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No large-angle correlations on the non-Galactic microwave sky
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ABSTRACT
We investigate the angular two-point correlation function of temperature in the Wilkinson
Microwave Anisotropy Probe (WMAP) maps. Updating and extending earlier results, we con-
firm the lack of correlations outside the Galaxy on angular scales greater than about 60◦ at
a level that would occur in 0.025 per cent of realizations of the concordance model. This
represents a dramatic increase in significance from the original observations by the Cosmic
Background Explorer Differential Microwave Radiometer (COBE-DMR) and a marked in-
crease in significance from the first-year WMAP maps. Given the rest of the reported angular
power spectrum C", the lack of large-angle correlations that one infers outside the plane of
the Galaxy requires covariance among the C" up to " = 5. Alternately, it requires both the
unusually small (5 per cent of realizations) full-sky large-angle correlations and an unusual
coincidence of alignment of the Galaxy with the pattern of cosmological fluctuations (less than
2 per cent of those 5 per cent). We argue that unless there is some undiscovered systematic
error in their collection or reduction, the data point towards a violation of statistical isotropy.
The near-vanishing of the large-angle correlations in the cut-sky maps, together with their
disagreement with results inferred from full-sky maps, remains open problems, and are very
difficult to understand within the concordance model.
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1 INTRODUCTION

Over a decade ago, the Cosmic Background Explorer Differential
Microwave Radiometer (COBE-DMR) first reported a lack of large-
angle correlations in the two-point angular correlation function C(θ )
of the cosmic microwave background (CMB) (Hinshaw et al. 1996).
This was confirmed by the Wilkinson Microwave Anisotropy Probe
(WMAP) team in their analysis of their first year of data (Spergel
et al. 2003), and by us in the WMAP 3-year data (Copi et al. 2007).
Those findings have since been confirmed by Hajian (2007) and
Bunn & Bourdon (2008). Here, we present a more detailed analysis
of the 3-year and (for the first time) of the 5-year WMAP data,
confirming and strengthening our previous results.

There is a common misconception that this lack of angular cor-
relations is equivalent to the low quadrupole in the two-point an-
gular power spectrum, which on its own does not have sufficient
statistical significance to challenge the canonical paradigm. It is
typically assumed that both the angular power spectrum C" and the
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two-point angular correlation function C(θ ) contain the same infor-
mation, and that consequently studying one is as good as studying
both.

Actually, the exact informational equivalence between C" and
C(θ ) holds only when the full sky is observed. Statistically, they are
equivalent only when the sky is statistically isotropic. But even if C"

and C(θ ) did contain the same information, we are well aware that
transforming between different representations of the same infor-
mation – a time series and its Fourier transform for example – may
make a real signal in the data easier or harder to detect. The Doppler
peaks of the CMB, so clearly visible in the C" representation, are
quite invisible in the two-point correlation function.

The angular two-point function at the largest angular scales is
our most direct probe of the primordial seeds of structure formation
(presumably generated during cosmological inflation). We expect
that the large angular scales are a direct probe of cosmological in-
flation, which predicts statistically isotropic CMB temperature fluc-
tuations generated by a scale-invariant power spectrum of primor-
dial quantum fluctuations. Without inflation, at redshift z " 1100
observed angular scales larger than 1◦ probe independent Hubble
patches, while angular scales larger than 60◦ probe regions that are
outside of causal contact until z ∼ 1. [More precisely, the post-
inflation particle horizon subtends θ ! 60◦ at z " 4 in the standard
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Inflationary Cold Dark Matter ($CDM) model.] Therefore, the
epoch of reionization and other secondary effects (at z > few)
cannot modify the correlation function at these scales. Any correla-
tion on top of the primordial signal must be due to local foregrounds
(some contaminant at z < a few) or instrumental systematic effects.

In this work we demonstrate that outside the region of the sky
dominated by our Galaxy, both of the CMB-dominated microwave
bands – V and W – and the Internal Linear Combinations (ILC)
map synthesized from them as the best map of the CMB pos-
sess above 60◦ a level of two-point angular correlation higher than
99.975 per cent of random realizations of the best-fitting $CDM
model. Indeed, above 60◦, C(θ ) is almost entirely due to correla-
tions involving points inside the Galaxy.

This level of statistical unlikelihood [O(10−4)] should be con-
trasted with what could be inferred from COBE [O(10−2)]. This is
a strong argument against the criticism that its identification as an
anomaly is a posteriori. It may have been a posteriori for COBE,
but its reidentification in WMAP at dramatically increased statis-
tical significance is precisely how one goes about confirming that
anomalies are actually present rather than statistical accidents of an
observation.

While the full-sky map C(θ ) itself has unexpectedly low large-
angle correlations (occurring only in 5 per cent of random realiza-
tions of the concordance model), we find that what little correlation
it does have is effectively ‘hidden’ behind the Galaxy. In fact, we
find that a random rotation of the Galactic cut is as successful in
masking the power only 2 per cent of the time, in agreement with the
previous claim that the little correlation above 60◦ stems solely from
two specific regions within the Galactic cut covering just 9 per cent
of the sky (Hajian 2007). This further underlies the striking lack of
power outside the Galactic cut, and calls into question cosmological
uses of full-sky maps even for large angular scale studies.

Finally, we demonstrate that the absence of large-angle correla-
tions is emphatically not just a matter of the low quadrupole. Rather,
given the other measured multipoles, obtaining this little large-angle
correlation for the cut-sky maps (i.e. the part outside the Galaxy)
requires carefully tuning C2, C3, C4 and C5. There is also a strong
indication that it is not enough to find a model in which the theo-
retical C" yield a very small correlation function on large angular
scales. This is because, even if the theoretical C" were to be set
equal to those that are inferred from the cut-sky C(θ ) – so that the
expected C(θ ) nearly vanished above 60◦ – an actual realization of
Gaussian random statistically independent a"m with these C" would
yield different observed C" because of cosmic variance. C(θ > 60◦)
would then not be nearly so close to zero. Thus getting C(θ > 60◦)
to vanish, as it does, seems to require covariance among the low "

C", and thus among a"m of different ". This is in contradiction to
the predictions of the standard inflationary cosmological theory.

