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ABSTRACT
We use N-body/photometric galaxy simulations to examine the impact of sample variance of
spectroscopic redshift samples on the accuracy of photometric redshift (photo-z) determina-
tion and calibration of photo-z errors. We estimate the biases in the cosmological parameter
constraints from weak lensing and derive requirements on the spectroscopic follow-up for
three different photo-z algorithms chosen to broadly span the range of algorithms available.
We find that sample variance is much more relevant for the photo-z error calibration than for
photo-z training, implying that follow-up requirements are similar for different algorithms.
We demonstrate that the spectroscopic sample can be used for training of photo-zs and error
calibration without incurring additional bias in the cosmological parameters. We provide a
guide for observing proposals for the spectroscopic follow-up to ensure that redshift calibra-
tion biases do not dominate the cosmological parameter error budget. For example, assuming
optimistically (pessimistically) that the weak lensing shear measurements from the Dark En-
ergy Survey could obtain 1σ constraints on the dark energy equation of state w of 0.035
(0.055), implies a follow-up requirement of 150 (40) patches of sky with a telescope such as
Magellan, assuming a 1/8 deg2 effective field of view and 400 galaxies per patch. Assuming
(optimistically) a VIMOS-VLT Deep Survey-like spectroscopic completeness with purely ran-
dom failures, this could be accomplished with about 75 (20) nights of observation. For more
realistic assumptions regarding spectroscopic completeness, or with the presence of other
sources of systematics not considered here, further degradations to dark energy constraints are
possible. We test several approaches for making the requirements less stringent. For example,
if the redshift distribution of the overall sample can be estimated by some other technique, e.g.
cross-correlation, then follow-up requirements could be reduced by an order of magnitude.

Key words: cosmological parameters – cosmology: observations – cosmology: theory – dark
energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

One of the principal systematic errors affecting surveys that utilize
the large-scale structure (LSS) to study dark energy is the quality of
the photometric redshifts (hereafter photo-zs). Because of time and
throughput constraints it is costly and impractical to obtain spectro-
scopic redshifts for more than a small fraction of galaxies. Upcom-
ing surveys such as the Dark Energy Survey1 (DES), PanStarrs,2

!E-mail: ccunha@stanford.edu
1 http://darkenergysurvey.org
2 http://pan-starrs.ifa.hawaii.edu

Hyper-Suprime Cam survey3 (HSC) and the Large Synoptic Sur-
vey Telescope4 (LSST) will have to rely on the photo-zs in order
to utilize the three-dimensional information from the large number
of galaxies observed in these surveys. Without the redshift infor-
mation, one loses the ability to perform weak lensing tomography
(Hu 1999), and thus degrades the ability to measure the temporal
evolution of dark energy in the recent (z ! 1) history of the Uni-
verse (for reviews, see Bartelmann & Schneider 2001; Hu 2002;
Huterer 2002, 2010; Amara & Refregier 2007; Hoekstra & Jain
2008; Munshi et al. 2008).

3 http://oir.asiaa.sinica.edu.tw/hsc.php
4 http://lsst.org
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Photo-z techniques use broad-band photometry, i.e. the measured
flux through a few bands, to estimate approximate galaxy red-
shifts. Other observable quantities (hereafter ‘observables’), such
as galaxy shape measures, can also be used, but they typically have
limited redshift information. The intrinsic uncertainty of photo-zs
can contribute significantly to the error in the inferred cosmological
parameters.

There are two broad, overlapping, categories of photo-z estima-
tors. Template-fitting algorithms (e.g. Arnouts et al. 1999; Benitez
2000; Bolzonella, Miralles & Pelló 2000; Budavári et al. 2000;
Csabai et al. 2003; Feldmann et al. 2006) assign photo-zs to a
galaxy by finding the template and redshift that best reproduce the
observed fluxes. Training set methods (e.g. Connolly et al. 1995;
Firth, Lahav & Somerville 2003; Wadadekar 2005; Wang et al.
2007; Gerdes et al. 2010), on the other hand, use a spectroscopic
sample to characterize a relation between the photometric observ-
ables and the redshifts, which is then applied to the full photometric
sample. The distinction between the two categories is muddled be-
cause template-fitting methods can also use spectroscopic redshifts
to improve the fitting. Conversely, training set methods can be based
on catalogues simulated using templates. For reviews and compari-
son of methods see e.g. Hogg et al. (1998), Koo (1999), Hildebrandt
et al. (2010) and Abdalla et al. (2011).

Spectroscopic redshifts (hereafter spec-zs) play three important
roles in photo-z analysis. First, as described above they improve
the accuracy of photo-z estimation. Having accurate photo-zs is
highly desirable for cosmology, as photo-z errors inevitably smear
the radial information describing galaxy clustering. Secondly, spec-
troscopic redshifts characterize the photo-z errors (see Ref. Oyaizu
et al. 2008b, for a review). With accurate error estimation, one can
remove or downweight the less reliable photo-zs, decreasing their
impact on the cosmological analysis. Thirdly, spec-zs characterize
the uncertainties in the photo-z error distribution (‘error in the er-
ror’), which is a key quantity that needs to be accurately known. In
particular, even if photo-zs are not exceptionally accurate and there
are regions of badly misestimated redshift (i.e. the ‘catastrophic
errors’), one can still recover the cosmological information pro-
vided the bias, scatter and ideally the full distribution in the zp–zs

plane, are accurately calibrated using the subset of galaxies with
spectroscopic information.

The requirements on spectroscopic samples due to the three re-
quirements mentioned are not independent, but have been treated as
such in the past. For example, the amount of spectroscopic follow-
up required for calibration depends on the intrinsic accuracy of
the photo-zs (Huterer et al. 2006; Ma, Hu & Huterer 2006; Ma &
Bernstein 2008) and on the identification of regions with unreli-
able photo-zs (Sun et al. 2009; Bernstein & Huterer 2010, hereafter
BH10; Hearin et al. 2010), but the ability to do both of these is
strongly dependent on the use of spec-zs for training and error esti-
mation. At this point, the careful reader may wonder: can the same
spectroscopic sample be used for photo-z training, error estimation
and calibration without significantly biasing cosmological results?
Yes, it turns out, as we will show in this paper.

Obtaining spectra for thousands of galaxies needed for photo-z
studies is a very difficult task, which complicates their use in
photo-z studies. Spectroscopic surveys can be far from a repre-
sentative subsample of the photometric sample for five principal
reasons.

(i) Shot noise. Spectroscopic samples to the depth required are
quite small, hence Poisson fluctuations due to the finite number of
galaxies are significant.

Figure 1. Normalized spectroscopic redshift distribution for the full data.
The red (light grey) error bars show the 1σ variability in the redshift dis-
tribution for contiguous 1 deg2 angular patches. The blue (dark grey) error
bars show the variability in the redshift distribution assuming random sam-
ples of with the same mean number of objects as the 1 deg2 patches. We
assume that only a 25 per cent random subsample of each patch is targeted
for spectroscopy, yielding about 1.2 × 104 galaxies per patch on average.

(ii) Sample variance. Spectroscopic surveys designed to reach
the magnitude limits of the upcoming photometric surveys typically
have very small angular apertures, much smaller than fluctuations
introduced by large-scale clustering of galaxies. The fluctuations
due to sample variance can be an order of magnitude larger than
shot-noise fluctuations for samples of around 1 deg2 (see e.g. van
Waerbeke et al. 2006, and Fig. 1).

(iii) Type incompleteness. Strength of spectral features vary sig-
nificantly with galaxy type. In addition, the wavelength coverage
of most spectrographs is not sufficient to detect some of the main
features through the full redshift range of interest.

(iv) Incorrect redshifts. Line misidentification can yield incorrect
redshifts. The number of incorrect spectroscopic redshifts can be
reduced – by keeping only the most reliable galaxies – at the cost
of increasing the incompleteness.

(v) Sample variance in observing conditions. Variations in imag-
ing conditions (e.g. seeing and photometric quality) during a survey
imprint an angular dependence to the survey depth and complete-
ness.

Past papers on the effects of photometric redshift errors on dark
energy constraints (Huterer et al. 2006; Ma et al. 2006; Amara &
Refregier 2007; Abdalla et al., 2008; Kitching, Taylor & Heavens
2008; Ma & Bernstein 2008; Bordoloi, Lilly & Amara 2010; Hearin
et al. 2010) have studied in detail the distribution of photometric
redshifts (more specifically, the full probability density function
P(zp|zs)). Some of these works have extended the analysis to esti-
mate the number of spectra required in order to calibrate the photo-
zs. However, in essentially all cases the requirements on the spectro-
scopic sample have only assumed shot noise, i.e. that the accuracy of
the photo-z bias and error in some redshift bin labelled by µ is equal
to #zbias(zµ) = σz(zµ)

√
1/N

µ
spec and #σz(zµ) = σz(zµ)

√
2/N

µ
spec,

where Nµ
spec is the size of the spectroscopic follow-up sample in that

bin (see equation 18 in Ma et al. 2006).
Sample variance was taken into account in spectroscopic follow-

up requirements in van Waerbeke et al. (2006) and Ishak & Hirata
(2005); however, they only considered the overall redshift distribu-
tion of the source sample and did not include photometric redshifts
in the simulations (see also Bordoloi et al. 2010, for a related discus-
sion). Requirements on spectrograph design in order to minimize
spectroscopic failures were investigated in Jouvel et al. (2009),
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with emphasis on designing spectrographs to calibrate redshifts for
space-based missions. Finally, the effects of sample variance in
observing conditions was investigated by Nakajima et al. (2012)
using Sloan Digital Sky Survey (SDSS) imaging and spectroscopic
redshifts from several surveys overlapping the SDSS. That paper
found that atypical imaging conditions in the spectroscopic fields
can lead to biases in galaxy–galaxy lensing analysis, but fortunately
concluded that this type of bias can be at least partly corrected (see
also Sheldon et al. 2011, for a related discussion).

