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We review the recently found large-scale anomalies in the maps of temperature anisotropies in the cosmic microwave background.
These include alignments of the largest modes of CMB anisotropy with each other and with geometry and direction of motion
of the solar ssystem, and the unusually low power at these largest scales. We discuss these findings in relation to expectation from
standard inflationary cosmology, their statistical significance, the tools to study them, and the various attempts to explain them.

1. Introduction: Why Large Scales
are Interesting?

The Copernican principle states that the Earth does not
occupy a special place in the universe and that observations
made from Earth can be taken to be broadly characteristic of
what would be seen from any other point in the universe at
the same epoch. The microwave sky is isotropic, apart from a
Doppler dipole and a microwave foreground from the Milky
Way. Together with the Copernican principle and some
technical assumptions, an oft-inferred consequence is the so-
called cosmological principle. It states that the distributions
of matter and light in the Universe are homogeneous and
isotropic at any epoch and thus also defines what we mean
by cosmic time.

This set of assumptions is a crucial, implicit ingredient
in obtaining most important results in quantitative cosmol-
ogy, for example, it allows us to treat cosmic microwave
background (CMB) temperature fluctuations in different
directions in the sky as multiple probes of a single statistical
ensemble, leading to the precision determinations of cosmo-
logical parameters that we have today.

Although we have some observational evidence that
homogeneity and isotropy are reasonably good approx-
imations to reality, neither of these are actual logical
consequences of the Copernican principle, for example, the

geometry of space could be homogeneous but anisotropic—
like the surface of a sharp mountain ridge, with a gentle path
ahead but the ground dropping steeply away to the sides.
Indeed, three-dimensional space admits not just the three
well known homogeneous isotropic geometries (Euclidean,
spherical and hyperbolic—E3, S3, and H3) but five others
which are homogeneous but anisotropic. The two simplest
are S2 × E1 and H2 × E1. These spaces support the
cosmological principle but have preferred directions.

Similarly, although the Earth might not occupy a priv-
ileged place in the universe, it is not necessarily true that
all points of observation are equivalent, for example, the
topology of space may not be simply connected—we could
live in a three dimensional generalization of a torus so that if
you travel far enough in certain directions you come back
to where you started. While such three-spaces generically
admit locally homogeneous and isotropic geometries, certain
directions or points might be singled out when nonlocal
measurements are considered, for example the length of the
shortest closed nontrivial geodesic through a point depends
on the location of that point within the fundamental domain.
Similarly, the inhomogeneity and anisotropy of eigenmodes
of differential operators on such spaces are likely to translate
into statistically inhomogeneous and anisotropic large scale
structure, in the manner of Chladni figures on vibrating
plates.
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The existence of nontrivial cosmic topology and of
anisotropic geometry are questions that can only be
answered observationally. In this regard, it is worth noting
that our record at predicting the gross properties of the
universe on large scales from first principles has been
rather poor. According to the standard concordance model
of cosmology, over 95% of the energy content of the
universe is extraordinary—dark matter or dark energy whose
existence has been inferred from the failure of the Standard
Model of particle physics plus General Relativity to describe
the behavior of astrophysical systems larger than a stellar
cluster—while the very homogeneity and isotropy (and
inhomogeneity) of the universe owe to the influence of an
inflaton field whose particle-physics-identity is completely
mysterious even after three decades of theorizing.

The stakes are set even higher with the recent discovery
of dark energy that makes the universe undergo accelerated
expansion. It is known that dark energy can affect the largest
scales of the universe, for example, the clustering scale of
dark energy may be about the horizon size today. Similarly,
inflationary models can induce observable effects on the
largest scales via either explicit or spontaneous violations
of statistical isotropy. It is reasonable to suggest that sta-
tistical isotropy and homogeneity should be substantiated
observationally, not just assumed. More generally, testing the
cosmological principle should be one of the key goals of
modern observational cosmology.

With the advent of high signal-to-noise maps of the
cosmic microwave background anisotropies and with the
conduct of nearly-full-sky deep galaxy surveys, statistical
isotropy has begun to be precisely tested. Extraordinary
full-sky temperature maps produced by the Wilkinson
Microwave Anisotropy Probe (WMAP), in particular, are
revolutionizing our ability to probe the universe on its largest
scales [1–6]. In the near future, these will be joined by higher
resolution temperature maps and high-resolution polariza-
tion maps and, eventually, by deep all-sky surveys, and
perhaps by tomographic 21-cm line observations that will
extend our detailed knowledge of the universe’s background
geometry and fluctuations into the interior of the sphere of
last scattering.