One is therefore placed between a rock and a hard place. If
the WMAP ILC is a reliable reconstruction of the full-sky CMB,
then there is overwhelming evidence (de Oliveira-Costa et al. 2004;
Eriksen et al. 2004; Copi, Huterer & Starkman 2004; Schwarz
et al. 2004; Copi et al. 2006; Copi et al. 2007; Land & Magueijo
2005a,b,c,d; Rakić & Schwarz 2007; for a review see Huterer
2006) of extremely unlikely phase alignments between (at least)
the quadrupole and octopole and between these multipoles and the
geometry of the Solar System – a violation of statistical isotropy
that happens by random chance in far less than 0.025 per cent of
random realizations of the standard cosmology. If, on the other
hand, the part of the ILC (and band maps) inside the Galaxy are
unreliable as measurements of the true CMB, then the alignment
of low-" multipoles cannot be readily tested, but the magnitude of

the two-point angular correlation function on large angular scales
outside the Galaxy is smaller than would be seen in all but a few of
every 10 000 realizations.

We can only conclude that (i) we do not live in a standard $CDM
Universe with a standard inflationary early history; (ii) we live in
an extremely anomalous realization of that cosmology; (iii) there
is a major error in the observations of both COBE and WMAP or
(iv) there is a major error in the reduction to maps performed by
both COBE and WMAP. Whichever of these is correct, inferences
from the large-angle data about precise values of the parameters of
the standard cosmological model should be regarded with particular
scepticism.

Finally we note that there is no single test for statistical
anisotropy. There are countless ways of breaking statistical isotropy,
that is, of having 〈a∗

"ma"′m′ 〉 *= C"δ""′δmm′ . Any one of them can be
tested against the data, but no single test can cover all possibilities.
Different tests will be sensitive to different ways of breaking sta-
tistical isotropy. Thus it is both a boon and a bane that there are
multiple tests with varying results (e.g. non-detections of violation
of statistical isotropy in Hajian & Souradeep 2006; Dennis & Land
2008) discussed in the literature. Ideally, these tests will lead to an
understanding of how statistical isotropy can be broken and may ul-
timately provide an explanation of the source of the signatures seen
in some tests and not in others. In the remainder of this paper, we
provide a detailed discussion of the tests we apply and the evidence
and reasoning for the statements made in the previous paragraph.

2 ANGULAR CORRELATION FUNCTION:
PRELIMINARIES

The two-point correlation function of the observed CMB tempera-
ture fluctuations

C(θ ) ≡ T (ê1)T (ê2)θ , (1)

where the over-bar represents an average over all pairs of points on
the sky (or at least that portion of the sky being analysed) that are
separated by an angle θ . On the one hand, we are interested in this
quantity as a partial characterization of the observations. On the
other hand, we regard it as an (unbiased) estimator of the ensemble
average of the same quantity – where the ensemble is of realizations
of the sky in a particular model cosmology.

It is commonly thought that C(θ ) contains the same information
as the angular power spectrum,

C" ≡ 1
2" + 1

"∑

m=−"

|a"m|2 . (2)

(Here a"m are the coefficients of a spherical harmonic decomposition
of the temperature fluctuations on the sky.) This is because, for a
full sky,

C(θ ) = 1
4π

∞∑

"=0

(2" + 1)C"P"(cos θ ). (3)

Again the C" are regarded as most interesting to us as unbiased
estimators of the ensemble average of |a"m|2. Furthermore, the stan-
dard inflationary model predicts that the Universe is statistically
isotropic, so that the ensemble average of pairs of a"m is indepen-
dent:
〈
a!

"ma"′m′
〉

= C"δ""′δmm′ . (4)

Theoretically, the C" therefore encode all of the information from
the sky that has cosmological significance.
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Actually, C" and C(θ ) only contain precisely the same informa-
tion for full-sky data. Their analogues in the ensemble are informa-
tionally equivalent only if, in the ensemble, the sky is statistically
isotropic. This suggests that by measuring both C(θ ) and C" we can
probe the correctness of the assumption of statistical isotropy of the
Universe. Statistical isotropy is a fundamental prediction of generic
inflationary models.

More importantly, it is well known that, while a function and its
Fourier transform possess exactly the same information differently
organized, in different circumstances one or the other may more
clearly show an interesting feature. For example, a sharp delta-
function spike in a time series will merely contribute equally to
all modes of the associated Fourier series. It is precisely the same
with the two-point angular correlation function and its Legendre
transform, the angular power spectrum. Thus, while our theory may
suggest to us that it is easier to analyse the angular power spectrum,
prudence demands that we also consider the properties of the angular
correlation function, all the more so since our actual measurements
are done in ‘angle-space’ not in ‘"-space’.

In order to highlight these differences, we use the calligraphic
symbol C for objects operationally defined in ‘angle-space’ and the
symbol C for quantities in ‘"-space’; e.g. the Legendre transform
of the two-point correlation function (1) is

C" ≡ 2π

∫ 1

−1
P"(cos θ )C(θ )d(cos θ ). (5)

Note that C" can be negative – in contrast to the angular power
spectrum C" as defined in (2).