The main goals of this paper are to study the impact of sample
variance in spectroscopic samples to the training of photo-zs, er-
ror estimation and error calibration, and to assess implications for
cosmological constraints from weak lensing tomography analyses.
The paper is organized as follows. In Section 2 we describe the
photo-z algorithms we use in our tests. In Section 3 we describe
our construction of the different simulated samples used. We detail
the procedure of estimating biases in cosmological constraints from
the weak lensing tomography in Section 4. Results are given in
Section 5 with a discussion of potential improvements in Section 6.
We provide a guide for determining spectroscopic observational re-
quirements in Section 7 and present our conclusions in Section 8.
The construction of the simulations is described in Appendix A.

2 PH OTO - z A L G O R I T H M S

We consider three different photo-z algorithms that broadly span
the space of possibilities. Namely, we use a basic template-fitting
code without any priors, a training set fitting method and a training
set method that does not perform a fit, but uses the local density
in the neighbourhood of an object to derive a redshift probability
distribution. We briefly describe each below.

2.1 Template-fitting redshift estimators

Template-fitting estimators derive photometric redshift estimates
by comparing the observed colours of galaxies to colours pre-
dicted from a library of galaxy spectral energy distributions (SEDs).
We use the publicly available LEPHARE photo-z code5 (Arnouts
et al. 1999; Ilbert et al. 2006) as our template-fitting estimator.
We chose the extended Coleman–Wu–Weedman (CWW) template
library (Coleman, Wu & Weedman 1980) because it yielded the
best photo-zs for our simulation.

We purposefully ignore all priors for reasons that we now de-
scribe. There are essentially two classes of priors, those derived
from completely different surveys, and those based on targeted
follow-ups of a subsample of the survey for which photo-zs are
desired. The use of the latter makes template-fitting results quite
similar to the training set methods, and would make the template-
fitting code subject to a training procedure which would be affected
by the sample variance. The use of the former could reduce some
outliers, but would also complicate the interpretation of the results;
there are several choices of external priors, and if the selection of
the sample used to determine the priors is different from that of the
survey at hand then redshifts could be biased (see e.g. Abrahamse
et al. 2011). As we shall see, the photo-z quality is not a dominant
factor in our analysis, and a more thorough experimentation of the
template-fitting algorithms is not expected to affect conclusions.

5 http://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html

2.2 Nearest neighbour redshift probability estimators

2.2.1 Weights

In this subsection, we briefly review the weighting method6 of Lima
et al. (2008), which is required for computing redshift probabilities,
henceforth p(z). We define the weight, w, of a galaxy in the spectro-
scopic training set as the normalized ratio of the density of galaxies
in the photometric sample to the density of training-set galaxies
around the given galaxy. These densities are calculated in a local
neighbourhood in the space of photometric observables, e.g. multi-
band magnitudes. In this case, the DES griz magnitudes are our
observables. The hypervolume used to estimate the density is set
here to be the Euclidean distance of the galaxy to its Nth nearest
neighbour in the training set. We set N = 50 for the p(z) estimate.
Smaller N lead to less broad p(z)s and better reconstruction of the
overall redshift distribution at the cost of increased shot noise in
individual p(z)s. If one does not care about individual p(z)s then we
recommend choosing a smaller N; the optimal choice will depend
on the training set size. The bias analysis is not sensitive to the
choice of N.

The weights can be used to estimate the redshift distribution of
the photometric sample using

N (z)wei =
NT,tot∑

β=1

wβN (z1 < zβ < z2)T, (1)

where the weighted sum is over all galaxies in the training set.
Lima et al. (2008) and Cunha et al. (2009) show that this provides
a nearly unbiased estimate of the redshift distribution of the photo-
metric sample, N(z)P, provided the differences in the selection of the
training and photometric samples are solely done in the observable
quantities used to calculate the weights.

2.2.2 Probability density p(z)w

To estimate the redshift error distribution for each galaxy, p(z)w,
we adopt the method of Cunha et al. (2009). We use the subscript
‘w’ to differentiate between our particular estimator and the general
concept for redshift probability distributions. The p(z)w for a given
object in the photometric sample is simply the redshift distribution
of the N (in this case 50) nearest neighbours in the training set:

p(z)w =
N∑

β=1

wβδ(z − zβ ). (2)

We estimate p(z)w in 20 redshift bins between z = 0 and 1.35.
We can also construct a new estimator for the number of galaxies

N(z)P by summing the p(z)w distributions for all galaxies in the
photometric sample:

N (z)p(z) =
NP,tot∑

i=1

pi(z)w. (3)

This estimator becomes identical to that of equation (1) in the
limit of very large training sets. For training sets smaller than tens
of thousands of galaxies, one can improve the p(z)w estimate by
multiplying each p(z)w by the ratio of N(z)wei to N(z)p(z).

6 The weights, p(z) and polynomial codes are available at http://kobayashi.
physics.lsa.umich.edu/ ~ccunha/nearest/. The codes can also be obtained in
the git repository PROBWTS at http://github.com
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We note that several public photo-z codes exist that can output
p(z)s, e.g. the template-fitting codes LEPHARE (Arnouts et al. 1999;
Ilbert et al. 2006), ZEBRA (Feldmann et al. 2006), BPZ (Coe et al.
2006) and the training-set based ARBORZ (Gerdes et al. 2010). We
do not expect qualitative differences in our conclusions from using
the above methods because, as we will show, sample variance affects
mostly spectroscopic properties, not photometric.

2.3 Nearest neighbour polynomial fitting redshift estimators

For each galaxy in the photometric sample, the nearest neighbour
polynomial (NNP) fitting algorithm uses the N nearest neighbour-
ing galaxies with spectra (i.e. in the training set) to fit a low-order
polynomial relation between the redshift and the observable quan-
tities (e.g. colours and magnitudes). It then applies this function to
the observables of the galaxy in the photometric sample and assigns
it a redshift. We use a second-order polynomial in this study and
check that a first-order polynomial does not change results by more
than a few per cent. The NNP method was introduced by Oyaizu
et al. (2008a) and produces photo-zs that are very similar to the
neural networks. We chose the NNP here because it is very fast
compared to other codes for photometric samples with up to a few
million objects in size. In addition, we can directly compare the
results of the NNP photo-zs with the p(z)w since both are based on
the same set of training-set galaxies. As with the p(z)w method, the
choice of which N nearest neighbours are to be used does not affect
results significantly, provided there are enough galaxies to charac-
terize the coefficients of the polynomial fit and avoid overfitting.
For a second-order polynomial with four observables, we find that
N = 100 is a good comprise between retaining locality of colour
information and stability of the fit. Results presented here use a
slightly more aggressive N = 80, but this does not affect the bias
results meaningfully.

3 SIMULATED DATA

3.1 Selection

We use a cosmological simulation, populated with galaxies and their
photometric properties, fully described in Appendix A. The simu-
lation consists of a 220 deg2 photometric survey in the grizY DES
bands with 10σ magnitude limits of [24.6, 24.1, 24.4, 23.8, 21.3].
For this study, we disregard the Y band since we find it does not
improve the photo-zs. We select only galaxies with i < 24 which are
also detected (to 5σ ) in the grz bands. The original catalogue con-
tains 13 550 386 galaxies, and after the cuts we are left with Ndata =
10 780 625 galaxies. To speed up the training and calibration of the
photo-zs, we pick a random subsample of about Nphot = 4000 000
galaxies to be our photometric sample.

3.2 Training and calibration samples

We construct our spectroscopic training and calibration samples by
splitting the simulation output into several sets of N × N patches
of equal area, with each patch being nearly square in shape. When
comparing the different photo-z algorithms we use three binning
schemes, setting N = 6, 15 and 30, which correspond, roughly, to
patches of area 6, 1 and 0.25 deg2, respectively. Because spectro-
scopic surveys are far from complete, in a sense that they include
spectra of only a subset of all photometrically discovered galax-
ies, we randomly pick a subsample from each patch. Unless stated
otherwise, we simulate 25 per cent random completeness, i.e. we

use a Monte Carlo approach to downsample by drawing a random
number between 0 and 1 for each galaxy and selecting the galaxies
for which the number is less than 0.25. The mean number of galax-
ies per pixel available for training and calibration is about 74 865,
11 978 and 2995 for the 6, 1 and 0.25 deg2 pixel sets. We refer to
the sample created by splitting the data in angular patches as the
LSS samples.