In this brief paper, we describe the large-scale anomalies
in the CMB data, some of which were first reported on
by the Cosmic Background Explorer (COBE) Differential
Microwave Radiometer (DMR) collaboration in the mid
1990s. In particular, we report on alignments of the largest
modes of CMB anisotropy with each other, and with
geometry and direction of motion of the Solar System, as
well as on unusually low angular correlations at the largest
angular scales. We discuss these findings and, as this is not
meant to be a comprehensive review and we emphasize
results based on our own work in the area, we refer the reader
to literature for all developments in the field. This paper
extends an earlier review on the subject by Huterer [7], and
complements another review on statistical isotropy in this
special issue [8].

The paper is organized as follows. In Section 2 we
describe the statistical quantities that describe the CMB and
the expectations for their values in the currently favored
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Figure 1: The comoving length within the context of the concor-
dance model of an arc seen at a fixed angle and the comoving
Hubble length as functions of redshift. Linear perturbation theory is
expected to work well outside the shaded region, in which the large
scale structure (LSS) forms.

ΛCDM cosmological model. In Section 3, we describe the
alignments at the largest scales, as well as multipole vectors,
which is a tool to study them. In Section 4, we describe
findings of low power at largest scales in the CMB. Section 5
categorizes and covers the variety of possible explanations for
these anomalies. We conclude in Section 6.

2. Expectations from Cosmological Inflation

A fixed angular scale on the sky probes the physics of the
universe at a range of physical distances corresponding to the
range of observable redshifts. This is illustrated in Figure 1,
where the comoving lengths of arcs at fixed angle are shown
as a function of redshift, together with the comoving Hubble
scale. Angles of 1 degree and less probe events that were
in causal contact at all epochs between the redshift of
decoupling and today; this redshift range includes physical
processes such as the secondary CMB anisotropies. The
situation is different for angles >60 degrees, which subtend
arcs that enter our Hubble patch only at z ! 1. Therefore,
the primordial CMB signal on such large angular scales could
only be modified by the physics of local foregrounds and
cosmology in the relatively recent past (z ! 1). Because
they correspond to such large physical scales, the largest
observable angular scales provide the most direct probe of
the primordial fluctuations—whether generated during the
epoch of cosmological inflation or preceding it.

2.1. Statistical Isotropy. What do we expect for the large
angular scales of the CMB? A crucial ingredient of cosmol-
ogy’s concordance model is cosmological inflation—a period
of accelerating cosmic expansion in the early universe. If we
assume that inflationary expansion persisted for sufficiently
many e-folds, then we expect to live in a homogeneous
and isotropic universe within a domain larger than our
Hubble volume. This homogeneity and isotropy will not
be exact but should characterize both the background and
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the statistical distributions of matter and metric fluctuations
around that background. These fluctuations are made visible
as anisotropies of the CMB temperature and polarization,
which are expected to inherit the underlying statistical
isotropy. The temperature T seen in direction ê is predicted
to be described by a Gaussian random field on the sky (i.e.,
the 2-sphere S2), which implies that we can expand it in terms
of spherical harmonics Y!m(ê) multiplied by independent
Gaussian random coefficients a!m of zero mean.

Statistical isotropy implies that the expectation values
of all n-point correlation functions (of the temperature or
polarization) are invariant under arbitrary rotations of the
sky. As a consequence the expectation of the temperature
coefficients is zero, 〈a!m〉 = 0, for all ! > 0 and m = −!,−! +
1, . . . , + !. The two-point correlation becomes a function of
cos θ ≡ ê1 · ê2 only and can be expanded in terms of Legendre
polynomials:

〈
T(ê1)T(ê2)

〉
≡ C(θ) = 1

4π

∑

!

