDE
(98.8%) and to nonflat quintessence with EDE (99.7%)
(see shading in Fig. 3). This is in spite of the fact that flat
!CDM is included as a special case of each of these

FIG. 1 (color online). Predicted mean, full-sky abundance
#NðM; zÞ of clusters above mass and redshift thresholds M and
z, respectively, for flat !CDM models that fit current CMBþ
SNþ BAOþH0 data. Vertical dotted lines are plotted at
#NS:95ðfsky ¼ 1Þ, the 95% C.L. sample variance limit for a full-

sky survey. For M ¼ 20 1015h!1M/, we shade the lower 95%
of each distribution; exclusion at the 95% joint C.L. for a cluster
of this mass in the full sky occurs at the redshift for which all of
the shaded area lies to the left of the vertical #NS:95ðfsky ¼ 1Þ line
(in this case, z - 0:9). Probability distributions here and in later
figures are normalized so that max½Pðlog #NÞ( ¼ 1.
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classes. In the quintessence classes there are simply more
ways of reducing the growth function at the relevant red-
shifts through parameter variations than increasing it.
Hence the low- #N tail of the distribution is highly depen-
dent on the prior placed on the parameters.

One might therefore worry that the exclusion of quin-
tessence models at the high- #N tail of the distribution might
also depend strongly on the prior. Parameter choices in the
tail of the distribution would then have likelihoods as good
as or better than at the median. This pathology does not
occur here. For example, among the 5% of flat !CDM
models in Fig. 3 with #N > 0:051 the best fit model has a
likelihood that is worse than the global maximum like-
lihood (for all #N) by !2$ lnL ¼ 3:3, consistent with
a one-tailed 95% C.L. The best fit quintessence model
(nonflat, with EDE) with #N > 0:051 fits the data worse
than the global maximum likelihood for quintessence by
!2$ lnL ¼ 7:5, also consistent with the higher confidence
for exclusion of quintessence models.1

For values ofM and z other than those used in Fig. 3, the
dependence of Pðlog #NÞ on the dark energy model class is

similar. A massive, high z cluster that convincingly falsi-
fied !CDM would also falsify all quintessence models.
This robustness is a consequence of the firm upper limit
that flat!CDM places on the quintessence growth function
noted in [13] and is essentially due to the quintessence
requirement that wðzÞ , !1. Hereafter we adopt the pa-
rameter confidence level of flat!CDM for all quintessence
cases to avoid the semantic problem of ruling out quintes-
sence at a higher parameter confidence than !CDM even
though !CDM is a subset of quintessence.
In Fig. 4 we show the 95% joint C.L. upper limit in the

mass-redshift plane for flat !CDM. An observation of one
or more clusters at M and z that lie anywhere above the
limit corresponding to a given fsky would rule out both

!CDM and quintessence. We further find that the typical
realization of the typical !CDM model, corresponding to
the 50% joint C.L., would move the limiting curve down by
a factor of approximately 1.6 in mass (for fsky ¼ 1). If we
keep the 50% joint C.L. and also reduce fsky to correspond
to a 300 deg2 area, the mass threshold differs from our
fiducial fsky ¼ 1 and 95% joint C.L. by a factor of#3:2 in
mass. Therefore, to rule out !CDM and quintessence by
our fiducial criteria, the mass of the cluster must be at least
3.2 times the typical !CDM prediction for the largest

FIG. 2 (color online). Dependence of the flat !CDM mass
threshold at z ¼ 1 on sample variance s and parameter variance
p confidence levels and on the sky fraction fsky. Individual
variations are computed using the fitting functions of
Appendix A with one parameter varied at a time and the
remaining parameters fixed to the fiducial values of s ¼ 0:95,
p ¼ 0:95, and fsky ¼ 1.

FIG. 3 (color online). Predicted mean, full-sky abundance of
clusters with M> 1015h!1M/ and z > 1:48, for flat and nonflat
!CDM, flat quintessence without early dark energy, and nonflat
quintessence with early dark energy. The vertical dotted line
marks #NS:95ðfsky ¼ 1Þ; i.e. a 1015h!1M/ cluster at z ¼ 1:48
observed anywhere in the sky would exclude all models in
Pðlog #NÞ to the left of the dotted line with a significance of at
least 95% sample C.L. The lowest- #N 95% of each distribution is
shaded.

1Quintessence models in the tail of the distribution can ac-
tually have a better absolute likelihood than !CDM models in
the tail or even the median !CDM model due to the better fit of
w - !0:8 models to the MLCS2k2-analyzed SN data [15],
while still being strongly disfavored due to a large amplitude
of structure As (or !8).
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cluster in a 300 deg2 survey and 1.6 times the prediction
for the most massive cluster across the whole sky.

With these conservative criteria none of the reported
high mass, high z clusters falsify !CDM or quintessence.
The two that provide the most tension with these model
classes are SPT-CL J0546-5345 [9,41] at z ¼ 1:07 which
has an x-ray YX-determined mass of M200 ¼ ð8:23)
1:21Þ 0 1014M/ and XMMU J2235.3-2557 [7,10,42] at
z ¼ 1:39 with an x-ray (TX) mass of 7:7þ4:4

!3:1 0 1014M/.
These x-ray mass estimates are consistent with masses
obtained by other means such as weak lensing, and our
most conservative conclusions requiring 95% joint C.L.
significance in the full sky would not be greatly changed by
using alternate mass proxies.