For each set of LSS samples, we generate what we call the
random-equivalent samples. The random-equivalent samples are
sets of random samples drawn from the full survey but with size
similar to the LSS sample patches. For example, the random equiv-
alent patches of the 1 deg2 LSS patches are generated as follows.
There are 225 patches in the 1 deg2 case. The random-equivalent
patches are generated by performing random draws of galaxies from
the full data set to generate a new set of 225 patches; each such (ran-
dom equivalent) patch is generated by including every galaxy from
the original catalogue with the probability Npatch/Ngal, where Npatch

is the average number per patch (e.g. 11 978 in the 1 deg2 case),
while Ngal is the total number of galaxies in the simulation. This
yields 225 samples that have the same average number of galaxies
per patch as the LSS patches.

As discussed in the Introduction, in real spectroscopic surveys the
incompleteness is caused not only by random subselection, but also
the inability to get spectra for some galaxies. These spectroscopic
failures can lead to biases in the training and calibration and we
shall explore them in a follow-up paper. Throughout, we use the
same set of patches for both training and calibration. In Section 5,
we show that this does not add appreciable error to the cosmological
constraints.

4 W EAK LENSING BIAS

We wish to quantify how much sample variance due to the LSS con-
tributes to errors in weak lensing shear, and thus errors in the derived
cosmological parameter constraints. For simplicity, we only study
the shear–shear correlations, and not the related shear–galaxy and
galaxy–galaxy power spectra. The observable quantity we consider
is the convergence power spectrum:

Cκ
ij (') = P κ

ij (') + δij
〈γ 2

int〉
n̄i

, (4)

where 〈γ 2
int〉1/2 is the rms intrinsic ellipticity in each component, n̄i

is the average number of galaxies in the ith redshift bin per steradian
and ' is the multipole that corresponds to structures subtending the
angle θ = 180◦/'. For simplicity, we drop the superscripts κ below.
For most of this work we take 〈γ 2

int〉1/2 = 0.16, which yields very
stringent follow-up requirements. We discuss the impact of this
choice in Section 5.4.1.

We closely follow the formalism of BH10, where the photometric
redshift errors are algebraically propagated into the biases in the
shear power spectra. These biases in the shear spectra can then be
straightforwardly propagated into the biases in the cosmological
parameters. We now review briefly this approach.

Let us assume a survey with the (true) distribution of source
galaxies in redshift nS(z), divided into B bins in redshift. Let us
define the following terms.

(i) Leakage P(zp|zs) (or lsp in BH10 terminology): fraction of ob-
jects from a given spectroscopic bin that are placed into an incorrect
(non-corresponding) photometric bin.

(ii) Contamination P(zs|zp) (or csp in BH10 terminology): frac-
tion of galaxies in a given photometric bin that come from a non-
corresponding spectroscopic bin.
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When specified for each tomographic bin, these two quantities
contain the same information. Note in particular that the two quan-
tities satisfy the integrability conditions:
∫

P (zp|zs) dzp ≡
∑

p

lsp = 1, (5)

∫
P (zs|zp) dzs ≡

∑

s

csp = 1. (6)

A fraction lsp of galaxies in some spectroscopic-redshift bin ns

‘leak’ into some photo-z bin np, so that lsp is the fractional pertur-
bation in the spectroscopic bin, while the contamination csp is the
fractional perturbation in the photometric bin. The two quantities
can be related via

csp = Ns

Np
lsp, (7)

where Ns and Np are the absolute galaxy numbers in the spectro-
scopic and photometric bin, respectively. Then

ns → ns, (8)

np → (1 − csp) np + csp ns (9)

and the photometric bin normalized number density is affected (i.e.
biased) by photo-z catastrophic errors. The effect on the cross power
spectra is then (BH10)

Cpp → (1 − csp)2Cpp + 2csp(1 − csp)Csp + c2
spCss,

Cmp → (1 − csp)Cmp + csp Cms (m < p),

Cpn → (1 − csp)Cpn + csp Csn (p < n),

Cmn → Cmn (otherwise) (10)

(since the cross power spectra are symmetrical with respect to the
interchange of indices, we only consider the biases in power spectra
Cij with i ≤ j). Note that these equations are exact for a fixed
contamination coefficient csp.

The bias in the observable power spectra is the right-hand side
(rhs)–left-hand side (lhs) difference in the above equations.7 The
cumulative result due to all contaminations in the survey (or, P(zs|zp)
values for each zs and zp binned value) can be obtained by the
appropriate sum

δCpp =
∑

s

(−2csp + c2
sp)Cpp + 2csp(1 − csp)Csp + c2

spCss,

δCmp =
∑

s

(
−cspCmp + csp Cms

)
,

δCpn =
∑

s

(
−cspCpn + csp Csn

) (11)

for each pair of indices (m, p), where the second and third line
assume m < p and p < n, respectively.

The bias in cosmological parameters is given by using the stan-
dard linearized formula (Knox, Scoccimarro & Dodelson 1998;
Huterer & Turner 2001), summing over each pair of contamina-
tions (s, p):

δpi ≈
∑

j

(F−1)ij
∑

αβ

∂C̄α

∂pj

(Cov−1)αβ δCβ , (12)

7 We have checked that the quadratic terms in csp are unimportant, but we
include them in any case.

where F is the Fisher matrix and Cov is the covariance of shear
power spectra (see just below for definitions). This formula is ac-
curate when the biases are ‘small’, that is, when the biases in the
cosmological parameters are much smaller than statistical errors in
them, or δpi + (F−1)1/2

ii . Here i and j label cosmological parame-
ters, and α and β each denote a pair of tomographic bins, i.e. α, β =
1, 2, . . ., B(B + 1)/2, where recall B is the number of tomographic
redshift bins. To connect to the Cmn notation in equation (10), for
example, we have β = mB + n.

We calculate the Fisher matrix F assuming perfect redshifts, and
following the procedure used in many other papers (e.g. Huterer &
Linder 2007). The weak lensing Fisher matrix is then given by

FWL
ij =

∑

'

∂C
∂pi

Cov−1 ∂C
∂pj

, (13)

where pi are the cosmological parameters and Cov−1 is the inverse
of the covariance matrix between the observed power spectra whose
elements are given by

Cov
[
Cij ('), Ckl('′)

]
= δ''′

(2'+ 1) fsky #'

×
[
Cik(')Cjl(') + Cil(')Cjk(')

]
. (14)

The fiducial weak lensing survey corresponds to expectations from
the DES, and assumes 5000 deg2 (corresponding to f sky - 0.12) with
tomographic measurements in B = 20 uniformly wide redshift bins
extending out to zmax = 1.35. The effective source galaxy density
is 12 galaxies per square arcmin, while the maximum multipole
considered in the convergence power spectrum is 'max = 1500. The
radial distribution of galaxies, required to determine tomographic
normalized number densities ni in equation (4), is determined from
the simulations and shown in Fig. 1.

We consider a standard set of six cosmological parameters with
the following fiducial values: matter density relative to critical+M =
0.25, equation of state parameter w = −1, physical baryon fraction
+Bh2 = 0.023, physical matter fraction +Mh2 = 0.1225 (corre-
sponding to the scaled Hubble constant h = 0.7), spectral index
n = 0.96 and amplitude of the matter power spectrum ln A, where
A = 2.3 × 10−9 (corresponding to σ 8 = 0.8). Finally, we add the
information expected from the Planck survey given by the Planck
Fisher matrix (Hu, private communication). The total Fisher matrix
we use is thus

F = FWL + FPlanck. (15)

The fiducial constraint on the equation of state of dark energy as-
suming perfect knowledge of photometric redshifts isσ (w) = 0.035.

Our goal is to estimate the biases in the cosmological parameters
due to imperfect knowledge of the photometric redshifts. In partic-
ular, the relevant photo-z error will be the difference between the
inferred P(zs|zp) distribution for the calibration (or training) set and
that for the actual survey. Therefore, we define

δCβ = C train
β − C

phot
β (16)

= δC train
β − δC

phot
β , (17)

where the second line trivially follows given that the true, under-
lying power spectra are the same for the training and photometric
galaxies. All of the shear power spectra biases δC can straightfor-
wardly be evaluated from equation (11) by using the contamination
coefficients for the training and photometric fields, respectively.
Therefore, the effective error in the power spectra is equal to the
difference in the biases of the training set spectra (our estimates
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of the biases in the observable quantities) and the photometric set
spectra (the actual biases in the observables).

5 R ESULTS

We present our results in this section. In Section 5.1 we com-
pare the effects of sample variance on the spectroscopic redshifts
and the photometric observables, concluding that the effects on
the redshifts are dominant. We then discuss the impact of sample
variance on photo-z training in Section 5.2, finding that the effect
on the photo-z scatter statistics is negligible, but that it does intro-
duce variability in the estimate of the overall redshift distribution.
The effect is much smaller for photo-z methods that use a fitting
function, such as the NNP, but pronounced for the density-based
estimators such as the p(z)w. In Section 5.3, we look at the impact
of sample variance in calibration of the photo-z error distributions,
finding that it dominates shot noise for the scenarios we simulate.
Finally, in Section 5.4 we examine the dependence of our results on
our choices of parametrizations.