(2! + 1)C!P!(cos θ). (1)

Statistical independence implies that expectations of a!m

with different ! and m vanish. In particular, the two-point
correlation function is diagonal in ! and m:

〈
a∗!ma!′m′

〉
∝ δ!!′ δmm′ . (2)

Statistical isotropy adds that the constant of proportionality
depends only on !, not m:

〈
a∗!ma!′m′

〉
= δ!!′δmm′C!. (3)

The variance C! is called the angular power of the multipole
!. The higher n-point correlation functions are constrained
in similar ways but, as we will see below, are not expected
to provide independent information if a simple inflationary
scenario was realized by nature.

2.2. Gaussianity. If inflation is driven by a single dynamically
relevant degree of freedom with appropriate properties
(minimal coupling, Minkowski vacuum in UV limit, etc.),
then we can reduce the quantization of matter and space-
time fluctuations during inflation to the problem of quan-
tizing free scalar fields. For free fields the only nontrivial
object is the two-point correlation (the propagator), and all
higher correlation functions either vanish or are just some
trivial combination of the two-point function. This property
is mapped onto the temperature field of the CMB. A classical
random field with these properties is a Gaussian with mean
T0 and variance C(θ). Thus the brightness of the primordial
CMB sky is completely characterized by T0 and C(θ) (or C!).
Note that evolution of perturbations leads to deviations from
Gaussianity that would mostly be evident at very small scales
(! ) 100). Moreover, many inflationary models predict
small deviations from Gaussianity; these are described in
other contributions to this volume [9, 10].

2.3. Scale Invariance. Another generic feature of inflation
is the almost scale invariance of the power spectrum of

fluctuations. This can be understood easily, as the Hubble
scale is approximately constant during inflation as the
wavelengths of observable modes are redshifted beyond the
horizon. Given that fluctuations of modes on horizon exit are
related to the Hubble parameter, δφ = H/2π, these modes
have similar amplitudes. However, scale invariance is not
exact. In canonical slow-roll inflation models, the deviation
from exact scale invariance is due to the evolution of the
Hubble parameter during inflation, which is measured by the
so-called first slow-roll function ε1 ≡ ḋH where dH ≡ H−1 is
the Hubble distance. From the weak energy condition ε1 > 0,
while ε1 * 1 during slow-roll inflation.

At the level of the angular power spectrum, exact scale
invariance implies the Sachs-Wolfe “plateau” (i.e., constancy
of l(l + 1)C! at low !) [11]

C! =
2πA

!(! + 1)
. (4)

Here, again in the slow-roll parameterization, A ∼
(Hinfl/MP)2T2

0 /ε1. This neglects secondary anisotropies like
the late time, integrated Sachs-Wolfe effect (particularly
important at very low !) and the contribution from
gravitational waves. Furthermore, inflation predicts a small
departure from scale invariance, which has recently been
detected (e.g., [6]), and which also contributes to a tilt in the
aforementioned plateau.

2.4. Cosmic Variance. As we can measure only one sky, it is
important to find the best estimators of C! and C(θ). Let
us for the moment assume that we are able to measure the
primordial CMB of the full-sky, without any instrumental
noise. We also restrict ourselves to ! ≥ 2, as the variance of
the monopole cannot be defined and the measured dipole is
dominated by our motion through the universe rather than
by primordial physics. (Separation of the Doppler dipole
from the intrinsic dipole is possible in principle [12, 13],
but not with existing data.) Statistical isotropy suggests to
estimate the angular power by

Ĉ! =
1

2! + 1

+!∑

m=−!

|a!m|2, (5)

which satisfies 〈Ĉ!〉 = C! and is thus unbiased. The variance
of this estimator can be calculated assuming Gaussianity:

Var
(
Ĉ!

)
= 2

2! + 1
Ĉ2

! . (6)

It can be shown that, assuming statistical isotropy and
Gaussianity, Ĉ! is the best estimator in the sense that it has
minimal variance and is unbiased. However, we emphasize
that these qualities depend intrinsically on the correctness of
the underlying assumptions.
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With these same assumptions, the variance of the two-
point correlation function is easily shown to be

Var
[
Ĉ(θ)

]
= 1

8π2

∑

!

(2! + 1)C2
! P

2
! (cos θ), (7)

where Ĉ(θ) is calculated from Ĉ! following (1).
Putting the results of this section together allows us to

come up with a generic prediction of inflationary cosmology
for C(θ) on the largest angular scales; see Figure 2.