For a more aggressive interpretation of the data, one can
estimate the effective fsky values for these measurements.
They are somewhat subjective in that the clusters are the
most massive ones found in all high z Sunyaev-Zel’dovich
(SZ) and x-ray surveys, respectively. The first release of the
South Pole Telescope (SPT) SZ cluster survey covered

178 deg2, whereas the Atacama Cosmology Telescope
SZ survey covered 455 deg2 [43] of which#50 deg2 over-
lap with the first-release SPT fields. On the other hand,
x-ray surveys have covered some 283deg2 for 1:0< z <
2:2 [12]. We therefore plot these clusters in Fig. 4 (lower
panel) against an exclusion curve for 95% joint C.L. at
300 deg2, using h ¼ 0:70 as assumed in Refs. [41,42] to
convert the masses to units of h!1M/.

2 Note that the MðzÞ
level is only weakly dependent on fsky for order unity

rescalings (see Fig. 2).
Even under this more aggressive interpretation of the

exclusion limit, these two clusters do not convincingly rule
out !CDM or quintessence. Although their redshifts and
mean masses are somewhat atypical in that they exceed the
50% joint C.L. exclusion curve, neither cluster is more
significant than the 95% joint C.L. For example, taking the
mean reported masses and fixing the parameter variance
confidence level at 95%, SPT-CL J0546-5345 is only
at 44% sample C.L. (using the fitting formula of
Appendix A); i.e. it is a typical result for flat !CDM.
The mean for XMMU J2235.3-2557 yields a higher 89%
sample C.L., but taking the 1! lower limit on the mass
brings the confidence all the way down to 8%. Even
combining the two using Eq. (12) and a joint sky area of
600 deg2 does not improve the confidence. In fact in this
conservative test where thresholds are set to the lowest
mass and redshift of the pair, the joint sample confidence
level using the mean masses actually decreases to 30%.

C. Systematic shifts

Systematic shifts in the observational mass determina-
tion, the theoretical mass function, and SN data analysis
techniques can strongly affect the confidence with which
!CDM and quintessence can be excluded. Here we quan-
tify the impact of each of these systematic effects on the
predicted abundance of high mass, high redshift clusters.
Despite numerous recent advances in mass estimation

methods, the determination of cluster masses is still quite
uncertain. Different methods do not always yield consis-
tent results, and in some cases the mass may be systemati-
cally over- or underestimated. Since cluster abundances
fall off exponentially with mass at high masses, even small
errors in the estimated masses correspond to large shifts in
the expected number of clusters.
In the upper panel of Fig. 5, we show the impact on #N of

changing cluster masses by )10% or )30%; these offsets
are representative of the range in systematic uncertainty in
current determinations of cluster masses. Systematic errors
in mass are most important for the rarest clusters due to the

FIG. 4 (color online). MðzÞ exclusion curves. Even a single
cluster with ðM; zÞ lying above the relevant curve would rule out
both !CDM and quintessence. Upper panel: Flat !CDM 95%
joint C.L. for both sample variance and parameter variance for
various choices of sky fraction fsky from the MCMC analysis

(thin solid curves) and using the fitting formula from
Appendix A (thick dashed curves; accurate to & 5% in mass).
Lower panel: Two of the most anomalous clusters detected to
date, compared with the 95% joint C.L. exclusion curve for
300 deg2 which approximates the total survey area for each
cluster. We show the x-ray determined masses with and without
Eddington bias correction (black solid points with thick error
bars and red open points with thin error bars, respectively, offset
in redshift by )0:01 for clarity).

2Specifying M values in units of M/ instead of h!1M/ has
little effect on the widths of the Pðlog #NÞ distributions even in the
quintessence class, suggesting that the impact of uncertainties in
the Hubble constant due to variations in the equation of state
near z - 0 is small [37].
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increasing steepness of the mass function. For M ¼
1014h!1M/ and z ¼ 0, a 30% offset in mass shifts #N by
a factor of#2, but for the 1015h!1M/, z ¼ 1:5 case shown
in Fig. 5 systematic shifts in mass can change the expected
abundance by orders of magnitude, making an ordinary
cluster appear to be exceedingly unlikely in the context of a
given cosmology or vice versa. In theMðzÞ exclusion plane
of Fig. 4, these systematic offsets can be incorporated as
simple shifts in the data points.

Estimation of the rarest cluster masses is also subject
to Eddington bias, where selection effects shift the deter-
mined masses in a manner that depends on the cosmology.
If a cluster is selected as anomalous due to the high value
of some observable quantity, e.g. x-ray flux and tempera-
ture, optical richness, or SZ decrement, the steep mass
function makes scattering from low masses to high observ-
ables more likely than scattering from high masses to low
observables [44]. In Appendix C we discuss two sorts
of mass biases associated with this effect that should not
be confused. For the purposes of comparing to MðzÞ ex-
clusion curves and for an observable massMobs that is log-
normally distributed around the true mass, one should
correct Mobs for bias by [45,46]

$ lnM ¼ '

2
!2

lnM: (16)