5.1 Spectroscopic redshift variance versus photo-z variance

LSS not only correlates the spatial distribution of galaxies, but
also correlates the distribution of galaxy types, colours and other
properties. For example, if there is a big galaxy cluster in some patch
on the sky, red galaxies will be over-represented in that patch. Since
red galaxies typically have better photo-zs than blue galaxies, an
estimate of the redshift error distribution using this patch may not be
representative of the error distribution of the full sample. In addition,
objects in this region will have a smaller dispersion in the quality
of their redshifts than predicted by Poisson statistics. Because this
extra systematic is indirectly caused by the existence of LSSs, we
refer to it as sample variance of the photo-zs, to differentiate it from
sample variance purely in galaxy positions, which we hereafter refer
to as the sample variance in the spec-zs.

We use the conditional probabilities P(zp|zs) and P(zs|zp) to dis-
entangle the two sources of sample variance. The key point is that
P(zs|zp) is sensitive to changes in the zs distribution, but not in the
zp distribution. Conversely, P(zp|zs) is only sensitive to changes in
the zp distribution, but not in zs (one can be convinced of this point
by constructing simple toy examples).

We now estimate the variability of the error distributions across
patches of the sky. For P(zp|zs) we define the standard deviation
about the mean:

σ (P (zp|zs)) =

√√√√
∑

patches

(
P (zp|zs) − P (zp|zs)

)2

Npatches
, (18)

where P (zp|zs) is the mean ‘leakage’ (between the patches) of
galaxies from the spectroscopic bin centred at zs being registered
as having the photometric redshifts in the bin centred at zp. We
also introduce the equivalently defined quantity σ (P(zs|zp)). We are
interested in the increase in variability relative to the case of a
random subsample, where effects of clustering due to the LSS have
been zeroed out.

In the top panel of Fig. 2 we show the ratio of σ (P(zp|zs)) calcu-
lated for the 0.25 deg2 LSS patches and the corresponding 0.25 deg2

random-equivalent patches. In the bottom panel of the same figure,
we show the corresponding ratio for σ (P(zs|zp)). We perform this
test using the template photo-zs so as to isolate the importance of
sample variance on the calibration of the error matrices. Comparing
the two plots, we see that sample variance of the photo-zs does not
increase appreciably between the random and the LSS patches, i.e.

Figure 2. Top panel: ratio of σ (P(zp|zs)) (see equation 18) calculated for
the 0.25 deg2 LSS patches and the corresponding 0.25 deg2 random patches
using template photo-zs. Bottom panel: same, but for σ (P(zs|zp)). The ratios
are much bigger on the bottom plot than on the top, indicating that sample
variance affects the spectroscopic redshifts much more than the photometric
redshifts.

the ratios in each pixel are very close to unity. The sample variance
of the spec-zs, on the other hand, shows marked increase, as was
already apparent from Fig. 1. In Section 6.1 we show that the in-
sensitivity of P(zp|zs) to LSS can be used to reduce spectroscopic
follow-up requirements.

5.2 Sample variance in photo-z training

In this section we examine the effects of sample variance in the
training of photo-zs. We find that the commonly reported scatter
in the photo-z estimation is affected by the shot noise but not by
sample variance.

Table 1 shows the average photo-z scatter of the photometric
sample for the polynomial method as well as the average width
of the p(z)ws. The photo-z scatter is defined as the standard devi-
ation (around zero) of the P(zp–zs) distribution. The average mean
width of the p(z)w is defined as the average, over all training iter-
ations, of the mean 1σ width of the p(z)ws of the galaxies in the
photometric sample. Comparison of the corresponding ‘LSS’ and
‘Random’ columns in the table shows that LSS does not affect the
photo-z or p(z)w statistics significantly. The training set size is im-
portant, however, as larger training sets have lower shot noise. For
the polynomial photo-zs, we see a 12 per cent degradation in the
scatter between the 6 and 0.25 deg2 cases. The p(z)ws are much
more sensitive, with a degradation of 63 per cent. In Fig. 3 one can
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Table 1. 1σ scatter of the polynomial photo-zs (averaged over
all training iterations) and mean 1σ width of the p(z)ws, (aver-
aged over all training iterations). These mean scatters are shown
for different patch areas and training set sizes. For comparison,
the mean scatter of the template-fitting photo-zs is 0.157. Note
that the LSS does not affect the photometric redshift statistics
significantly, but the total number of galaxies in the training set
does.

Photo-z scatter and training set size

LSS Random

Area Mean Ngals σ poly σ p(z) σ poly σ p(z)

6 deg2 7.4 × 104 0.099 0.104 0.099 0.104
1 deg2 1.2 × 104 0.106 0.129 0.105 0.129

0.25 deg2 3.0 × 103 0.114 0.162 0.113 0.163

see that the decreased scatter of the polynomial method translates
into a more diagonal P (zs|zp) error matrix.

This demonstrates that one can significantly decrease the variance
of the recovered redshifts by fitting the redshift–observable relation
(e.g. using the polynomial method) instead of using a pure density
estimator (e.g. the p(z)w) – however, this comes at the cost of biasing
the recovered redshift distribution, as seen in Fig. 4. What are the
options, then, for improving the latter class of methods? To reduce
the width of the p(z)w one can either use repeat observations to
decrease the mean neighbour separation in the training set, decrease
the number of nearest neighbours used or adopt a fit to the redshift–

observable density distribution in the neighbourhood of each galaxy.
We leave these explorations for a future work.

The message of this section is that the intrinsic uncertainty of
photo-zs is much greater than any systematic introduced by LSS, so
that there is no significant degradation of photo-z scatter itself by
using training sets obtained from pencil beam surveys. However,
the commonly reported photo-z scatter is not sufficient to gauge
biases on cosmological parameters. Below we will show that sample
variance introduced by the LSS does in fact lead to significant biases
in cosmological parameter estimates.

5.3 Sample variance in photo-z calibration

In this section, we describe how the sample variance in the spec-
troscopic parameters biases the calibration of the photo-z error dis-
tributions (i.e. the P(zs|zp)), and how this translates into bias in
cosmological parameters. The main metric we use to quantify the
cosmological bias is the fractional bias in the equation of state w.
We define the fractional bias as the absolute bias in w obtained from
equation (12) divided by the fiducial statistical error:

δw

σ (w)
, (19)

where the marginalized statistical error in the equation of state
is, recall, σ (w) = 0.035 for the DES+Planck combination (see
Section 4).

We begin by examining a single patch in Section 5.3.1 and then
discuss statistics of the biases for all the calibration patches in the
simulation.

Figure 3. Mean P(zs|zp) for the three methods. The template is on the left, polynomial at the centre and p(z)w on the right. For the polynomial and p(z)w, the
mean P(zs|zp) depend on the training size. We show the 6 deg2 result for both. Note the different scales in the three plots.

Figure 4. Redshift distribution estimates using the (left) template fitting, (centre) polynomial and (right) p(z)w estimator. The true redshift distribution is
shown in grey, and the estimates are in black. The weights estimate is not shown as it is indistinguishable from the true redshift distribution. The red (light
grey) error bars shows the 1σ variability of the estimates for the 6 deg2 patches. The hardly visible blue (dark grey) error bars show the corresponding error
bars derived using the random equivalent subsamples. Note that the template fitting and polynomial methods produce very precise but highly biased estimates
of the redshift distribution.
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5.3.1 Case study: Patch 37

To understand how fluctuations in the redshift distribution of the
calibration sample affect the estimation of P(zs|zp) and the resulting
cosmological biases, we focus on a single 1 deg2 calibration patch,
Patch 37 (out of, recall, 225 total patches). We choose this patch
(which happens to be 37th in our ordering) randomly, but check
that it is fairly typical, with total fractional bias well within the 1σ
limits of the fractional bias distribution for the two methods we
investigate.

Before we get to the details we review a result (covered in BH10)
which we will utilize. Fig. 5 shows the ratio of biases in the dark
energy equation of state w divided by its statistical error induced
by each individual photo-z error corresponding to a fixed contam-
ination P(zs|zp) of 0.01 in each(zs,zp) bin. The points to note are
that cosmological biases generally worsen with distance from the
zp = zs line, i.e. as the photo-z error becomes ‘more catastrophic’.
Conversely, contamination is relatively harmless at low zp or at zp

near the survey median.
Now we are ready to examine Patch 37. The examination consists

of two steps. In step 1, we look into how the differences between
the overall redshift distribution and the redshift distribution of Patch
37 affect the estimation of the error distribution P(zs|zp) for the
polynomial and template methods. In step 2, we look at how the
errors in the estimation of P(zs|zp) in any given (zs, zp) bin propagate
to biases in the dark energy equation of state w.

(i) Step 1: Patch 37 redshift biases. Fig. 6 shows the spectroscopic
redshift distribution of the whole survey (i.e. of the photometric
sample) N(zs)phot in black colour, as well as that of Patch 37, N(zs)p37,
in blue (grey). The deviations of the redshift distribution of Patch 37
from that of the full survey directly affect the estimation of P(zs|zp),
regardless of photo-z method. The top-row panels of Fig. 7 show the
difference of P(zs|zp) for the full sample and Patch 37 (the calibration
sample) for the polynomial method (top left) and template method
(top right). Comparing Fig. 6 to the top-row panels of Fig. 7, we
see that each downward fluctuation of N(zs)p37 relative to N(zs)phot

translates into a negative#P(zs|zp) for the corresponding zs column
regardless of photo-z method used. The converse is also true: if
N(zs)p37 overestimates N(zs)phot at a given zs bin, then #P(zs|zp)
will be biased high in that zs column as well.