3. Alignments

In brief, the upshot of the previous section is that the twin
assumptions of statistical isotropy and Gaussianity are the
starting point of any CMB analysis. The measurements of
the CMB monopole, dipole, and (∆T)rms tell us that isotropy
is observationally established at the percent level without
any cosmological assumption, and at a level 10−4 if we
attribute the dominant contribution to the dipole to our
peculiar motion. For the purpose of cosmological parameter
estimation, the task is to test the statistical isotropy of the
CMB brightness fluctuations. At the largest angular scales,
this can only be done by means of full-sky maps.

Let us assume that the various methods that have been
developed to get rid of the Galactic foreground in single
frequency band maps of the microwave sky are reliable
(though we argue below that this might not be the case).
Our review of alignments will be based on the internal linear
combination (ILC) map produced by the WMAP team,
which is based on a minimal variance combination of the
WMAP frequency bands. The weights for the five frequency
band maps are adjusted in 12 regions of the sky, one region
lying outside the Milky Way and 11 regions along the Galactic
plane.

3.1. Multipole Vectors. To study the orientation and align-
ment of CMB multipoles, Copi et al. [15] introduced
to cosmology the use of multipole vectors; an alternative
representation of data on the sphere. The multipole vectors
contain information about the “directions” associated with
each multipole. In this new basis the temperature fluctuation
multipole, !, may be expanded as

T! ≡
!∑

m=−!

a!mY!m ≡ A(!)




!∏

i=1

(
v̂(!,i) · ê

)
− T!


, (8)

where v̂(!,i) is the ith vector for the !th multipole, ê is the
usual radial unit vector, T! is the trace of the preceding
product of multipole vector terms, and A(!) is the “power” in
the multipole. By construction, we immediately see that T! is
a symmetric traceless, rank ! tensor. Subtracting T! ensures
that T! is traceless and the dot products explicitly show this
is a rotationally invariant quantity (a scalar under rotations).
This form makes the symmetry properties obvious. As an
example the quadrupole is written as

T2 = A(2)
[(

v̂(2,1) · ê
)(

v̂(2,2) · ê
)
− 1

3
v̂(2,1) · v̂(2,2)

]
. (9)
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Figure 2: Mean and (cosmic) variance of the angular two-
point correlation function as expected from cosmological inflation
(arbitrary normalization). Only statistical isotropy, Gaussianity and
scale invariance are assumed. Tensors, spectral tilt, reionization and
the integrated Sachs-Wolfe effect are neglected for the purpose of
this plot. Comparison to the prediction from the best-fit ΛCDM
model (Figure 5) reveals that these corrections are subdominant.
Note that cosmic variance errors at different values of θ are very
highly correlated.

These two forms for representing T! , harmonic, and
multipole-vector, both contain the same information. At the
same time, they are fundamentally different from each other.
Each unit vector v̂(!,i) has two degrees of freedom while the
scalar, A(!) has one; thus the multipole vector representation
contains the full 2! + 1 degrees of freedom. Note that we
call each v̂(!,i) a multipole vector but it is only defined up to
a sign. We can always reflect the vector through the origin
by absorbing a negative sign into the scalar A(!); thus these
vectors actually are headless. Regardless, we will continue to
refer to them as multipole vectors and not use the overall
sign of the vector in our analysis. This issue is equivalent to
choosing a phase convention, such as the Condon-Shortley
phase for the spherical harmonics. For the work reviewed
here the overall phase is not relevant and thus will not be
specified.

An efficient algorithm to compute the multipole vectors
for low-! has been presented in [15] and is publicly available
[16]; other algorithms have been proposed as well in [17–
19]. Interestingly, after the publication of the CHS paper
[15], Weeks [18] pointed out that multipole vectors were
actually first used by Maxwell [20] more than 100 years ago
in his study of multipole moments in electrodynamics. They
remain in use in geometrology, nuclear physics, and other
fields.