The angular correlation functions in this work have been calcu-
lated using SpICE (Szapudi, Prunet & Colombi 2001) at NSIDE =
512 for data maps and at NSIDE = 64 for the Monte Carlo studies.
The map average has been subtracted in all cases. The results are
shown in Fig. 1 for four different maps – the ILC map, which cov-
ers the full sky, and KQ75 cut-sky versions of the ILC, the V band
and the W band. In the same figure, we have plotted the Legendre
transform of the angular power spectrum (cf. equation 3) calcu-
lated using both the pseudo-C" method (essentially equation 2)
applied by the WMAP team in their first-year analysis and the maxi-
mum likelihood estimates of the angular power spectrum as used by
WMAP in the third- and fifth-year analysis. Finally we have plotted

Figure 1. The two-point angular correlation function from the WMAP 5-yr
results. Plotted are C(θ ) for maps with DQ subtracted. The V (dash–dot-
dotted line), W (dash–dash-dotted line) and ILC (KQ75, dashed line) have
had the KQ75 mask applied. The full-sky ILC result (solid line) is also
shown. Also plotted are C(θ ) from the WMAP maximum-likelihood C"

(dot–dashed line), the WMAP pseudo-C" (dotted line) and the best-fitting
$CDM C". The shaded region is the 1σ cosmic-variance bound on the
standard $CDM theory.

the expected C(θ ) for the best-fitting $CDM and, in blue, the 1σ

cosmic-variance band around the best fit.
Three striking observations should be made about C(θ ):

(i) None of the observational angular correlation functions visu-
ally matches the expectations from the theoretical model.

(ii) All of the cut-sky map curves are very similar to each other,
and they are also very similar to the Legendre transform of the
pseudo-C" estimate of the angular power spectrum. Meanwhile
the full-sky ILC C(θ ) and the Legendre transform of the MLE of
the C" agree well with each other, but not with any of the others.

(iii) The most striking feature of the cut sky (and pseudo-C")
C(θ ) is that all of them are very nearly zero above about 60◦, except
for some anti-correlation near 180◦. This is also true for the full-sky
curves, but less so.

In order to be more quantitative about these observations, we
must adopt some statistic that measures large-angle correlations.
This means that we must identify some norm that measures the
difference between two functions over a range of angles. Different
choices of norm, or different choices for the angular range, will
give slightly different numerical results for the improbability of the
above observations; however, as we shall see, the observations are
so unlikely that we can be confident that reasonable choices of the
norm lead to similar results.

In their analysis of the first-year data, the WMAP team defined
the S1/2 statistic (Spergel et al. 2003)

S1/2 ≡
∫ 1/2

−1
[C(θ )]2 d(cos θ ). (6)

While the choice of 1/2 as the upper limit of the integral and the
particular choice of a square norm were a posteriori, they are neither
optimized nor particularly special. In fact, this two-point correlator
is the most basic quantity to study, and S1/2 is probably the simplest
statistic that tests the total amount of correlations at large angles.
Moreover, the absence of large-angle correlations was noted by
the COBE team (though without definition of a particular statistical
measure), and the choice of ∼60◦ is clearly suggested by the COBE-
DMR4 results (Hinshaw et al. 1996).

Although the choice of S1/2 was a posteriori for the analysis of
the first year of data from WMAP, it is not for the present analysis
of 3- and 5-year WMAP data. In their 3- and 5-year data releases,
the WMAP team has improved the calibration of the CMB maps
and their understanding of systematic issues. Thus, there was the
possibility that the lack of correlation would go away, but – as
demonstrated below – it persists.

The calculation of S1/2 by direct use of (6) is susceptible to noise
in C(θ ). To avoid this, we calculate S1/2 directly from C" as

S1/2 = 1
(4π)2

∑

","′

(2" + 1)(2"′ + 1)C"I","′ (1/2) C"′ . (7)

The calculation of I","′ (x) is described in Appendix A. The C"

smooth over C(θ ) as defined in equation (5).
We can use S1/2 to characterize the likelihood of the observed cor-

relation function. For the COBE-DMR data (Hinshaw et al. 1996),
there are relatively large error bars on C(θ ), which are consistent
with a wide range of S1/2 ranging from under 1000(µK)4 to approx-
imately 6000 (µK)4. But to understand the significance of these
values, we must compare them to those obtained from random real-
izations of the sky in the concordance $CDM model with the best-
fitting parameters. For this comparison, we generated maps based
on the WMAP 5-year $CDM Markov chain Monte Carlo (MCMC)
parameter chain. There are 20 401 sets of parameters in this chain.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 399, 295–303



298 C. J. Copi et al.

Table 1. The C" calculated from C(θ ) for the various data maps. The WMAP (pseudo and reported MLE) and best-fitting theory C" are
included for reference in the bottom five rows.

Data S1/2 P (S1/2) 6C2/2π 12C3/2π 20C4/2π 30C5/2π
source (µK)4 (per cent) (µK)2 (µK)2 (µK)2 (µK)2

V3 (kp0, DQ) 1288 0.04 77 410 762 1254
W3 (kp0, DQ) 1322 0.04 68 450 771 1302
ILC3 (kp0, DQ) 1026 0.017 128 442 762 1180
ILC3 (kp0), C(> 60◦) = 0 0 – 84 394 875 1135
ILC3 (full, DQ) 8413 4.9 239 1051 756 1588

V5 (KQ75) 1346 0.042 60 339 745 1248
W5 (KQ75) 1330 0.038 47 379 752 1287
V5 (KQ75, DQ) 1304 0.037 77 340 746 1249
W5 (KQ75, DQ) 1284 0.034 59 379 753 1289
ILC5 (KQ75) 1146 0.025 81 320 769 1156
ILC5 (KQ75, DQ) 1152 0.025 95 320 768 1158
ILC5 (full, DQ) 8583 5.1 253 1052 730 1590

WMAP3 pseudo-C" 2093 0.18 120 602 701 1346
WMAP3 MLE C" 8334 4.2 211 1041 731 1521
Theory3 C" 52857 43 1250 1143 1051 981
WMAP5 C" 8833 4.6 213 1039 674 1527
Theory5 C" 49096 41 1207 1114 1031 968

We computed the C" for these parameter sets using CAMB (Lewis,
Challinor & Lasenby 2000). For the C" corresponding to each set
of parameters, we generated a number of random maps (i.e. maps
with a"m drawn from Gaussian distributions with zero mean and
variance C") based on the weight assigned to each WMAP MCMC
parameter set. This produced a total of 99 997 maps at NSIDE = 64.
From the distribution of S1/2 values generated, we calculated the
probability (p-value) of randomly attaining a S1/2 as low as those we
found. For COBE-DMR the maximum value of S1/2 of 6000 (µK)4

corresponds to a 3 per cent chance of obtaining this little angular
correlation in a random realization of the concordance model.