Here ' is the local logarithmic slope of the mass function
dn=d lnM / M'. In Appendix A we provide an approxi-
mate expression for 'ð #N; zÞ in Eq. (A6). Note that for our
default 95% joint C.L. constraint with #N ¼ 0:051 and
z# 1, ' - !8. For !lnM ¼ 0:3 this bias is $ lnM -
0:36 and can have a substantial impact on the C.L. level
of exclusion should such a high mass cluster ever be found
(see Fig. 4). The logarithmic slope is much steeper at this
high level of exclusion than the typical expectation for
the most massive cluster in 300 deg2 of #N ¼ 95 where
' - !5 at z# 1.
Specifically, to correct for Eddington bias in placing an

observed cluster whose mass-observable relation implies
lnM ¼ lnMobs ) !lnM on the MðzÞ exclusion plots, one
does the following. Take the implied ' for the Mobs,
redshift, and parameter confidence level p using Eq. (A8)
and (A6), and evaluate the shift in mass due to number bias
using Eq. (16). Then take the mean mass and confidence
limits and shift them down by this bias factor. If the cluster
still lies in the excluded region of the MðzÞ plane, then it
falsifies !CDM and quintessence at the chosen confidence
level. This procedure assumes that the mass function slope
is approximately the same atMobs as it is for the true cluster
mass, which holds as long as the scatter !lnM is not too
large.
In Fig. 4 we show examples of the Eddington bias

correction assuming flat !CDM for SPT-CL J0546-5345
and XMMU J2235.3-2557 where we take the reported
mass errors as a proxy for !lnM. These examples should
only be taken as illustrative since not all of the sources of
mass error are log-normally distributed or random. Note
that the large mass errors for the higher redshift cluster and
the steeper slope of the mass function both contribute to a
bias that is as large as the statistical errors, although the
bias correction from Eq. (16) may be somewhat overesti-
mated given the large !lnM as noted above. Taking this bias
estimate at face value, the sample variance C.L. is reduced
drastically for the corrected mean mass to <1% for 95%
parameter confidence and 300deg2, whereas the signifi-
cance of the SPT cluster only falls to 33% given its smaller
reported mass error. Relative to !CDM, quintessence
models on average predict that massive, high redshift
clusters are rarer, resulting in a steeper logarithmic slope
' and a larger bias correction.
Finally, the mass definition used in the theoretical pre-

dictions must be chosen to correspond to a quantity that is
tightly correlated with the observables and consistent with
the simulation-calibrated mass function. In particular, the
scatter between halo masses in simulations using spherical
overdensity and friends-of-friends halo definitions is large
and asymmetric, and the difference in mass definitions for
a single halo can be a factor of 2 or more [38,47].
Compared with systematic errors in cluster masses, the

impact of systematic errors in the amplitude of the mass
function near the relevant mass and redshift thresholds is

FIG. 5 (color online). Impact of systematic errors in cluster
mass determination and mass function amplitude on the mean
number of clusters in the full sky with M> 1015h!1M/ and
z > 1:5 for flat !CDM. A fractional change in mass determi-
nation can change the number of clusters by orders of magni-
tude. Conversely, a factor of 2 change in the mass function
amplitude near this mass and redshift changes the mass limits by
only a few percent.
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far less severe. In particular, although the effect on the
mass function of generalizing to dynamical dark energy
models is still largely untested by simulations, even a
factor of 2 change in the mass function normalization
[i.e. A in Eq. (8)] has less impact than a 10% offset in
mass (Fig. 5, lower panel). For reference, neglecting the
redshift dependence of the mass function parameters
fA; a; bg decreases the amplitude by a smaller 40% shift
for !CDM (equivalent to a 3% mass offset) near M ¼
1015h!1M/ and z ¼ 1:5. Following the suggestion of
Ref. [38], we also test the impact of replacing the redshift
dependence of the mass function parameters with depen-
dence on the growth function. Specifically, for a redshift
threshold z we evaluate the parameters fA; a; bg in Eq. (8)
at a different redshift ~z satisfying

ð1þ ~zÞ!1G!ð~zÞ ¼ ð1þ zÞ!1GðzÞ; (17)

where ð1þ zÞ!1G!ðzÞ is the density growth function for a
fiducial flat !CDM model. This modification has a negli-
gible effect on Pðlog #NÞ and changes the abundance pre-
dicted for individual models by <10% even in the most
general class of nonflat quintessence models with EDE.

Likewise, extrapolation of the mass function to masses
and redshifts outside the range calibrated to simulations
should have a subdominant effect on the overall systematic
errors. For the mass function we use here, the simulations
of [38] probe the range 0:4 & ! & 4 at z & 2 to better than
#5% accuracy. For the median !CDM model, the lower
limit of this range corresponds to a maximum mass M -
3:10 1015h!1M/ at z ¼ 0 and M - 1:00 1014h!1M/ at
z ¼ 2. For the 95% parameter C.L.!CDMmodels used to
construct the exclusion curve in Fig. 4 these masses are
slightly higher: M - 3:70 1015h!1M/ at z ¼ 0 and M -
1:20 1014h!1M/ at z ¼ 2. Thus at high redshift the 95%
joint confidence exclusion curves in Fig. 4 require an
extrapolation of up to a factor of #4 in mass for fsky ¼ 1
and a factor of#2 for 300 deg2. On the other hand, Hubble
volume light cone simulations show no strong deviations
from this mass function [48] from which one can infer that
the scaling holds at least to order unity down to #N # 1; this
includes the 95% sample C.L. rarity for survey areas up to
#2000deg2.