(ii) Step 2: Patch 37 biases in w. The bottom-row panels of
Fig. 7 show the corresponding fractional biases in the dark energy
equation of state w in each (zs,zp) bin. For each (zs, zp) bin, the
fractional bias in w is essentially a product between the sensitivity
in fractional w bias to unit redshift errors (shown in Fig. 5) and
the actual redshift bias (shown in the left-hand column panels of
Fig. 7 for the two photo-z methods). Even though the sensitivities
for fixed contamination are smallest near the zs ≈ zp diagonal, the
actual values of #P(zs|zp) are largest near the diagonal. Overall,
the latter effect wins, as the right-hand panels of Fig. 7 show, and
the biases in w are contributed largely – though not exclusively – by
#P(zs|zp) errors near the diagonal, zs ≈ zp. A noticeable exception
is the bin near zs = 0.4, zp = 1.3, in the polynomial results (left-hand
column). Overall, the contribution of this bin lowered the overall
fractional bias in w, which turns out to be δw/σ (w) = 0.27 for the
polynomial method and 0.52 for the template method. Hence, if it
was not for the big negative bias in that bin, the polynomial would
have lost to the template method in this patch! The conclusion is
that the final w bias is the result of several cancellations, which
reduce the importance of the choice of photo-z method. However,
it is desirable that photo-zs be accurate because it implies that the
P(zs|zp) will more diagonal, which, for comparably stable methods,

implies smaller biases in w. And perhaps most importantly, better
photo-zs imply better fiducial constraints, which our analysis is not
sensitive to.

5.3.2 Statistics of the biases in w

In this section we examine statistics of the biases in w when different
patches are used for training and/or calibration of the photo-zs. Fig. 8
shows the distribution of the fractional biases when using the p(z)w

and template-fitting estimators as a function of the biases obtained
when the polynomial technique is used. The top panel shows the
1 deg2 LSS case, and the bottom plot shows the 1 deg2 random
equivalent. Clearly, biases in w introduced by sample variance for
the different methods are very correlated while those introduced
by Poisson fluctuations alone are not. This suggests that one cannot
reduce the effects of sample variance by simply combining estimates
based on different photo-z methods.

In Table 2, we show the mean fractional bias in the equation of
state w, its σ 68 statistics and the median total shift in chi-squared
(defined below) corresponding to the full-dimensional cosmological
parameter space. We define σ 68 as the range encompassing 68 per
cent of the area of the distribution of |δw|/σ (w), where δw is the
bias in the equation of state in any given patch and σ (w) is the
marginalized statistical error in the equation of state. Moreover, we
define the total chi-square as

#χ2
tot = (δ p)TF p, (20)

where δ p is a six-dimensional vector containing cosmological pa-
rameter biases and F is the (statistical only) Fisher matrix defined
in equation (15). We then define #χ2

med to be the median of the
distribution of #χ2

tot.
We find that the distribution of fractional biases are typically

reasonably Gaussian, in the sense that our definition of σ 68 matches
the standard deviation of the fractional bias distribution (without
the absolute value) to a few per cent, and an equivalent definition
of σ 95 is quite close to twice the standard deviation. In Section 7,
we will assume the distribution of fractional biases is Gaussian to
estimate follow-up requirements for the DES survey.

Actual spectroscopic calibration samples should be composed
of several sets of patches of sky. Ideally, the patches should be
separated enough so as to be statistically independent. Because
of the small size of our simulation it is not possible to combine
many independent patches; recall, our simulation covers only ∼15◦

on a side. As a simple alternative, we combine several randomly
selected patches to create the spectroscopic training and calibration
sample. We consider two scenarios, one composed of patches 120
of 1/8 deg2 with each galaxy selected with probability of 0.03125
– with average total of 2.4 × 104 galaxies. The other scenario is
composed of 180 patches of 1/32 deg2 with galaxies selected with
probability 0.125, and with the average total of 3.4 × 104 galaxies.
We repeat the procedure for generating these combined samples
several times to generate the statistics shown in Table 3.

The point we want to make is that, in the more realistic scenarios
with calibration samples coming from separate patches, all of the
photo-z methods we tested yield very similar results. Combining
patches randomly is far from ideal, hence the bias statistics pre-
sented in Table 3 are pessimistic. We consider the spectroscopic
requirements with optimal patch selection in Section 7.

The conclusions of this section are the following.

(i) The LSS and random-equivalent cases lead to very different
bias statistics. Conversely, differences between the photo-z methods
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Figure 5. Bias/error ratio in the dark energy equation of state, δw/σ (w),
for a fixed contamination of 0.01 as a function of position in zp–zs space.

do not affect the bias statistics considerably. In particular, when
many patches are combined, the photo-z estimators perform nearly
identically.

(ii) The p(z)w method is the most sensitive to sample variance.
This is expected because it is a purely density-based estimator, and it
degrades the fastest as the area and size of the training set decrease.
However, comparing the statistics of the p(z)w for different areas in
the random equivalent cases suggests that the p(z)w estimator is not

Figure 6. Spectroscopic redshift distribution of the whole survey (i.e. the
photometric sample), N(zs)phot, in black, and of Patch 37, N(zs)p37, shown
in blue (grey).

as sensitive to shot noise. Moreover, the p(z)w method is the only
method that yields a perfect reconstruction of the overall redshift
distribution in the limit of large area of spectroscopic samples.

(iii) The polynomial-fitting method appears to have slightly
larger mean fractional bias than the p(z)w and template fitting in
the cases shown in Table 2. However, the mean fractional bias is
significantly smaller than the σ 68 width in all cases. In addition,

Figure 7. Biases in Patch 37. The top-row panels shows the difference of P(zs|zp) for the photometric and calibration samples for the polynomial (top left-hand
panel) and template (top right-hand panel) method. The bottom-row panels show the corresponding contribution to bias/error ratio in the dark energy equation
of state w due to photometric redshift errors in each zs, zp bin. The fractional biases in w shown in the bottom row panels are equal to the product of the
photometric redshifts errors (shown in the top row panels) and the sensitivity to a fixed photometric redshift (shown in Fig. 5).
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Figure 8. Fractional biases in w (i.e. the bias/error ratios in w) for the dif-
ferent 1 deg2 patches used to train and/or calibrate the photometric redshifts.
The top panel shows that errors in different photo-z methods produce corre-
lated biases in the equation of state w in the presence of the LSS. The x-axis
indicates the fractional bias in w for the polynomial estimator, while the
y-axis shows the corresponding bias for template estimator (black points)
and the p(z)w estimator, shown in green (grey). The bottom panel shows the
random equivalent patches where the correlation is much less pronounced.

the polynomial technique outperforms the other methods in almost
all scenarios, suggesting that use of a training set yields improve-
ments superior to any bias introduced by using the same patch to
train and calibrate the photo-zs. We believe that the conclusion that
one can use the same sample to train and calibrate photo-zs should
hold for other training-set-dependent photo-z techniques provided
the method has some control for the degrees of freedom it utilizes
and thereby avoid biases due to overfitting.

5.4 Dependence on simulations and parametrizations

In this section we discuss some of our choices of survey parameters.

5.4.1 Dependence on intrinsic ellipticity

For most of the results shown in this paper, we have assumed the
optimistic value of 〈γ 2

int〉1/2 = 0.16 for the rms intrinsic ellipticity.
The effective intrinsic ellipticity is somewhat difficult to estimate
before the survey has started taking data, and there is a range of

Table 2. Mean fractional bias in w (i.e. mean of δw/σ (w)) and σ 68 (i.e.
width of the |δw|/σ (w) distribution) for the different techniques, assuming
patches of area 6, 1, 1/4 deg2 for training and calibration or a random
subsample with the same number of galaxies. The #χ2

med column indicates
the median value (among all patches) of#χ2

tot of the fit over all cosmological
parameters; see equation (20).

Bias in w

LSS Random

Technique δw/σ (w) σ 68 #χ2
med δw/σ (w) σ 68 #χ2

med

6 deg2

Template 0.04 2.56 3.14 0.04 0.44 0.14
Polynomial −0.07 1.53 2.04 −0.04 0.39 0.12

p(z)w 0.05 2.33 2.56 0.07 0.31 0.10

1 deg2

Template −0.04 3.75 7.36 0.01 0.92 0.75
Polynomial −0.19 2.96 4.74 0.00 0.93 0.64

p(z)w −0.01 3.99 9.05 0.029 0.78 0.50

1/4 deg2

Template 0.03 4.61 16.4 −0.15 1.9 2.9
Polynomial −0.11 3.99 10.3 −0.17 1.7 2.2

p(z)w 0.07 5.88 32.3 −0.10 2.0 3.0

Table 3. Mean fractional bias in w (i.e. δw/σ (w)) and
σ 68 (i.e. width of the |δw|/σ (w) distribution) for the
different techniques, assuming 120 randomly selected
patches of area 1/8 deg2or 180 patches of area 1/32 deg2

were used for training and calibration. Galaxies selected
from the 1/8 deg2 and the 1/32 deg2 patches with proba-
bilities 0.125 and 0.03125, respectively. The #χ2

med col-
umn indicates the median#χ2

tot of the fit over all cosmo-
logical parameters.