3 BASIC RESULTS

Table 1 lists (Columns 2 and 3) the value of S1/2 and its p-value
among the sample of 99 997 WMAP MCMC maps for the 3- and
5-year maps related to those plotted in Fig. 1. These include the
3- and 5-year V bands (V3 and V5) and W bands (W3 and W5)
cut-sky maps, also the ILC map in 3- and 5-year versions, both full
and cut sky. We use the kp0 cut for 3-year maps and the KQ75
cut in the case of the 5-year maps. The 5-year cut-sky maps are
presented both as measured and corrected for the contribution of
the Doppler quadrupole (DQ; see e.g. Schwarz et al. 2004). (All
maps are corrected by the WMAP team for the Doppler dipole.)

The Legendre transform of C(θ ) gives us C", and these values are
also listed in Table 1 (Columns 4–7) for " = 2–5. Also included
in the table, in the bottom five rows, are the " = 2–5 values of the
WMAP 3-year pseudo-C", the WMAP 3-year C" as extracted by the
WMAP team using a maximum likelihood analysis (the reported
values of the C"), the reported 5-year values of the C" and the
theoretical C" computed using the best-fitting parameter values as
reported in both the 3- and the 5-year WMAP analyses. Finally
and importantly, the table also shows the values of S1/2 and their
p-values computed from the Legendre transform of these angular
power spectra.

The three cut-sky maps, V , W and ILC, whether 3- or 5-year
ones are all in good agreement with each other. They all have very
low values of S1/2 – almost two orders of magnitude below the

predictions of the theory. In both the 3- and 5-year ILC outside
the Galaxy, the probability that such low values could happen by
chance is extraordinarily low – only 0.025 per cent. This low proba-
bility is entirely consistent with the original finding of COBE-DMR
(Hinshaw et al. 1996) described above; however, the error bars
on C(θ ) (and hence on S1/2) have declined substantially, with the
WMAP value of S1/2 being at the absolute lowest end of what was
consistent with COBE, and with much smaller error bars. This dra-
matic decline in the error bars, while honing in on the very low end
of the COBE-DMR range, is exactly what one would expect from
the absence of large-angle correlations in the CMB sky, and not at
all what one would expect if the low S1/2 in COBE-DMR (and in
WMAP) was merely a statistical fluctuation in the measurement.

We also consider the case where there is exactly zero large-scale
angular correlations. That is, we set C(θ ≥ 60◦) = 0 and extract the
C" as a Legendre transform1 for the ILC (kp0) map. This ‘theory’
produces low " C" of approximately the same value as for the C(θ )
from the cut-sky maps. On the one hand, this is consistent with the
statement that there is little correlation on large angular scales and
thus the C" for low " are dominated by small angular scales. On the
other hand, this shows that the data are consistent with there being
no correlations on large angular scales.

We note that it is difficult to enforce C(θ ) = 0 in the context
of a statistically isotropic model. Even if a model were found that
predicted the observed C" as the expected means of the |a"m|2 (as in
equation 4), any actual realization of the Universe would produce
C" that were substantially different. Indeed, we have found that
>97 per cent of realizations of such a Universe would have values
of S1/2 greater than the observed value (see Section 5.1).

The results from the full-sky ILC map also show low values of
S1/2; however, with less remarkable p-values of 5 per cent in contrast

1 We note that setting C(θ ≥ 60◦) = 0 introduces a small monopole into
the power spectrum. This can be corrected by subtracting it out, changing
the θ c = 60◦ to a value such that

∫ θc

0 C(θ ) sin θdθ = 0, etc. Without an
underlying theory to describe this case it is not clear how to best correct for
this monopole. Regardless, the C" we extract are not very sensitive to the
method we use for removing the monopole.
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to 0.02–0.04 per cent for the various cut-sky maps. Similarly, the
full-sky ILC maps have larger quadrupoles than the cut-sky maps
(though still lower than expected from theory) and octopoles con-
sistent with theory. These full-sky maps are in good agreement with
the WMAP-reported MLE C". Meanwhile the pseudo-C" based on
the kp2 sky-cut (which cuts less of the sky than the kp0 cut) are
intermediate between the kp0 cut-sky map results and the full-sky
results.

Thus, the full-sky results seem inconsistent with cut-sky results,
and they appear inconsistent in a manner that implies that most of
the large-angle correlations in reconstructed sky maps are inside
the part of the sky that is contaminated by the Galaxy.