Systematic errors in the data analysis that propagate into
the posterior distributions Pðlog #NÞ can also change the
confidence at which models can be excluded. The largest
systematic effects from these data sets at present appear to
come from the analysis of the SN data; in particular, the
choice of method for fitting SN light curves (specifically,
MLCS2k2 or SALT2) has been shown to affect constraints
on a constant dark energy equation of state at the level of
$w# 0:2 [15]. While this specific systematic error will
likely be reduced as its causes are better understood (e.g.
[49]), we have adopted the MLCS2k2 technique for our
main results since it provides the more conservative

constraints for assessing exclusion of !CDM and
quintessence.
Even for flat !CDM, the choice of SN methodology

affects cluster abundance predictions. Figure 6 (top panel)
shows a factor of 2 difference in abundance for M ¼
1015h!1M/ and z ¼ 1:5. The offset between MLCS2k2
and SALT2 varies with the mass and redshift thresholds but
corresponds to an approximately constant shift of 10% in
the effective mass threshold for all z < 2. In Appendix A
we describe how to account for this 10% shift in our fitting
formulas. For !CDM, this difference is mainly due to the
preference for lower"m when using the SALT2 light curve
fitter in place of the MLCS2k2 method. The lower"m also
drives down the present day normalization for fixed initial
curvature As. The best fit values of ð"m;!8Þ are
ð0:29; 0:83Þ with MLCS2k2 and ð0:27; 0:81Þ with SALT2
(including the CMB, BAO, and H0 constraints as well as
SN data). Using the SALT2 analysis in fact alleviates some
tension between the CMB and SN data in flat !CDM.
The SN distances estimated using the SALT2 method,

unlike MLCS2k2, depend on an assumed cosmological
model, and so compiled data sets analyzed assuming
!CDM formally should not be applied to quintessence

FIG. 6 (color online). Effect of SN systematics on Pðlog #NÞ
at M ¼ 1015h!1M/, z ¼ 1:5 for flat !CDM (top) and flat
quintessence without early dark energy (bottom). The choice
of light curve fitter when analyzing the SDSS compilation of SN
data affects the predicted growth history, which leads to a
systematic shift in the predicted cluster abundance. Switching
from MLCS2k2 to SALT2 has an effect comparable to increas-
ing the mass threshold by 10% (see Fig. 5). The bottom panel
also shows quintessence predictions using the Union2 compila-
tion of SN data, analyzed with the SALT2 method, which are
almost identical to the SALT2 predictions with the SDSS SN
compilation.
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[15]. However it is both instructive and common practice to
do so to approximate the impact on dark energy con-
straints. As in flat !CDM, using the SALT2 method for
flat quintessence with no EDE on the same data set lowers
the predicted number of clusters (see Fig. 6 bottom panel)
by a factor of 2 for M ¼ 1015h!1M/ and z ¼ 1:5, corre-
sponding to a #10% shift in mass. However, for quintes-
sence models this offset is due to differences in the
preferred dark energy parameters as well as in "m. We
also show in Fig. 6 the impact of switching the SN data to
the Union2 compilation, which also used the SALT2
method [21]. Note that the cluster predictions for the two
SALT2 cases are nearly identical, despite using different
sets of SNe.

We thus have good evidence that flat !CDM exclusion
curves with either SN light curve fitter provide the same
implications for quintessence. The main difference is a
shift in the median !CDM prediction. Using the
MLCS2k2 light curve fitter predicts higher numbers and
hence is more conservative for our exclusion analysis.
Translated into masses, the switch to SALT2 corresponds
to a 10% decrease in the mass of the MðzÞ exclusion limits
of Fig. 4. This 10% shift moderately increases the signifi-
cance of observed clusters. Using the mean x-ray masses
without Eddington bias correction, and taking the 95%
parameter CL for a 300deg2 area, the sample variance
significance shifts from 44% to 62% for SPT-CL J0546-
5345 and from 89% to 94% for XMMU J2235.3-2557.

IV. DISCUSSION

In this paper we have analyzed predictions for the abun-
dance of massive, distant clusters using an observationally
complete basis for the quintessence paradigm. Physically,
this paradigm assumes that dark energy is a noninteracting
canonical scalar field. Phenomenologically, quintessence is
a spatially smooth component of energy density compared
with dark matter below the horizon scale with an equation
of state !1 + wðzÞ + 1.

We have shown that any observation that purports to rule
out !CDM from the existence of massive clusters at any
redshift also rules out quintessence, since quintessence
models can suppress but not enhance the abundance of
rare clusters compared to !CDM. This conclusion still
holds if dark energy is a non-negligible fraction of the total
density at high redshift. Once normalized to the CMB,
quintessence models can only reduce the number of clus-
ters (cf. [50–55]).