Bias in w (combined random patches)

1/8 deg2 – fraction = 0.03125
120 patches – N = 2.2 × 104

Technique δw/σ (w) σ 68 #χ2
med

Template 0.12 0.84 0.59
Polynomial −0.16 0.76 0.54

p(z)w 0.05 0.84 0.54

1/32 deg2 – fraction = 0.125
180 patches – N = 3.4 × 104

Technique δw/σ (w) σ 68 #χ2
med

Template 0.19 0.76 0.41
Polynomial −0.10 0.62 0.29

p(z)w 0.12 0.74 0.39

forecasted values in the literature; for example, 〈γ 2
int〉1/2 = 0.23

(Kirk et al. 2011; Laszlo et al. 2011). We tested using rms ellipticity
of 0.26 with the template photo-zs, and found that the change affects
primarily the fiducial constraints, degrading e.g. marginalized error
in w by a factor of ∼1.6 (from 0.035 to 0.055). The overall degrada-
tion in the σ 68 of the distribution of |δw|/σ (w) degrades by a factor
of ∼1.9 for the LSS cases and ∼1.6 for the random equivalent cases.
Since we find that the intrinsic galaxy ellipticity primarily affects
the fiducial cosmological parameter errors (i.e. σ (w), rather than
the systematic bias δw), we use it as a control parameter to vary our
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baseline cosmological parameter error assumptions.8 Henceforth,
we adopt 〈γ 2

int〉1/2 = 0.16 as the optimistic case for the dark energy
fiducial errors (which leads to more challenging follow-up require-
ments), and 〈γ 2

int〉1/2 = 0.26 as the pessimistic error case (which
leads to more relaxed requirements). Unless mentioned otherwise,
results assume the former, optimistic case.

5.4.2 Dependence on redshift range

After the completion of the paper, we obtained a newer version
of the DES simulations that reached z = 2. We found that the
redshift range 1.35–2 only composed of about 6.5 per cent of the
sample and had little impact on the results despite the significantly
worse photo-zs for galaxies in that range. Fractional biases degrade
by 10 per cent, an effect driven primarily by the improvement in
fiducial constraints – which assume perfect photo-zs.

5.4.3 Dependence on number of tomographic bins

We have adopted a rather aggressive redshift slicing as our base-
line case, assuming 20 tomographic redshift bins distributed in the
0 < z < 1.35 range. We expect that with fewer redshift slices,
photo-z errors will be less pronounced while the statistical errors
will increase slightly; and thus that the spectroscopic follow-up
requirements derived in this paper will be somewhat relaxed. This
expectation is backed up by numerical checks that we now describe.

In addition to B = 20, we also consider cases of B = 5, 10,
15, 30 and 40 tomographic bins using alternately the template and
polynomial photo-z methods. We find that the dependence of bi-
ases in cosmological constraints on the number of bins is rather
weak. As B increases from 5 to 20, the bias in the dark energy
equation of state decreases by ∼30 per cent and converges at this
point, not increasing appreciably for higher B (reflecting the fact
that such small-redshift-scale fluctuations are not degenerate with
cosmological information). Moreover, as B increases from 5 to 20,
the statistical errors on w decrease by 10 per cent, and drop a further
∼10 per cent as B is increased to 40. Therefore the bias-to-error ratio
decreases by a total of ∼20 per cent up to B = 20 but then increases
by ∼10 per cent for B = 20–40. Given these unremarkable depen-
dencies for such a wide range of B, and the fact that higher B implies
more stringent requirements, we conclude that 20 tomographic bins
is indeed a good representative choice for the calculations in this
paper.

6 D ISCUSSION: CAN THINGS BE IMPROV ED?

In this section, we discuss possibilities for reducing the impact of
sample variance. In Section 6.1, we present tests we have performed
and in Section 6.2 we discuss other possibilities that should be
explored.

6.1 Performed tests

(i) Culling. We used the width of the p(z)w as a criterion to
identify catastrophic photo-zs. We removed all galaxies for which
σ (p(z)) ≥ 0.15, which culled 10 per cent of the galaxies in our

8 Note, it would not be hard to come up with other ways to improve the fidu-
cial constraints, such as adding other two-point correlations to the analysis,
or including magnification. Conversely, one could add intrinsic alignments
and other sources of errors to degrade the constraints.

Table 4. Mean and σ 68 scatter of the fractional bias in w for the different
techniques, assuming patches of area 6, 1, 1/4 deg2 for training and calibra-
tion or a random subsample with the same number of galaxies. The #χ2

med
column indicates the median #χ2

tot of the fit over all cosmological parame-
ters. In this table, 10 per cent of the galaxies were removed based on p(z)w
width. The R(σ z) shows the ratio of the photo-z scatters (or the p(z)wwidth)
of results on this table to the corresponding value in Table 2. The R(σ 68)
shows the ratio of the σ 68 used in this table, to the corresponding value in
Table 2, assuming the same fiducial statistical constraint for both cases. As
a result, this ratio compares the change in total bias, not fractional. To get
the change in fractional bias one should note that the culling degrades the
statistical constraints on w by 6 per cent.

Bias in w (with culling)

Technique δw/σ (w) σ 68 #χ2
med R(σ z) R(σ 68) R(#χ2

med)

6 deg2

Template 0.01 2.48 3.20 0.87 0.97 1.02
Template* −0.06 2.90 2.59 0.92 1.13 0.82
Polynomial −0.17 1.44 1.75 0.85 0.94 0.86

p(z)w 0.03 2.08 1.94 0.90 0.89 0.75

simulation. The impact of this selection is summarized in Table 4.
The scatter in the photo-zs improved by 13 and 15 per cent for
the template and polynomial methods, respectively, and the mean
p(z)w width improved 10 per cent. The width of the fractional w

bias distribution, as described by σ 68 improved by 6 and 11 per
cent for the polynomial and p(z)w techniques, respectively, but only
improved the template estimator results by the negligible 3 per cent.

We also tried to perform the culling using an error estimate from
the template-fitting code.9 The results are in the entry Template*, in
Table 4. We see that the template error estimation was less efficient
than the p(z)w width for improving the photo-z scatter. With the same
fraction of objects removed, the mean scatter improved by only
8 per cent compared to 13 per cent when the p(z)w width was used.
In addition, the culling actually resulted in worsening of the bias in
w, despite an improvement in the overall cosmological parameter
fit measured by the improvement in the median #χ2

tot.
The conclusion is that culling of outliers does not seem to be a

very efficient way to improve the bias due to photo-z calibration
even when it works reasonably well in improving the mean photo-z
scatter.

(ii) P(zp|zs). If the true redshift distribution of the photometric
sample is known somehow (e.g. using cross-correlation techniques
(Newman 2008), or from theoretical priors), then one can use it to
improve results. As discussed in Section 5.1, the quantity P(zp|zs)
is much less sensitive to sample variance than P(zs|zp). If N(zs) for
the photometric sample is known, we use the fact that

P
(
zi

s|zj
p

)
= P

(
zj

p |zi
s

) Ni
s

N
j
p

(21)

to estimate P(zp|zs) from P(zs|zp). Table 5 shows the improvement
in the statistics of the dark energy equation of state bias. For the
6 deg2 case, we see from the last column that the statistics from
template-fitting and p(z)w methods improve by a factor of ∼5 rel-
ative to the fiducial results shown in Table 2; this corresponds to
25 times smaller follow-up samples needed to achieve the same
calibration! Improvements for the 1 deg2 are not as pronounced, but

9 The error estimate we use is the difference between the Z_BEST68_HIGH and
Z_BEST68_LOW outputs of the LEPHARE code.
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Table 5. Mean and σ 68 scatter of the fractional bias in w for
the different techniques, assuming patches of area 6, 1, 1/4 deg2

for training and calibration or a random subsample with the same
number of galaxies. The#χ2

med column indicates the median#χ2
tot

of the fit over all cosmological parameters. Results in this table
assume the true redshift distribution of the photometric sample
was known, allowing us to use P(zp|zs) instead of P(zs|zp) as
described in the text. The R(σ 68) shows the ratio of the σ 68 used
in this table to the corresponding value in Table 2.

Bias in w (with P(zp|zs))

Technique Mean σ 68 #χ2
med R(σ 68) R(#χ2

med)

6 deg2

Template −0.06 0.52 0.36 0.20 0.11
Polynomial −0.13 0.87 0.43 0.57 0.21

p(z)w −0.14 0.52 0.34 0.22 0.13

1 deg2

Template −0.17 1.28 1.39 0.34 0.19
Polynomial −0.39 1.31 1.69 0.44 0.36

p(z)w −0.29 0.98 1.14 0.25 0.13

are still substantial. These results are idealized, because the redshift
distribution is assumed to be perfectly known. How well does N(zs)
need to be known for this technique to be useful is an open question.

If one uses a p(z) estimator (from any algorithm), the p(z)s can
be corrected using the improved P(zp|zs). The ability to correct the
redshift estimates is only possible for p(z) estimators but not for
single-value photo-zs.