4 MISSING POWER OR UNFORTUNATE
AL IGNMENT?

An important question to consider is whether the extremely low
large-angle correlations in the cut-sky WMAP maps are a general
result of cutting the maps or is specific to the orientation of the cut.
That is, should we expect a loss of large-angle correlations in a cut-
sky map or is the alignment of the cut with the Galaxy important. To
address this question, the full-sky 5-year ILC map was randomly
rotated (i.e. set its north pole in a random direction and draw its
azimuthal angle from a uniform distribution) 300 000 times. For
each random rotation, we masked the map with the Galactic KQ75
mask, which is now, therefore, randomly oriented relative to the
original map and re-computed the quadrupole, octopole and S1/2

statistic.
The analysis shows that the true cut-sky quadrupole and oc-

topole are not terribly unusual compared to those inferred from the
rotated-then-cut (RTC) maps. In 7.6 per cent of these RTC maps,
the quadrupole is smaller than that of the ILC with the originally
placed cut, while 2.5 per cent have a smaller octopole. Therefore, if
we looked at the quadrupole and octopole alone we would conclude
that an arbitrarily oriented mask is only moderately unlikely to pro-
duce low-" power in the cut-sky ILC. Conversely, the particular
alignment of the Galaxy with the part of the sky on which the low-"
power is concentrated is only moderately important.

On the other hand, in the RTC maps S1/2 = 11 900 (µK)4 with
variance 7300 (µK)4, a very high value relative to the original cut
ILC map [1152 (µK)4; see Table 1]. Only 2 per cent of these rotated
maps have S1/2 lower than the ILC with the original cut. (Recall that
S1/2 " 8583 (µK)4 for the full-sky ILC is already low, with a p-value
of only about 5 per cent.) Thus, it is quite unlikely for an arbitrary
cut to suppress the large-angle correlations to the extent observed in
the cut-sky ILC map. Conversely, it is quite likely that the observed
absence of large-angle correlations outside the KQ75 cut is due to
the alignment of the Galaxy with the regions on the sky where such
correlations are maximized. This result is in good agreement with
the result from Hajian (2007) that the little correlation above 60◦

stems from two specific regions within the Galactic cut covering
just 9 per cent of the sky.

It appears that our microwave background sky has anomalously
low angular correlations everywhere outside the Galactic mask, but
not within. In Fig. 2, we plot C(θ ) for the WMAP 5 yr ILC map
calculated separately on the part of the sky outside the KQ75 cut,
inside the KQ75 cut and on the part of the sky with at least one
point inside the KQ75 cut. For better comparison to the full-sky
C(θ ) (also plotted), the partial-sky C(θ ) have been scaled by the
fraction of the sky over which they are calculated. This shows that
the full-sky C(θ ) is very close to C(θ ) calculated from the masked

Figure 2. The two-point angular correlation function from the WMAP 5-yr
results. Plotted are C(θ ) for the ILC calculated separately the part of the sky
outside the KQ75 cut (dashed line), inside the KQ75 cut (dotted line) and
on the part of the sky with at least on point inside the KQ75 cut (dot–dashed
line). For better comparison to the full-sky C(θ ) (solid line), the partial-
sky C(θ ) have been scaled by the fraction of the sky over which they are
calculated.

region. Meanwhile, C(θ ) calculated outside the Galactic mask is
similar to neither, and much closer to zero in magnitude.

Fig. 2 shows two other interesting peculiarities of the measured
angular correlation function. First, the full-sky C(θ ) is particularly
closely mimicked by the C(θ ) computed so that at least one of the
points is inside the masked region; the agreement between the two at
large angles (above approximately 60◦) is nearly perfect. Moreover,
all four correlation functions shown in the figure vanish at nearly
the same angle, θ ∼ 90◦. While at this time we do not understand the
origin or significance of these two effects, we wish to point them
out because it is possible that they will be useful for successful
theoretical or systematic explanations of the vanishing correlation
function.

The evidence we present strongly suggests that the full-sky ILC
map does not represent a statistically isotropic microwave sky. If the
region outside the cut is a reliable representation of the CMB, then
we should focus on the angular correlation for cut skies. As shown
above, this leads to a p-value of 0.025 per cent for the standard
$CDM model (see Table 1). Furthermore, the WMAP reported
MLE C", which assumes Gaussianity and statistical isotropy in their
calculation, are in good agreement with the full-sky C" and C(θ ),
but not with their cut-sky equivalents, whereas the cut-sky C" and
C(θ ) are in good agreement with the pseudo-C" (see Table 1 and
fig. 1). This casts doubt on the validity of the reported low-"C".

5 SO, IS THE LARGE-SCALE CMB
ANOMALOUS OR NOT?

It has been suggested that there is nothing particularly anomalous
about the large-angle CMB (Gaztanaga et al. 2003; Efstathiou 2004;
Slosar, Seljak & Makarov 2004). The argument goes something like
this: (a) the two-point angular correlation function C(θ ) and the an-
gular power spectrum C" contain the same information, (b) not only
does theory tell us that the C" are the ‘relevant’ variables, but, since
they are discrete and finite in number, we can apply standard statisti-
cal techniques to compare observations with theoretical predictions;
when we do so, we find that only C2 is far below the expected value,
but still at a level that happens by chance 10 per cent of the time in
the concordance model.
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We have already pointed out above that (a) contains two fallacies.
First, C(θ ) and C" are equivalent only on a full sky. Second, formal
equivalence is not the only question, signals are often more visible
in one representation of the data than in a different, though formally
equivalent one. If this were not so, then there would be no need for
Fourier analysis. Nor would we need to perform great music – we
could simply read the score.

Point (b) is correct if the Inflationary Cold Dark Matter ($CDM)
cosmological model is true. This model tells us that the spheri-
cal harmonic coefficients a"m are independent Gaussian random
variables, and that the sky is statistically isotropic, so that the off-
diagonal covariances of the estimator C" (as defined in equation 2)
vanishes in linear theory. This vastly simplifies statistical analysis
of the CMB in the context of $CDM. However, in advancing the
case for a particular cosmological model, we are required not just
to determine the best-fitting parameters of the model but also to test
the assumptions and other predictions of the model. This includes
the prediction of statistical isotropy, and consequently that the a"m

are independent of one another.
There is already considerable evidence that if one analyses the

full-sky ILC map that one finds difficult-to-explain deviations from
statistical isotropy, such as the alignment of the octopole and
quadrupole with each other and with the geometry of the Solar
System [e.g. de Oliveira-Costa et al. (2004); Eriksen et al. (2004);
Schwarz et al. (2004); Land & Magueijo (2005a)]. These analyses
require full-sky data for any statistical power, and so, in particular,
might be explained by Galactic foreground contamination (though
it would be an odd coincidence for Galactic contamination to cause
alignment with the Solar System). The calculation of C(θ ), as we
have seen, can be done on a cut sky.