We have provided convenient fitting functions that can
be used to evaluate the confidence level of exclusion of a
class of dark energy models due to the observation of a
cluster of a given mass at a given redshift. In doing so, we
have accounted for two sources of variance: parameter
variance, that current data allow cosmological parameters
to take a range of values, and sample variance, the Poisson
noise in counting rare objects in a finite volume. Our

formulas can also be used to quickly evaluate the expected
number of clusters in !CDM.
The single most important element of any claim of

model exclusion due to observation of a massive, high
redshift cluster is the robustness and accuracy of the
mass measurement. In particular, it is important to account
for Eddington bias, the fact that the steep mass function
will cause lower mass objects to scatter into a sample
defined by thresholds in observable proxies for mass. We
include corrections for Eddington bias in our analysis and
clarify the difference between the two types of mass shifts
found in the literature under this name.
When phrased in terms of shifts in the limiting mass,

other systematic effects are relatively minor in comparison.
For example, order unity variations in the mass function
amplitude correspond to <10% changes in the exclusion
mass. Likewise the difference between predictions from
SN data fit with the SALT2 and MLCS2k2 methods, which
produces a systematic shift of $w# 0:2, also corresponds
to a 10% effect in mass.
Finally, we have seen that the interpretation of cluster

limits depends strongly on the effective survey area in
which the clusters were selected, whereas the actual sky
area of the data is often much smaller. The most conserva-
tive interpretation of the most massive cluster in a survey is
that there is at least one such object in the whole sky.
Interpreted in this fashion, none of the clusters reported
in the literature can be deemed to falsify !CDM or quin-
tessence. Even when interpreted at an estimated few hun-
dred square degrees for the effective area, these clusters
fail to convincingly falsify either paradigm.
Our results differ qualitatively from those in Refs. [5,10–

12] which claim that the observed massive, high redshift
clusters rule out the !CDM paradigm at #2–4!. The
different conclusions can be explained by the fact that
these works do not undertake a full treatment of parameter
variance, do not correct the observed masses for Eddington
bias, and/or use different mass measurements. Moreover,
for single cluster analyses Refs. [5,10,11] assume an ef-
fective sky area that, in retrospect, is inappropriately small.
For XMMU J2235.3-2557, a shift in the effective sky area
from 11 to 300 deg2 alone accounts for a factor of 1.7 in
the exclusion mass [12]. On the other hand, we do not
consider the implications of the full high redshift cluster
catalog here (cf. [12]).
If in the future a robust case can be made that a massive

cluster falsifies both the !CDM and quintessence classes
of models, then at least one cornerstone of modern cos-
mology must be incorrect: Either the initial conditions are
non-Gaussian, dark energy has noncanonical phantom be-
havior withw<!1, dark energy is not smooth even below
the horizon, or dark energy interacts with the other com-
ponents of the Universe. The latter possibility includes
both modified gravity scenarios and models where the
scalar field responsible for the accelerating Universe
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interacts with dark matter (e.g. [56–59]). Note that while
changing the collisionless cold dark matter aspect of the
cosmological paradigm can also change the cluster abun-
dance, adding a massive neutrino component can only
further suppress the cluster abundance.

Primordial non-Gaussianity, which typically skews the
initial distribution of density fluctuations, can also in prin-
ciple explain the existence of rare, massive, high redshift
clusters [60]. For example, in the best-studied local model
of primordial non-Gaussianity described by the parameter
fNL [61], positive fNL would increase the number of
clusters relative to fNL ¼ 0 (e.g. [62]). However, to sub-
stantially change the abundance of high z clusters, a large
positive value of fNL (#400) seems to be required
[11,12,63,64], which, unless one resorts to postulating
more complicated models with scale-dependent non-
Gaussianity, is firmly ruled out by the combination of
CMB [65,66] and large-scale structure [67–69] constraints.

Solutions involving dark energy also run into difficulties
if the anomalous clusters appear only at high redshift.
Typical solutions such as phantom [i.e. wðzÞ<!1 at any
redshift] or clustered dark energy (e.g. [56,70–72]) affect
cluster abundances at low redshift as much as or more than
at high redshift given that the Universe has only begun
accelerating at z ’ 0:5. The same is true of interacting dark
energy or modified gravity scenarios where dark energy
effectively mediates an enhanced attractive gravitational
force (e.g. [73]). Thus models constructed to explain
anomalous high redshift clusters while satisfying the
CMB and expansion history constraints may still be ruled
out by the local x-ray cluster sample [74,75] or intermedi-
ate redshift samples (e.g. [76,77]).

The standard cosmological paradigm has passed in-
creasingly stringent tests over the last two decades.
Current measurements of the expansion history are precise
enough to make sharp predictions for cosmological struc-
ture formation. These predictions enable qualitatively new
tests with which the standard paradigm and its extensions
can be potentially falsified. Specifically, the masses of
distant clusters must not be greater than a well-determined
number set by the standard !CDMmodel if dark energy is
a noninteracting canonical scalar field with equation of
state w , !1, and if the initial conditions are Gaussian.
Thus if increased survey coverage and improved cluster
mass determination are found to strengthen claims of
clusters that are substantially more massive or more distant
than predicted in !CDM, then not only specific dark
energy model incarnations but the whole quintessence
paradigm would be falsified.
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APPENDIX A: FITTING FORMULAS

Here we provide a fitting formula to approximate the
MðzÞ exclusion curves of Fig. 4 and their dependence on
the sky fraction and confidence levels for both sample and
parameter variance. As an intermediate result, we also
provide a fit to the median number of clusters expected
above a given mass and redshift for flat !CDM,
#NP:50ðM; zÞ, as well as its inverse Mð #NP:50; zÞ. These fits
generalize the expressions provided in Ref. [5], which
approximated Mð #N; zÞ for a single !CDM cosmology
across a more limited range in masses and for disjoint
sets of redshifts. We also give an approximate expression
for the mass function logarithmic slope ' which can be
used to estimate corrections for Eddington bias as de-
scribed in Sec. III C (see also Appendix C).
We begin by fitting an approximate formula for the

median #NP:50ðM; zÞ extracted from the flat !CDM poste-
rior distributions. In order to ensure that the fitting function
does not behave unphysically beyond the cases tested, we
choose a functional form that is motivated by the mass
function in Eqs. (7) and (8):