The relation between multipole vectors and the usual
harmonic basis is very much the same as that between
Cartesian and spherical coordinates of standard geometry:
both are complete bases, but specific problems are much
more easily addressed in one basis than the other. In par-
ticular, we and others have found that multipole vectors are
particularly well suited for tests of planarity and alignment
of the CMB anisotropy pattern. Moreover, a number of
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Figure 3: Multipole vectors of our sky, based on WMAP five-year
full-sky ILC map and with galactic plane coinciding with the plane
of the page. The temperature pattern at each multipole ! (2 ≤ ! ≤ 8)
can either be described by an angular temperature pattern (colored
lobes in this figure), or alternatively by precisely ! multipole vectors
(black “sticks”). While the multipole vectors contain all information
about the directionality of the CMB temperature pattern, they are
not simply related to the hot and cold spots and, for example, do
not correspond to the temperature minima/maxima [14]. Notice
that ! = 2 and 3 temperature patterns are rather planar with the
same plane and that their vectors lie approximately in this plane.
Adopted from [15].

interesting theoretical results have been found; for example,
Dennis and Phys [21] analytically computed the two-point
correlation function of multipole vectors for a Gaussian
random, isotropic underlying field. Numerous quantities
have been proposed for assigning directions to multipoles
and statistics on these quantities have been studied. In the
work of Copi et al. [14] we have summarized these attempts
and have shown their connections to the multipole vectors.

3.2. Planarity and Alignments. Tegmark et al. [22] and de
Oliveira-Costa et al. [23] first argued that the octopole is
planar and that the quadrupole and octopole planes are
aligned. In the work of Schwarz et al. [24], followed up
by Copi et al. [14, 25], we investigated the quadrupole-
octopole shape and orientation using the multipole vectors.
The quadrupole is fully described by two multipole vectors,
which define a plane. This plane can be described by the
“oriented area” vector

−→w (!;i, j) ≡ v̂(!,i) × v̂(!, j). (10)

(Note that the oriented area vector does not fully characterize
the quadrupole, as pairs of quadrupole multipole vectors
related by a rotation about the oriented area vector lead to the
same oriented area vector.) The octopole is defined by three
multipole vectors which determine (but again are not fully
determined by) three area vectors. Hence there are a total of
four planes determined by the quadrupole and octopole.

In the work of Copi et al. [25] we found that (see
Figure 4)

(i) the four area vectors of the quadrupole and octopole
are mutually close (i.e., the quadrupole and octopole
planes are aligned) at the 99.6% C.L.;

(ii) the quadrupole and octopole planes are orthogonal
to the ecliptic at the 95.9% C.L.; this alignment was at

NEP

Dipole

Dipole Ecliptic plane

SEP

−60 60
T (µK)

Figure 4: Quadrupole and octopole (! = 2 and 3) temperature
anisotropy of the WMAP sky map in galactic coordinates, shown
with the ecliptic plane and the cosmological dipole. Included are
the multipole vectors (solid diamonds): two for the quadrupole
(red diamonds) and three for the octopole (green diamonds). We
also show the four normals (solid squares) to the planes defined
by vectors that describe the quadrupole and octopole temperature
anisotropy; one normal is defined by the quadrupole (red square)
and three by the octopole (green squares). Note that three out of
four normals lie very close to the dipole direction. The probability
of this alignment being accidental is about one part in a thousand.
Moreover, the ecliptic plane traces out a locus of zero of the
combined quadrupole and octopole over a broad swath of the sky—
neatly separating a hot spot in the northern sky from a cold spot
in the south. These apparent correlations with the solar system
geometry are puzzling and currently unexplained.

98.5% C.L. in our analysis of the WMAP 1 year maps.
The reduction of alignment was due to WMAP’s
adaption of a new radiometer gain model for the 3
year data analysis, that took seasonal variations of the
receiver box temperature into account—a systematic
that is indeed correlated with the ecliptic plane. We
regard that as clear evidence that multipole vectors
are a sensitive probe of alignments;

(iii) the normals to these four planes are aligned with
the direction of the cosmological dipole (and with
the equinoxes) at a level inconsistent with Gaussian
random, statistically isotropic skies at 99.7% C.L.;

(iv) the ecliptic threads between a hot and a cold spot
of the combined quadrupole and octopole map,
following a node line across about 1/3 of the sky and
separating the three strong extrema from the three
weak extrema of the map; this is unlikely at about the
95% C.L.

These numbers refer to the WMAP ILC map from three years
of data; other maps give similar results. Moreover, correction
for the kinematic quadrupole—slight modification of the
quadrupole due to our motion through the CMB rest
frame—must be made and increases significance of the
alignments. See [25, Table 3] for the illustration of both of
these points.