5.1 Are just the low-! C! incorrect?

Perhaps the standard assumptions of statistical isotropy and Gaus-
sianity are correct and only the low-"C" are incorrectly predicted
by the standard model. If this were the case, then the a"m could
still be Gaussian random variables, and some new physics would
be needed to explain the low-" C", e.g. by giving up the scale in-
variance of the primordial power spectrum, which could be caused
by a feature in the inflationary potential.

To study this possibility we replaced C2 through C20 in the best-
fitting $CDM model with the values extracted from the cut-sky ILC
5-year map. From these C" 200 000 random maps were created,
masked and S1/2 computed. Under the assumptions of Gaussianity
and statistical isotropy of these C" only 3 per cent of the generated
maps had S1/2 less than 1152 (µK)4 (the cut-sky ILC5 value from
Table 1). Thus, even if the C" are set to the specific values that
produce such a low S1/2 a Gaussian random, statistically isotropic
realization is 97 per cent unlikely to produce the observed sky.
Again this shows that either (i) the low-"C" are correlated, thus
breaking statistical isotropy or (ii) our Universe is a 97 per cent
unlikely realization of an alternative model that deviates from the
standard one as required to produce the low-"C".

5.2 Statistics of C(θ )

Once we have decided to calculate C(θ ), we are forced to ask how
best to analyse it statistically. One option would be to compare the
C(θ ) inferred from a particular map to the C(θ ) one expects from

theory. Thus one would define

C th(θ ) ≡ 1
4π

∞∑

"=0

(2" + 1)C th
" P"(cos θ ) (8)

for a particular set of parameters (say the best-fitting values) of the
concordance model. This is what is plotted in Fig. 1 as the C(θ ) of
the best-fitting $CDM model.

One would next define some functional norm and compute

N obs−$CDM ≡ ||C(θ ) − C th(θ )|| (9)

where we imply a suitable average over a range of θ on the right-
hand side. This norm could serve as a statistic to compare the two-
point correlation function inferred from the data, or some subset of
the data to the theory. The shaded band around C th(θ ) in Fig. 1
(cosmic variance) reflects this notion that one somehow expects the
inferred C(θ ) to lie inside this band.

The statistic originally suggested by the WMAP team for com-
paring observations of large-angle correlations to theory (S1/2) does
not fall into the above class of statistics. This is because it captures
that what is strange about the inferred angular correlation function
C(θ ) is not that it is different than theory for θ ! 60◦, but rather
that it is so close to zero. Thus, S1/2 is designed to test an alternative
simple hypothesis – that there are no correlations above 60◦. In the
language of equation (9) S1/2 is in the class of statistics

N obs−zero ≡ ||C(θ ) − 0||. (10)

There is another lesson to be learned from the preceding results.
Cosmological inflation predicts that there are fluctuations on all
scales, whereas many alternative models of structure formation,
like cosmic defects, would predict the absence of fluctuations on
super-horizon scales. By looking at scales above 1◦ on the sky, the
inflationary prediction is tested at the time of photon decoupling,
and by looking at the largest angular scales, we can test it in the more
recent Universe since the physical Hubble scale rH(z) = 1/H (z) is
observed at the angle θ = rH(z)/da(z) and angular distance da(z) =
[1/(1 + z)]

∫ z

0 [1/H (z′)]dz′. For the best-fitting parameters of the
concordance model, the lack of correlations at larger 60◦ means
that scales that crossed into the Hubble radius below a redshift
≈1.5 are uncorrelated.

Instead of S1/2, Hajian (2007) advocates the use of a covariance-
weighted integral over C(θ ),

A(x) ≡
∫ x

−1
d(cos θ )

∫ x

−1
d(cos θ ′)C(θ )F −1(θ, θ ′)C(θ ′), (11)

where

F (θ, θ ′) ≡
〈
(C(θ ) − 〈C(θ )〉)(C(θ ′) − 〈C(θ ′)〉)

〉
(12)

and 〈···〉 represents an ensemble average, i.e. an average over
realizations of the underlying $CDM model. As Hajian notes,
A(1/2) = S1/2 in the limit of uncorrelated C(θ ). However, just be-
cause C (θ ) and C(θ ′) are correlated in the standard theory does not
make A(1/2) a more correct statistic than S1/2. For tests against the
standard theory the A(x) statistic provides another statistic; one that
accounts for the theory correlations. However, as discussed above,
it has repeatedly been shown that there are correlations among the
low-" multipole moments (and multipole vectors) of the full sky
that are not consistent with the standard theory. In this case, it is not
possible to compute F (θ , θ ′) because the ensemble over which to
average is unknown. Therefore, while it is somewhat reassuring that
by using A(x) Hajian (2007) confirms our earlier result (Copi et al.
2007) showing C(θ ) for cut skies violates the fundamental model
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Table 2. S1/2 [in (µK)4] obtained by minimizing with respect to C". We show the statistic for the best-fitting theory and WMAP,
as a function of the cut-off multipole "max,tune (the minimization has been performed by varying all " in the range 2 ≤ " ≤
"max,tune and fixing " >" max,tune). Also shown is the 95 per cent confidence region of the minimized S1/2 derived from chain 1
of the WMAP MCMC parameter fit. In the bottom row, we remind the reader that the measured value of S1/2 outside the cut is
1152 (µK)4 (see Table 1 for more details).