#N P:50 / e!CðM=M1ÞA ; (A1)

where A, C, and M1 are possibly redshift-dependent quan-
tities. This form follows by assuming that all terms in the
mass function vary slowly with M except for the exponen-
tial e!c=!2

and that the dependence of 1=!2 on M is well
approximated by a power law. Hence we expect the fit to
apply to rare objects such as clusters.
For notational simplicity let us define

m & log½M=ðh!1M/Þ(; n & log #NP:50: (A2)

Figure 7 shows that the following expressions are accurate
to within 5% in mass over the ranges 14<m< 16, 0<
z< 2, and !5< n< 5:

nðm; zÞ ¼ 7:65½1! e#ðzÞðm!(ðzÞÞ(;
#ðzÞ ¼ 1:06! 0:17e!1:3z;

(ðzÞ ¼ 15:565! 0:1 logð7:1þ 105:25zÞ:

(A3)

In terms of the motivating form of Eq. (A1), C ¼
7:65 ln10, AðzÞ ¼ #ðzÞ= ln10, and M1ðzÞ ¼ 10(ðzÞh!1M/.
The approximate linearity of logM1ðzÞ / (ðzÞ with z at
high redshift was noted by Ref. [5] and indeed equating the
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scaling of M1 with a criterion like !ðM1Þ ¼ const implies
that linearity extends to z > 2. This scaling is broken at low
redshift mainly because the volume saturates and the num-
ber above a given z is determined not by the mass function
around z but at a higher effective redshift.

Inverting Eq. (A3) gives the cluster mass as a function of
redshift and n:

mðn; zÞ ¼ (ðzÞ þ 1

#ðzÞ ln
#
1! n

7:65

$
; (A4)

where #ðzÞ and (ðzÞ are the same as in Eq. (A3).
The above formulas apply to our predicted cluster abun-

dances using MLCS2k2-fit SN data in addition to CMB,
BAO, and H0 constraints. The effective 10% shift in mass
when using the SN data fit with the SALT2 method instead
(see Sec. III C) can be simply accounted for by replacing
15.565 with 15.525 in (ðzÞ in Eq. (A3):

(ðzÞ ¼ 15:525! 0:1 logð7:1þ 105:25zÞ ðSALT2Þ:
(A5)

With this change, the accuracy of the fitting formulas is the
same regardless of the method used for fitting SN light
curves.

The residuals increase at n > 5 independent of redshift
since we only model the exponential part of the mass
function where halos are rare. The fitting formulas agree

with those of Ref. [5] to better than #10% in mass
for !2 + n + 4 while avoiding unphysical behavior at
n + !2.
These relations imply that the logarithmic slope of the

mass function for the median !CDM model can be ex-
pressed in terms of log #N rather thanM. Such a relation has
the advantage that the logarithmic slope is a weak function
of redshift at fixed number. Fitting to numerical results in
Fig. 8 we obtain

'ð #N; zÞ ¼ ! ln½2:6þ 1:5z2 þ e7:1!1:5 expð!3zÞ!1:1 log #N(:
(A6)

Given the relationship between the median log #N ¼ n and
m in Eq. (A3), this expression gives the Eddington bias
correction as a function of mass and redshift assuming the
median !CDM predicted number. The fit to 'ð #N; zÞ is
equally valid for predictions using both the MLCS2k2
and SALT2 SN analyses, although the relation between
log #N and M differs as described above.
Changing the parameter variance exclusion level p

changes the relationship between #N and m (see Fig. 1).
For a higher confidence level than the median p ¼ 0:5 the
predicted number at a fixed mass increases. Thus in order
to find the massm as a function of log #N for either exclusion
curves or evaluating the logarithmic slope of the mass
function, we need to shift the effective number density at
which we evaluate Eqs. (A4) and (A6). We approximate
Pðlog #NÞ as a log-normal distribution for the flat !CDM
model class (see Fig. 1) with mean n and width

FIG. 7 (color online). Accuracy of our fitting formulas for
#NP:50, the median !CDM number of clusters in the whole sky
above a given mass M and redshift z. Upper panel: Numerical
results from the MCMC analysis (points) compared with the
approximate fitting formula of Eq. (A3) (curves). Several red-
shifts are shown, with equal spacing in lnð1þ zÞ over 0 + z + 2.
Lower panel: Fitting formula residuals. Dotted lines mark )5%
errors.