6.2 Other possible improvements

In this section we briefly describe potentially interesting techniques
to reduce the spectroscopic follow-up requirements, but that go
beyond the scope of this paper.

(i) Smoothing, fitting and deconvolution. With enough theoretical
priors, one may use assumptions about smoothness or a functional
form of the overall redshift distribution to fit the weights estimate
of the redshift distribution. Alternatively, since the redshift sample
variance is due to the projection along the line of sight of the
linear power spectrum, one can perhaps use Fourier techniques to
deconvolve the LSS from the redshift distribution estimates.

(ii) Repeat observations. The use of repeat photometric observa-
tions would help reduce the shot-noise component of the photo-z
training procedure. Unfortunately, the sample variance would not
be affected. The reduction of such noise might be relevant to help
stabilize deconvolution techniques.

7 G UIDE FOR O BSERVING PROPOSALS

In this section we provide a guide for observers to determine what
observing requirements are needed for photo-z calibration given a
specific telescope’s effective angular aperture, number of spectro-
scopic fibres and collecting area. Typically, calibration requirements
have been represented in terms of total number of galaxies. We ar-
gue that calibration requirements should be phrased in terms of
variables more closely related to total observing time or cost. With
this purpose in mind, we define the number of pointings, Npoint, to
be the product of the number of patches times the number of repeat

observations of each patch. For constant collecting area, the number
of pointings is a direct measure of total observational time required.

The previous sections focused on calibration requirements from a
single patch. If independent patches are combined, the requirements
decrease with the square-root of the number of independent patches.
This square-root scaling only applies exactly to the template-fitting
method because it does not use a training procedure. For simplicity,
and because the previous results were rather insensitive to photo-zs,
we only use the template photo-zs in this section.

As an example, we consider the case of the DES. To reach reason-
able spectroscopic completeness at the limiting magnitudes of the
DES requires very large telescopes. We thus tune our guide to two
of the telescopes that will be available for the calibration: Visible
Multi-Object Spectrograph (VIMOS)-Very Large Telescope (VLT)
and Inamori-Magellan Areal Camera and Spectrograph (IMACS)-
Magellan. VLT is an 8-m class telescope with angular aperture of
250 arcmin2 (or about 1/16 deg2). Magellan is a 6.5-m class tele-
scope with collecting area of 0.25 deg2. We assume that in each
observation, VLT and Magellan can observe about 300–500 galax-
ies if a low-dispersion setting is used. In real observations, the
need to disperse the spectra in the focal plane reduces much of the
available collecting area. This is not a random reduction, however.
Roughly speaking, spectra cannot be at the edges of the focal plane
so that there is room left in the focal plane to disperse the spectra.
The design of VLT already accounts for this, but for Magellan there
is a loss of up to a half of the total area. To roughly cover the possi-
bilities for existing telescopes of large angular aperture we perform
our tests assuming 1/4, 1/8 and 1/32 deg2 fields of view.

Fig. 9 shows the number of independent patches that must be
observed as function of the number of galaxies per patch so that
the photo-z calibration leads to bias in w that is smaller than the
statistical error in w with 95 per cent probability. One can see that,
for fixed number of galaxies per patch, the larger the telescope, the
smaller the number of independent patches that need to be observed.
Hence, assuming equal throughput and same number of available
fibres, a telescope such as Magellan is more efficient than VLT for
spectroscopic calibration. For reference, we also show the results
assuming the full 1/4 deg2 field of view of Magellan is available
for spectroscopy. For the case of the 1/4 deg2 collecting area, if
the telescope can observe 400 galaxies at once, then about 140
independent patches – or a total of 5.6 × 104 galaxies – would be
needed to ensure, with 95 probability that the bias in the equation
of state is less than the statistical error (i.e. bias/error ≤1.0). The
requirement increases to about 150 and 180 patches for effective
angular apertures of 1/8 and 1/32 deg2. The requirement for VLT
would be about 165 patches (not shown).

The contours in Fig. 9 were constructed by varying the mean
fraction of galaxies that are sampled from each patch. The right
tip of each contour line corresponds to using 100 per cent of the
galaxies in a patch. For a fixed angular aperture, the total number of
galaxies required decreases with decreasing sampling fraction. By
sampling fewer galaxies per patch one more efficiently beats down
the sample variance, up to the point where shot noise dominates.
The total number of galaxies required can never be smaller than
the requirements from shot noise only estimates. In our case, this is
about 4 × 104 galaxies. The upturn in the contours at low sampling
fraction indicates the shot-noise domination regime, at which point
reducing the number of galaxies per patch yields no benefit.

How does one use Fig. 9 to deduce more stringent requirements
on dark energy parameter biases, or implements different survey
assumptions? The distribution of fractional bias in w is roughly
Gaussian, hence to get Nσ requirements on the bias, one can
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Figure 9. Relation between number of independent patches and galaxies observed per patch so that the calibration bias will yield a bias/error ratio in w that
is less than 1.0 with 95 per cent probability. We consider three different telescope apertures based on capabilities of existing telescopes: 1/4 deg2 (solid black),
1/8 deg2 (solid red) and 1/32 deg2 (or 112.5 arcmin2; blue). The first two scenarios correspond to the optimistic and pessimistic assumptions about the effective
observing area of Magellan. The VIMOS-VLT instrument could observe about 1/16 deg2. The diagonal light grey lines indicate contours of fixed total number
of galaxies, while the vertical band indicates typical number of galaxies per observed patch possible with a single pointing of Magellan or VLT. For a fixed
number of galaxies per patch, the total number of patches required is higher for a smaller patch area in order to compensate for the increased sample variance
per patch. Similarly, if the survey can observe more galaxies in each patch, then the total number of patches obviously decreases since fewer patches will be
required to calibrate the shot noise, at the expense of increasing the total number of galaxies required.

simply multiply the 2σ requirement plotted by N/2. For exam-
ple, the requirement of keeping the bias/error less than 1.0 at 2σ
roughly implies that the bias is less than 0.5 at 1σ . One can use
a square-root scaling to deduce more stringent requirements; for
example, if one would like the bias/error in w to be less than 0.25
at 1σ , then the number of independent patches required increases
by four. Because the effect of the independent number of patches
is only a square-root, it is well worth investigating techniques that
decrease the sensitivity to the sample variance. For example, as we
saw in Section 6, if the redshift distribution of the photometric sam-
ple could be perfectly known, the calibration biases would decrease
by factors of up to 5 which would decrease the number of patches
required for photo-z calibration by more than a factor of 25!

Finally, recall that usage of a more realistic intrinsic galaxy ellip-
ticity of 0.26 increases the fiducial w error by a factor of 1.6 (from
0.035 to 0.055) and leaves the biases in w largely unaffected, result-
ing in the decreased follow-up requirements by a factor of ∼3.5 in
the number of patches required. Nevertheless, we think that usage
of the smaller value of the intrinsic rms ellipticity used throughout
is preferred, given that the fractional biases δw/σ (w) could be larger
than expected. This could happen in two ways: either the fiducial
error σ (w) could be improved by other weak lensing techniques
(three-point function, other cross-correlations, etc.), or additional
systematics might increase the bias δw. We therefore erred on the
side of being conservative in terms of the spectroscopic follow-up
requirements, and adopted 〈γ 2

int〉1/2 = 0.16, or σ (w) = 0.035. Our
best current understanding is that only three kinds of systematics
would increase spectroscopic follow-up requirements: non-random
spectroscopic failures, imperfect star–galaxy separation and vari-
ability in observing conditions. Other systematics would likely

only cause a degradation in the fiducial cosmological parameter
constraints, thereby decreasing follow-up requirements.

The time required for completing observations depends on the
requirements on spectroscopic completeness. If we assume that a
completeness level comparable to that of the VIMOS-VLT Deep
Survey10 (VVDS) is sufficient,11 then two patches of sky can be
covered per night using VLT or Magellan, if a single pointing is re-
quired per patch. In the absence of spectroscopic failures, the ideal
strategy is clearly to use a single pointing per patch to beat down
sample variance as fast as possible. However, spectroscopic failures
typically cannot be ignored, which makes it harder to determine the
optimal observing strategy. The key difficulty is that spectroscopic
failure rates vary strongly with galaxy type, which implies that dif-
ferent observing times are needed for different types of galaxies to
yield reliable redshifts. In addition, for a fixed galaxy type, there
is a broad distribution of intrinsic luminosities. An optimized sur-
vey would, at the very least, requires a carefully weighted target
selection function to ensure the final spectroscopic sample is a rep-
resentative subsample of the full photometric survey. At best, the
ideal survey would combine several telescopes, each optimized for
a certain depth and galaxy population. For example, planned sur-
veys such as BigBOSS12 and DESpec13 will have very wide fields
of view and be able to obtain several thousand spectra per pointing.

10 http://cesam.oamp.fr/vvdsproject/
11 The VVDS-DEEPS survey obtained redshifts for about 44 per cent of
their sample with confidence above 91–97 per cent, and of these, about
22 per cent had confidence of 99 per cent (Le Fèvre et al. 2005).
12 http://bigboss.lbl.gov/
13 http://eag.fnal.gov/DESpec/Home.html
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An interesting strategy would be to use these telescopes – perhaps
with massive co-addition of images – to obtain a large sample to
depths slightly brighter than i - 24, for galaxy types with more
easily detectable spectra. This way, an 8-m class telescope could
concentrate exclusively on the very faintest galaxies.