C" Maximum tuned multipole, "max,tune
Source 2 3 4 5 6 7 8

Theory 7624 922 118 23 7 3 0.7
Theory 95 per cent 6100–12 300 750–1500 100–200 20–40 7–14 3–6 1–3
WMAP 8290 2530 2280 800 350 150 130

ILC5 (KQ75) 1152

assumption of statistical isotropy, it is not clear that any strong in-
ference should be drawn from differences in statistical significance
between results for A(1/2) and S1/2.

The A(x) statistic suggested by Hajian (2007) and the MLE esti-
mator for the C" are examples of optimal statistics. These statistics
have minimum variance for a specific theory. In both these cases the
assumptions of Gaussianity and statistical isotropy are employed.
Once a theory is established, these statistics make optimal use of the
available data to extract the most precise possible values of model
parameters or of values of summary properties of the data, for ex-
ample of the C". However, when testing the validity of a theory
they only provide another statistic and may not provide the best
test of the assumptions of that theory. In the work presented here,
we implicitly assume a flat weighting of the pixel temperatures in
computing C(θ ) (see equation 1). Furthermore, when assessing the
lowness of C(θ ) at large scales, we do not rely on any particular
underlying theory and assume a flat weighting implicit in the def-
inition of our statistic S1/2. We find that if we assume Gaussianity
and statistical isotropy (through the use of the MLE C"; see Table 1),
then the standard model has a p-value of 5 per cent. However, if we
do not make these assumptions then the standard model only has a
p-value of 0.025 per cent. Without a much more detailed analysis,
it seems to us that a flat weighting is more robust against incorrect
assumptions about the actual statistical distribution than an optimal
weighting. In order to definitively answer that question one would
need to analyse the higher (n-point) correlation functions at large
angular scales, which is beyond the scope of this work.

Finally, we again emphasize that what is anomalous about the
observed large-angle correlations is not how poorly they match the
theory, but rather how well they agree with the very simple alter-
native phenomenological hypothesis that there are no large-angle
correlations – C(θ > 60◦) = 0. The construction of N obs−$CDM

might indeed benefit from an attempt to remove expected correla-
tions through F (θ , θ ′), as in Hajian (2007); however, the theoretical
model against which N obs−zero compares the observations has F (θ ,
θ ′) ≡ 0 for the relevant θ .

5.3 Minimizing S1/2

Once we have understood that what is anomalous about C(θ ) is how
close it is to zero, we can understand that what is strange about the
low-"C" is not just how low C2 is, but also how the various C" are
correlated with each other.

We now probe the sensitivity of S1/2 to ranges of ". Given that
small angles can affect low-" results, it is also the case that higher
" can affect the larger angles. One way to see this is to determine
how the C" for low " must be adjusted to attain a low S1/2. This

is not done by setting some range of C" to zero. Instead, given a
set of C" for " >" max,tune, we can find the values of C" for 2 ≤
" ≤ "max,tune that minimize S1/2 by regarding S1/2 as a function of
C" using equations (3) and (6).

We consider two sets of C", the first from the $CDM theory,
the second as reported by WMAP. Table 2 shows the minimum
S1/2 we find for each value of "max,tune. In the table, we provide the
values for the best-fitting $CDM model and the reported WMAP
C". We also provide the 95 per cent confidence ranges based on the
WMAP MCMC parameter set chain where the minimum S1/2 was
calculated independently for each model.

To attain S1/2 ≤ 1152 (µK)4 (the value found in the masked ILC
map; see Table 1) from the best-fitting theory requires tuning both
C2 and C3. Thus even the theory requires more fine-tuning than just
the quadrupole to be low in order to be consistent with observations.
The minimum in Table 1 was attained for 6C2/2π = 149 (µK)2 and
12C3/2π = 473 (µK)2. In general for the theory we need to tune at
least up to "max,tune = 3 and can almost always find a low S1/2 if we
tune up to "max,tune = 4.

For the WMAP C" even more tuning is required. Note that the
WMAP C2 is already approximately tuned to produce the minimum
S1/2 given the rest of the C" for " > 2 [that is, from Table 1 we note
that 8583 (µK)4 ≈ 8290 (µK)4]. To attain the low S1/2 to match the
cut-sky ILC requires tuning of values of C" up to "max,tune = 5.

Table 2 further shows that the minimum S1/2 that can be achieved
by optimizing the low-" C" fall off much more slowly in the WMAP
C" than in the theory. By "max,tune = 8, the minimum WMAP S1/2 is
two orders of magnitude larger than can be attained from the theory.
This strongly suggests that important correlations exist in the data
for " ≥ 8 that do not exist in the theory. These correlations cannot
be cancelled by tuning the lower " behaviour.

Therefore, we conclude that a given behaviour of C(θ ) on large
scales is not in unique relation to a behaviour of C" at low ". The
former quantity receives significant contributions from C" at high
" as well; the converse is also true. Given the extremely puzzling
near-vanishing power in C(θ > 60◦), and given that the quadrupole
and octopole are not unusually low (as shown in e.g. O’Dwyer et al.
2004), we argue that any theoretical or observational explanation of
the ‘low power at large scales’ should concentrate on the quantity
C(θ ).

6 CONCLUSIONS

In this paper, we have studied the angular correlation function in
WMAP 3- and 5-year maps. We have clarified the relation between
various definitions of the angular correlation function, and revisited
our previous calculation from Copi et al. (2007) in more detail. We

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 399, 295–303



302 C. J. Copi et al.

confirmed that power on large angular scales – greater than about
60◦ – is anomalously low, at 99.975 per cent CL (see Table 1).
The measured angular correlation function thus disagrees with the
$CDM theory, but, more significantly, it is consistent with a simple
phenomenological ‘theory’ – C(θ ≥ 60◦) ≡ 0. The significance of
this disagreement (as measured by the probability of the value of
S1/2) has now increased by a factor of over 100 since it was first
observed in the COBE-DMR four-year analysis.