FIG. 8 (color online). Fit and residuals for the logarithmic
slope of the mass function ' as a function of median cluster
abundance and redshift. The fit uses the same points from the
numerical calculation as in Fig. 7.
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!log #N ¼ 0:29! 0:035n; (A7)

independent of redshift (fit to the distributions in Fig. 1
over!8< n< 6). Then the relation between #N andm and
z at some parameter confidence p is given by

log #NPpðm; zÞ ¼ ½1! 0:035
ffiffiffi
2

p
erf!1ð2p! 1Þ(nðm; zÞ

þ 0:29
ffiffiffi
2

p
erf!1ð2p! 1Þ: (A8)

The inverse relationship between n and m of Eq. (A4),

log
Mðz; s; p; fskyÞ

h!1M/
¼ mðnðs; p; fskyÞ; zÞ; (A9)

can then be evaluated at

n ¼
logð!f!1

sky lnsÞ ! 0:29
ffiffiffi
2

p
erf!1ð2p! 1Þ

1! 0:035
ffiffiffi
2

p
erf!1ð2p! 1Þ

; (A10)

which comes from Eq. (A8) using the criterion that the
100s% C.L. sets #NPp ¼ #NSs ¼ !f!1

sky lns. Equation (A9)

therefore gives the desired exclusion curves at a given
sample variance C.L., parameter variance C.L., and sky
fraction. The Eddington bias at a given parameter variance
confidence, mass, and redshift can also be evaluated by
using Eqs. (A8) and (A3) in Eq. (A6).

These formulas also provide a convenient way to esti-
mate the significance of an observed cluster: Given the

cluster mass and redshift, Eq. (A3) approximates the me-
dian expected cluster abundance in the full sky, and
Eq. (A10) then determines the corresponding combinations
of sample variance and parameter variance confidence
limits for flat !CDM. Note, in particular, that
!f!1

sky ln½sðm; z;pÞ( can be extracted as a closed form ex-

pression. Figure 9 shows examples of these s-p relations
for clusters with M - 1015h!1M/ at redshifts z ¼ 1:15
and 1.5, for which the significance of excluding flat
!CDM is near the 50% joint C.L. and 95% joint C.L.,
respectively. For high significance clusters, a 10% change
in mass shifts the exclusion curves by a factor of a few in
ð1! sÞ=fsky and over an order of magnitude in (1! p),
highlighting again the importance of accurate mass
determination.

APPENDIX B: NORMALIZATION AND EARLY
DARK ENERGY

High redshift cluster abundance constraints are often
phrased relative to the local cluster abundance by fixing
!8 and "m. Despite how well these two parameters are
constrained in flat !CDM by the WMAP7 data, this is not
equivalent to normalizing to CMB data.
In particular, the assumption that the value of !8 is well

known requires extrapolating from the measurement at
z1 ¼ 1090 to the present using a particular growth func-
tion, and in general changing the dark energy model results
in a different growth function implying a different value of
!8 for fixed CMB amplitude. Additionally, the presence of
EDE directly affects CMB fluctuations on the horizon scale
at recombination due to its transition from an adiabatically
clustered to relatively smooth component.
Our normalization parameter is As, the amplitude of

the initial curvature power spectrum at k ¼ 0:05 Mpc!1,
and we use the CAMB PPF module to propagate its effects
jointly with the effects of EDE on the observable CMB
power spectra. The PPF approximation retains the quintes-
sence property that the sound speed of dark energy is equal
to the speed of light but implements the transition from
a clustered to smooth component in an approximate man-
ner [30].
In Fig. 10 we compare a !CDM model and a quintes-

sence model with EDE which have the same As, ns, "ch
2,

"bh
2, and Dðz1Þ. Specifically, we choose an offset expo-

nential for the quintessence potential

Vð)Þ ¼ V0 þ A expð!)=)1Þ: (B1)

For this potential, quintessence behaves as a tracking field
at early times with w - 0 during matter domination and as
a cosmological constant at late times. We first calculate the
exact CMB power spectrum for this model and then com-
pare it with the PPF approximation. The EDE to matter
ratio at z1 is determined by )1 (e.g. [78]), and we have
chosen it to correspond to 3.3% while the ratio of EDE to
the total density is 2.4%. The potential offset V0 is set by

FIG. 9 (color online). Combinations of 100s% C.L. and
100p% C.L. limits for sample variance and parameter variance,
respectively, given various mass and redshift thresholds. In the
limit of high significance for sample variance (1! s . 1),
!f!1

sky lns - f!1
skyð1! sÞ. The curves are computed using the

fitting formulas of Eqs. (A3) and (A10). The 95% joint C.L.
values used in Sec. III A and the 50% joint C.L. values for
fsky ¼ 1 are marked with a cross and a square, respectively.
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demanding thatDðz1Þ remain fixed in a flat universe, and A
is set by requiring that the field be in the tracking regime
well before recombination.

Note that to zeroth order the CMB power at the ‘# 200
first peak remains largely fixed given the same initial
curvature power spectrum, but the small EDE fraction
causes a first-order correction. The decay of gravitational
potentials due to the EDE becoming smooth under the
horizon scale leads to a small boost in the amplitude.
Conversely, at fixed WMAP7 normalization, the best fit
As is slightly reduced, while the best fit ns increases to
preserve the amplitude of the first peak where the EDE is
most effective (k - 0:02 Mpc!1 compared with our pivot
scale of 0:05 Mpc!1). Moreover, the boost widens the first
peak, and since this effect is not degenerate with changes in
As and ns or other cosmological parameters, it provides
limits on EDE from the CMB alone [79]. The PPF ap-
proximation captures these effects to sufficient accuracy
for models that satisfy these observational bounds.