While not all of these alignments are statistically inde-
pendent, their combined statistical significance is certainly
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greater than their individual significances; for example, given
their mutual alignments, the conditional probability of the
four normals lying so close to the ecliptic is less than 2%;
the combined probability of the four normals being both so
aligned with each other and so close to the ecliptic is less than
0.4%× 2% = 0.008%. These are therefore clearly surprising,
highly statistically significant anomalies—unexpected in the
standard inflationary theory and the accepted cosmological
model.

Particularly puzzling are the alignments with solar system
features. CMB anisotropy should clearly not be correlated
with our local habitat. While the observed correlations seem
to hint that there is contamination by a foreground or
perhaps by the scanning strategy of the telescope, closer
inspection reveals that there is no obvious way to explain the
observed correlations. Moreover, if their explanation is that
they are a foreground, then that will likely exacerbate other
anomalies that we will discuss in Section 4.2.

Our studies (see [14]) indicate that the observed align-
ments are with the ecliptic plane, with the equinox, or
with the CMB dipole, and not with the Galactic plane: the
alignments of the quadrupole and octopole planes with the
equinox/ecliptic/dipole directions are much more significant
than those for the Galactic plane. Moreover, it is remarkably
curious that it is precisely the ecliptic alignment that has been
found on somewhat smaller scales using the power spectrum
analyses of statistical isotropy [26–29].

Finally, it is important to make sure that the results
are unbiased by unfairly chosen statistics. We have studied
this issue extensively in [14], and here we briefly describe
the principal statistics used to quantify the probability of
alignments quoted just above.

To define statistics we first compute the three dot-
products between the quadrupole area vector and the three
octopole area vectors:

Ak ≡
∣∣∣−→w (2;1,2) · −→w (3;i, j)

∣∣∣ . (11)

The absolute value is included since the multipole vectors are
headless; thus each Ak lies in the interval [0, 1]. Two natural
choices of statistics that are independent of the ordering of
Ak are

S ≡ 1
3

(A1 + A2 + A3),

T ≡ 1− 1
3

[
(1− A1)2 + (1− A2)2 + (1− A3)2

]
.

(12)

Both S and T statistics can be viewed as the suitably defined
“distance” to the vertex (A1,A2,A3) = (0, 0, 0). A third
obvious choice, (A2

1 + A2
2 + A2

3)/3, is just 2S − T . To test
alignment of the quadrupole and octopole planes with one
another we quoted the S statistic numbers; T gives similar
results.

Alternatively, generalizing the definition in [22], one can
find, for each !, the choice, n! , of z axis that maximizes the
angular momentum dispersion

L̂2
! ≡

∑!
m=−! m

2|a!m|2

!2
∑!

m=−! |a!m|2
. (13)

One can then compare the maximized value with that from
simulated isotropic skies [14]. Because ! = 2, 3 are both
planar (the quadrupole trivially so, the octopole because the
three planes of the octopole are nearly parallel), the direction
that maximizes the angular momentum dispersion of each is
nearly the same as the (average) direction of that multipole’s
planes. Thus, the alignment of the octopole and quadrupole
can be seen either from the S statistic, or by looking at the
alignment of n2 with n3.

To test alignments of multipole planes with physical
directions, we find the plane whose normal, n̂, has the
largest dot product with the sum of the four quadrupole and
octopole area vectors [14]. Again, since −→wi · n̂ is defined only
up to a sign, we take the absolute value of each dot product.
Therefore, we find the direction n̂ that maximizes

S ≡ 1
N!

N!∑

i=1

∣∣−→wi · n̂
∣∣. (14)

3.3. Summary. The study of alignments in the low ! CMB
has found a number of peculiarities. We have shown that
the alignment of the quadrupole and octopole planes is
inconsistent with Gaussian, statistically isotropic skies at
least at the 99% confidence level. Further a, number of
(possibly related) alignments occur at 95% confidence levels
or greater. Putting together these provides a strong indication
that the full-sky CMB WMAP maps are inconsistent with the
standard cosmological model at the large-angles. Even more
peculiar is the alignment of the quadrupole and octopole
with solar system features (the ecliptic plane and the dipole).