We have shown that the cut-sky and full-sky large-scale angular
correlations differ (see Table 1 and Fig. 1), though the source of
these discrepancies remains unknown. This shows that either the
Universe is not statistically isotropic on large angular scales or cor-
relations are introduced in reconstructing the full sky from the obser-
vations. We have shown that even given the unusually small full-sky
angular correlations (95 per cent unlikely) an unusual alignment of
the Galaxy with the CMB (2 per cent of realizations) is required to
explain the lack of correlations outside the Galactic region. We have
further shown that simply adjusting the theoretical values of the C"

does not solve the problem if the sky is representative of a Gaussian
random statistically isotropic process – the cosmic variance in the
C" is such that less than 3 per cent of all realizations would preserve
a low value of S1/2 .

From these results we argue that C(θ ) is an important quantity to
study along with the usual angular power spectrum C". The typi-
cal ‘rule-of-thumb’ that low " describes large angular scales is not
accurate. Any theoretical explanations for the ‘missing large-scale
power’ should concentrate on explaining the low C(θ ), rather than
the smallness of the quadrupole and octopole, which are not nearly
as significant (O’Dwyer et al. 2004). As has been pointed out by
Gordon et al. (2005), Rakić & Schwarz (2007) and Bunn & Bourdon
(2008), any possible explanation of the multipole alignments that
relies on an additive, statistically independent contribution to the
microwave sky on top of the primordial one increases the signifi-
cance of the lack of angular correlation.

The CMB, as measured by WMAP in particular, provides much
support for our current model of the Universe. It also points the
way towards new puzzles that may affect fundamental physics. On
the largest angular scales, the microwave sky is inconsistent with
theoretical expectations. These discrepancies between observations
and theory remain an open problem. In the future, combining the
current data with new information, such as new data from WMAP,
observations from the Planck experiment and polarization informa-
tion (Dvorkin, Peiris & Hu 2008), may be key to determining the
nature of the large-scale anomalies.
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(Górski et al. 2005) package and the CAMB software. We acknowl-
edge the use of the Legacy Archive for Microwave Background
Data Analysis (LAMBDA). Support for LAMBDA is provided by
the NASA Office of Space Science. CJC and GDS are supported
by grants from NASA’s Astrophysics Theory Program and from
the US DOE. DH is supported by the DOE OJI grant under con-
tract DE-FG02-95ER40899, NSF under contract AST-0807564 and
NASA under contract NNX09AC89G. DJS is supported by grants
from DFG. DJS and GDS thank the Centro de Ciencias de Benasque
for its hospitality.

REFERENCES

Bunn E. F., Bourdon A., 2008, Phys. Rev. D, 78, 123509
Copi C. J., Huterer D., Starkman G. D., 2004, Phys. Rev. D, 70, 043515
Copi C. J., Huterer D., Schwarz D. J., Starkman G. D., 2006, MNRAS, 367,

79
Copi C. J., Huterer D., Schwarz D. J., Starkman G. D., 2007, Phys. Rev. D,

75, 023507
de Oliveira-Costa A., Tegmark M., Zaldarriaga M., Hamilton A., 2004, Phys.

Rev. D, 69, 063516
Dennis M. R., Land K., 2008, MNRAS, 383, 424
Dvorkin C., Peiris H. V., Hu W., 2008, Phys. Rev. D, 77, 063008
Efstathiou G., 2004, MNRAS, 348, 885
Eriksen H. K., Hansen F. K., Banday A. J., Górski K. M., Lilje P. B., 2004,

ApJ, 605, 14
Gaztanaga E., Wagg J., Multamaki T., Montana A., Hughes D. H., 2003,

MNRAS, 346, 47
Gordon C., Hu W., Huterer D., Crawford T. M., 2005, Phys. Rev. D, 72,

103002
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APPENDIX A: INTEGRATING PRODUCTS
OF LEGENDRE POLYNOMIALS

We wish to calculate

Im,n(x) ≡
∫ x

−1
Pm(x ′)Pn(x ′)dx ′. (A1)

For the special case of x = 1, this is just the normalization

Im,n(1) = 2
2n + 1

δm,n. (A2)

For a general x we consider two cases. When m *= n Legendre’s
equation

(1 − x2)P ′
n(x) − 2xP ′

n(x) + n(n + 1)Pn(x) = 0 (A3)

allows us to write

Pm(x)Pn(x) = d
dx

[
(1 − x2)(P ′

mPn − P ′
nPm)

]

/[n(n + 1) − m(m − 1)]. (A4)

Then using the relation

(1 − x2)P ′
n(x) = nPn−1(x) − nxPn(x), (A5)

we find
Im,n = {mPn(x) [Pm−1(x) − xPm(x)]

− nPm(x) [Pn−1(x) − xPn(x)]}

/{n(n + 1) − m(m + 1)} [for m *= n].
(A6)
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When m = n we integrate (A1) by parts to get off-diagonal terms
(A6) and use the indefinite integral
∫

Pn(x)dx = 1
2n + 1

[Pn+1(x) − Pn−1(x)] (A7)

to derive the recursion relation

In,n(x) = {[Pn+1(x) − Pn−1(x)] [Pn(x) − Pn−2(x)]

− (2n − 1)In+1,n−1(x) + (2n + 1)In,n−2(x)

+ (2n − 1)In−1,n−1(x)}/{2n + 1}. (A8)

Starting from I0,0(x) = x + 1 and I1,1(x) = (x3 + 1)/3 we can
calculate all the diagonal terms recursively.

With these two relations (A6 and A8), we can compute and
tabulate all required values of Im,n for any x.
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