We obtain !8 and more generally !ðM; z ¼ 0Þ for each
cosmological model using the PPF version of CAMB. Even
the small EDE fraction of our example can have a sizable
effect on !ðM; z ¼ 0Þ due to the long lever arm between z1
and z ¼ 0 over which the change in the subhorizon growth
rate can act. To obtain !ðM; zÞ at z > 0, we compute GðzÞ
by integrating the differential equation for the linear
growth function as described in [14]. Since we use the

growth function only to scale backwards from the present
epoch, all high redshift modifications to the transfer func-
tion and the CMB normalization of !ðM; 0Þ through As are
accounted for, including the impact of the EDE clustering
transition. This procedure is illustrated in Fig. 11 (lowest
curve). We then assume that !ðM; zÞ determines the halo
mass function with no explicit dependence on EDE. Note
that this differs from [50,51] who took a spherical collapse
motivated mass function with a collapse threshold $c that
depended on EDE. The modified threshold ansatz was later
shown to be inconsistent with both numerical and analytic
results [52–55].
The alternate approach of assuming a fixed value of !8

leads to very different conclusions about the effects of
EDE. In that case, the similar shapes of the !CDM and
EDE growth functions at low redshifts imply that the
effects of EDE on cluster abundances are small (upper
curves in Fig. 11 at low z) [52–55]. However, Fig. 11
combined with Fig. 10 shows that a model with a substan-
tial amount of EDE and !8 fixed to the best fit !CDM
value would change the high redshift normalization As and
hence the CMB power spectrum normalization. In this
example, the shift is more than 10% in amplitude, whereas
the CMB normalization for a given As is determined to an
accuracy of#1:4% corresponding to the uncertainty in the
reionization optical depth. Conversely, by requiring con-
sistency with the CMB, the effect of EDE on reducing the
cluster abundance can be quite large as shown in Fig. 3 (see
also [80,81]).

APPENDIX C: EDDINGTON BIAS

For a steep mass function, an observable proxy for
cluster mass Mobs is biased high compared with the true
massM since it is more likely that one of the numerous low

FIG. 10 (color online). CMB temperature power spectrum of
an EDE model calculated exactly from the scalar field equations
and in the PPF approximation, compared with a !CDM model
with the same matter density, baryon density, distance to last
scattering, and initial curvature power spectrum. The transition
from clustered to smooth EDE boosts the CMB power spectrum
around the first peak, and thus matching the WMAP7 normal-
ization requires small changes in As and ns from their !CDM
values.

FIG. 11 (color online). Illustration of the varying effects of
early dark energy depending on whether the growth history is
normalized at z ¼ 0 by fixing !8 or at z# 103 by fixing As. The
!CDM and EDE example models from Fig. 10 are shown by the
dashed black and solid blue curves, respectively; the dotted
green curve shows the same EDE model with !8 rescaled to
match its value in the !CDM model.
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mass objects scatters to higher Mobs than it is that a rare
high mass object scatters to lower Mobs. There are two
types of mass bias associated with this effect, and we
clarify their use here.

Consider first the type relevant to the exclusion analysis
of the main part of the paper. We seek to find the proba-
bility of a given model producing a cluster with observed
mass greater than Mobs at the given redshift or above. The
generalization of #N, the number of clusters above a given
true mass and redshift, is

#NobsðMobs; zÞ ¼
Z 1

z
dz0

4%D2ðz0Þ
Hðz0Þ

Z 1

Mobs

dM0
obs

M0
obs

Z 1

0

dM0

M0

0 dn

d lnM
ðM0; z0ÞPðlnM0

obsj lnM0Þ; (C1)

where PðlnMobsj lnMÞ is the probability density of obtain-
ing an observed massMobs given a true massM. In order to
set the probability of finding a cluster of observed mass
>Mobs equal to finding a cluster of true mass >M we
require

#N obsðMobs; zÞ ¼ #NðMN; zÞ: (C2)

The difference between MN and Mobs is the number bias
mass shift. By setting the probabilities equal, we therefore
have the same exclusion confidence as if we had measured
a cluster with true mass MN.

For the case of a log-normal mass-observable relation
with rms !lnM that is small compared with the scale over

which the local slope of the mass function changes,
dn=d lnM / M' and [45,46]

lnMN ¼ lnMobs þ 1
2'!

2
lnM: (C3)

This is the appropriate mass to plot on an MðzÞ exclusion
plot. Note that '< 0 so MN <Mobs.
There is a second sense of a bias in mass that is com-

monly used in the literature. To place confidence limits on
the mass assuming a mass function and an observed mass
Mobs, one can use Bayes’ theorem [82,83]

PðlnMj lnMobsÞ / PðlnMÞPðlnMobsj lnMÞ (C4)

and take PðlnMÞ / dn=d lnM. For the same log-normal
and constant slope assumptions, the posterior mass distri-
bution is a log-normal of the same width !lnM and shifted
mean

lnMM ¼ lnMobs þ '!2
lnM; (C5)

which is twice the mass shift required to hold probabilities
fixed. Note that this mass bias mass shift is the answer to a
statistically different question. Here one assumes that the
observation is fixed and the mass function is a priori
correct. One does not account for the probability of draw-
ing such an Mobs (or greater) from the mass function and
the mass-observable relation. In other words, Eq. (C5) is
the appropriate correction for quoting confidence levels for
the mass assuming!CDM, and Eq. (C3) is the appropriate
correction for quoting confidence levels for how the exis-
tence of a given cluster might exclude !CDM. It is the
latter that we are interested in here.
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