This is strongly suggestive of an unknown systematic in
the data reduction; however, careful scrutiny has revealed no
such systematic (except the mentioned modification of the
radiometer gain model, that leads to a reduction of ecliptic
alignment); see Sections 5.3 and 5.4 for further discussion
of the data analysis and instrumental explanations. We
again stress that these results hold for full-sky maps; maps
that are produced through combination of the individual
frequency maps in such a way as to remove foregrounds. An
alternative approach that removes the need for full-sky maps
is presented in the next section.

4. Two-point Angular Correlation Function

The usual CMB analysis solely involves the spherical har-
monic decomposition and the two-point angular power
spectrum. There are many reasons for this. Firstly, when
working with a statistically isotropic universe the angular
power spectrum contains all of the physical information.
Secondly, the standard theory predicts the a!m and their
statistical properties, through the C! , thus the spherical
harmonic basis is a natural one to employ. Finally, as
measured today the angular size of the horizon at the time of
last scattering is approximately 1 degree. Since θ(deg)200/!,
the causal physics at the surface of last scattering leaves its
imprint on the CMB on small scales, θ ! 1◦ or ! " 100. The
two-point angular power spectrum focuses on these small
scales, making it a good means of exploring the physics of
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the last scattering surface. The tremendous success of the
standard model of cosmology has been the agreement of the
theory and observations on these small scales, allowing for
the precise determination of the fundamental cosmological
parameters [30].

The two-point angular correlation function provides
another means of analyzing CMB observations and should
not be ignored even if, in principle, it contains the same
information as the angular power spectrum. Thus, even in
the case of full-sky observations and/or statistical isotropy
there are benefits in looking at the data in different ways.
The situation is similar to a function in one dimension
where it is widely appreciated that features easily found in
the real space analysis can be very difficult to find in the
Fourier transform, and vice versa. Furthermore, the two-
point angular correlation function highlights behavior at
large-angles (small !); the opposite of the two-point angular
power spectrum. Thus the angular correlation function
allows for easier study of the temperature fluctuation modes
that are super-horizon sized at the time of last scattering.
Finally, the angular correlation function in its simplest form
is a direct pixel-based measure (see below). Thus it does not
rely on the reconstruction of contaminated regions of the sky
to employ. This makes it a simple, robust measure even for
partial sky coverage.

4.1. Definition. Care should be taken when discussing statis-
tical quantities of the CMB and their estimators. It rarely is in
the literature. Here we follow the notation of Copi et al. [25],
also see [31]. The two-point angular correlation function,

C̃(ê1, ê2) ≡
〈
T(ê1)T(ê2)

〉
, (15)

is the ensemble average (represented by the angle brackets,
〈·〉) of the product of the temperatures in the directions ê1

and ê2. Unfortunately we only have one universe to observe
so this ensemble average cannot be calculated. Instead we
average over the sky so that what we mean by the two-point
angular correlation function is a sky average,

C(θ) ≡ T(ê1)T(ê2), (16)

where the average is over all pairs of pixels with ê1 · ê2 =
cos θ. This is a pixel-based quantity and can be calculated for
any region of the sky (of course not all separations θ may
be represented on a given patch of the sky, depending on its
geometry).

4.2. Missing Angular Power at Large Scales. Spergel et al.
[2] found that the two-point correlation function nearly
vanishes on scales greater than about 60 degrees, contrary to
what the standard ΛCDM theory predicts, and in agreement
with the same finding obtained from COBE data about a
decade earlier [32].

We have revisited the angular two-point function in
the 3-yr WMAP data in [25] and the 5-yr WMAP data in
[31]; see Figure 5. From this figure we qualitatively see the
following.
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Figure 5: Two-point angular correlation function, C(θ), computed
in pixel space, for three different bands masked with the KQ75
mask (from WMAP 5 year data). Also shown are the correlation
function for the ILC map with and without the mask, and the
value expected for a statistically isotropic sky with best-fit ΛCDM
cosmology together with 68% cosmic variance error bars. Even by
eye, it is apparent that masked maps have C(θ) that is consistent
with zero at θ " 60 deg. We also show the C(θ) computed from
the “official” published maximum likelihood estimator-based C! .
Clearly, the MLE-based C! , as well as C(θ) computed from the
full-sky ILC maps, is in significant disagreement with the angular
correlation function computed from cut-sky maps. Adopted from
[31].