In a forthcoming follow-up to this paper, we incorporate a simu-
lated spectroscopic pipeline to our analysis to determine the levels
of spectroscopic completeness that are required for dark energy
studies.

8 C O N C L U S I O N S

We used cosmological N-body simulations populated with galaxies
with DES photometry to investigate the impact of shot noise and
sample variance in the spectroscopic observations necessary to train
the photo-zs and calibrate their error distributions. Our conclusions
are as follows.

(i) For typical spectroscopic surveys, sample variance is much
larger than shot noise.

(ii) Sample variance affects the spectroscopic properties more
strongly than photometric properties. Consequently, the error dis-
tribution P(zs|zp) is much more sensitive to sample variance than
P(zp|zs). Unfortunately, for cosmological analysis P(zs|zp) is the
error distribution that we have to use, which results in calibration
requirements that are quite demanding. If the overall distribution
of the photometric sample is known somehow, e.g. using cross-
calibration techniques, then one can estimate P(zs|zp) from P(zp|zs),
which can reduce follow-up requirements by more than an order of
magnitude. In addition, if one uses p(z)s instead of single-number
photo-z estimates, the improved P(zp|zs) estimate can be used to
correct and improve the p(z)s.

(iii) The use of the same spectroscopic sample to train photo-
zs and calibrate the photo-z error distribution does not introduce
additional cosmological biases. In addition, the scatter in the photo-
zs is, on average, not degraded by sample variance.

(iv) For small training sets the p(z)w method is the most affected
by sample variance because it is a pure density estimator (cf. Fig. 4).
Conversely, the p(z)w estimate is the only unbiased method in the
sense that, for large enough training, it recovers the true redshift
distribution of the photometric sample.

(v) Biases in the dark energy equation of state obtained from
the different photo-z methods are highly correlated for sample-
variance-dominated calibration samples, suggesting that a simple
combination of photo-z methods cannot reduce the biases. Con-
versely, for shot-noise-dominated calibration samples, biases are
largely uncorrelated.

(vi) Culling of catastrophic outliers is not very effective at re-
ducing calibration requirements, with the decrease in the bias in w

being comparable to degradation of the statistical errors due to the
reduction of the sample size.

(vii) We provide a guide to observing proposals of spectroscopic
samples directed towards the calibration of photo-zs for the DES.
We focus on Magellan and VLT, the two telescopes best suited
for DES calibration. To reduce sample variance effects one should
spread the observations to as many patches as possible, using as
many spectroscopic fibres as possible in each observation. We find
that VLT and Magellan would need about 165 and 150 patches, re-
spectively, in order to ensure, with 95 per cent probability, that the
photo-z-calibration-induced bias in w does not dominate its statis-
tical error. This estimate assumes that 400 galaxies can be observed
per patch. If a VVDS level of completeness is sufficient, these ob-

servations would require about 85 and 75 nights of observation for
VLT and Magellan, respectively, assuming the optimistic fiducial
uncertainty of σ (w) = 0.035. For a more pessimistic fiducial error
σ (w) = 0.055, the requirements decrease by a factor of about 3.5.
Nevertheless, the former number may be more useful as a guideline,
since the overall requirements might be increased by including the
type incompleteness and spectroscopic redshift failures, something
that we will fully investigate in a forthcoming companion paper.
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A P P E N D I X A : T H E S I M U L AT I O N S

The simulated galaxy catalogue used for the present work was gen-
erated using the Adding Density Determined Galaxies to Lightcone
Simulations (ADDGALS) algorithm (Busha et al., in preparation;
Wechsler et al., in preparation). This algorithm attaches synthetic
galaxies to dark matter particles in a lightcone output from a dark
matter N-body simulation. The model is designed to match the
luminosities, colours and clustering properties of galaxies.

The simulation used here was based on a single ‘Carmen’ simu-
lation from the LasDamas project (McBride et al., in preparation).
This simulation was run with the publicly available GADGET-2 code
and modelled a flat - cold dark matter (-CDM) cosmology with
+m = 0.25 and σ 8 = 0.8 in a 1 Gpc h−1 box with 11203 particles.
The lightcone output necessary for the ADDGALS algorithm was
created by pasting together 33 snapshots in the redshift range z =
0–1.33. This results in a 220 deg2 lightcone whose orientation was
selected such that there are no particle replications in the inner
∼100 deg2 and minimal replications in the outer regions.

The ADDGALS algorithm used to create the galaxy distribution
consists of two steps: galaxies based on an input luminosity function
are first assigned to particles in the simulated lightcone, after which
multiband photometry is added to each galaxy using a training set
of observed galaxies. For the first step, we begin by defining the
relation P(δdm|Mr, z) – the probability that a galaxy with magnitude
Mr, a redshift z resides in a region with local density δdm, defined as
the radius of a sphere containing 1.8 × 1013 h−1 M0 of dark matter.
This relation can be tuned to reproduce the luminosity-dependent
galaxy two-point function by using a much higher resolution sim-
ulation combined with the technique known as subhalo abundance
matching. This is an algorithm for populating very high resolution
dark matter simulations with galaxies based on halo and subhalo
properties that accurately reproduces properties of the observed
galaxy clustering (Conroy, Wechsler & Kravtsov 2006; Behroozi,
Conroy & Wechsler 2010; Wetzel & White 2010; Busha et al. 2011).
The relationship P(δdm|Mr, z) can be measured directly from the re-
sulting catalogue. Once this probability relation has been defined,
galaxies are added to the simulation by integrating a (redshift de-
pendent) r-band luminosity function to generate a list of galaxies
with magnitudes and redshifts, selecting a δdm for each galaxy by
drawing from the P(δdm|Mr, z) distribution, and attaching it to a
simulated dark matter particle with the appropriate δdm and red-
shift. The advantage of ADDGALS over other commonly used
approaches based on the dark matter haloes is the ability to produce
significantly deeper catalogues using simulations of only modest
size. When applied to the present simulation, we populate galaxies
as dim as Mr ≈ −16, compared with the Mr ≈ −21 completeness
limit for a standard halo occupation (HOD) approach.

While the above algorithm accurately reproduces the distribution
of satellite galaxies, central objects require explicit information
about the mass of their host haloes. Thus, for haloes larger than 5 ×
1012 h−1 M0, we assign central galaxies using the explicit mass–
luminosity relation determined from our calibration catalogue. We
also measure δdm for each haloes, which is used to draw a galaxy
from the integrated luminosity function with the appropriate mag-
nitude and density to place at the centre.

For the galaxy assignment algorithm, we choose a luminosity
function that is similar to the SDSS luminosity function as measured
in Blanton et al. (2003), but evolves in such a way as to reproduce
the higher redshift observations of the NOAO Deep Wide-Field
Survey (NDWFS) and Deep Extragalactic Evolutionary Probe 2
(DEEP2) observations. We use a Schechter function with φ∗ =
1/81 × 10−2z/3, M∗ = −20.34 + 3.5(a − 0.91) and α = −1.03,
where a is the cosmological expansion factor.

Once the galaxy positions have been assigned, photometric prop-
erties are added. We begin with a training set of spectroscopic
galaxies and the simulated set of galaxies with r-band magnitudes
generated earlier. For each galaxy in both the training set and sim-
ulation we measure #5, the distance to the fifth nearest galaxy on
the sky in a redshift bin. Each simulated galaxy is then assigned an
SED based on drawing a random training-set galaxy with the appro-
priate magnitude and local density, k-correcting to the appropriate
redshift and projecting on to the desired filters. The k-corrections
and projections are performed using the KCORRECT code (Blanton
et al. 2003). The construction of the SEDs in KCORRECT is described
in Blanton & Roweis (2007).

Differences between the training set and simulated galaxy sample
complicate the process of colour assignment. In order to compile a
sufficiently large training set, we use a magnitude-limited sample
of SDSS spectroscopic galaxies brighter than mr = 17.77 with z <

0.2. The simulated sample, on the other hand, is a volume-limited
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sample, spanning a broader redshift range. When measuring #5

we restrict ourselves to neighbours brighter than Mr = −19.7 in
the simulation sample, while using all objects in the observational
catalogue. To mitigate differences in luminosity and redshift, each
galaxy is rank ordered according to its density in its redshift bin,
and require that objects be in the same percentile bin in each sample
rather than having the same the absolute value of#5. This is similar
to the method used in Cooper et al. (2008).

The final step for producing a realistic simulated catalogue is
the application of photometric errors. While the photometric errors
generated here are particular to DES, the algorithm can be gener-
alized for any survey. For each galaxy, we add a noise term to the

intrinsic galaxy flux, where the noise is drawn from a Gaussian of
width:

noise =
√

tenpns + fg,ite, (A1)

where te is the exposure time, np the number of pixels covered by
a galaxy, ns the flux of the sky in a single detector pixel and f g,i is
the intrinsic flux of the galaxy. Application of the above relation to
objects from the SDSS catalogue shows that it is able to faithfully
reproduce the reported errors of the survey.
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