(i) All of the cut-sky map curves are very similar to each
other, and they are also very similar to the Legendre
transform of the pseudo-C! estimate of the angular
power spectrum, which is not surprising given that
the two are formally equivalent [33]. Meanwhile the
full-sky ILC C(θ) and the Legendre transform of the
maximum likelihood estimator (MLE) of theC! agree
well with each other, but not with any of the others.

(ii) The most striking feature of the cut-sky (and pseudo-
C!) C(θ), is that all of them are very nearly zero above
about 60◦, except for some anticorrelation near 180◦.
This is also true for the full-sky curves, but less so.

In order to be more quantitative about these observations
we adopt the S1/2 statistic introduced by the WMAP team [2]
which quantifies the deviation of the two-point correlation
function from zero:

S1/2 ≡
∫ 1/2

−1
[C(θ)]2d(cos θ). (17)

Spergel et al. [2] found that only 0.15% of the parameter sets
in their Markov chain of ΛCDM model CMB skies had lower
values of S1/2 than the observed one-year WMAP sky.

Applying this statistic we have found that the two-point
function computed from the various cut-sky maps shows
an even stronger lack of power, for WMAP 5 year maps
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significant at the 0.037%–0.025% level depending on the
map used; see Figure (5). However, we also found that, while
C(θ) computed in pixel space over the masked sky agrees
with the harmonic space calculation that uses the pseudo-C!

estimator, it disagrees with the C! obtained using the MLE
(advocated in the 3rd year WMAP release [4]). The MLE-
based C! leads to C(θ) that is low (according to the S1/2

statistic) only at the 4.6% level.
There are actually two interesting questions one can ask.

(i) Is the correlation function measured on the cut-
sky compatible with cut-sky expectation from the
Gaussian random, isotropic underlying model?

(ii) Is the reconstruction of the full-sky correlation
function from partial information compatible with
the expectation from the Gaussian random, isotropic
underlying model?

Our results refer to the first question above. The second
question, while also extremely interesting, is more difficult to
be robustly resolved because the reconstruction uses assump-
tions about statistical isotropy (see the next subsection).

The little large-angle correlation that does appear in
the full-sky maps (e.g., the solid, black line in Figure 5)
is associated with points inside the masked region. Shown
in Figure 6 are the normalized contributions to C(θ) from
different parts of the map. In particular, we see that almost
all of the contribution to the full-sky two-point angular
correlation function comes from correlations with at least
one point inside the masked region. Conversely, there is
essentially no large-angle correlation for points outside
the masked region and even very little among the points
completely inside the mask. We also see that all the curves
cross zero at nearly the same angle, θ ∼ 90◦. We have
no explanation for these results though they may point to
systematics in the data.

4.3. Alternative Statistics. The two-point angular correlation
function, C(θ), as defined above in (15) is a simple pixel-
based measure of correlations. It makes no assumptions
about the underlying theory, which can be taken as a feature
or as a flaw. On the positive side, (15) does not assume
that the standard model is correct and trys to “force” it
on the data. On the negative side we are not utilizing the
full information available when comparing to the standard
model.

Various approaches have been taken to incorporate the
standard model in the analysis, for example; Hajian [34]
defined a statistic that explicitly takes into account the
covariance in the quantity C(θ):

A(x) ≡
∫ x

−1

∫ x

−1
C(θ)F−1(θ, θ′)C(θ′)d(cos θ)d(cos θ′),

(18)

where F is the aforementioned covariance

F(θ, θ′) ≡
〈

[C(θ)− 〈C(θ)〉]
[
C(θ′)−

〈
C(θ′)

〉]〉
, (19)
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Figure 6: The two-point angular correlation function from the
WMAP 5-year results. Plotted are C(θ) for the ILC calculated
separately on the part of the sky outside the KQ75 cut (dashed line),
inside the KQ75 cut (dotted line), and on the part of the sky with at
least on point inside the KQ75 cut (dotted-dashed line). For better
comparison to the full-sky C(θ) (solid line), the partial sky C(θ) has
been scaled by the fraction of the sky over which they are calculated.
Adopted from [31].

and as usual the angle brackets denote an ensemble average.
Note that in the limit that C(θ) is uncorrelated then A(1/2) =
S1/2. Clearly this statistic relies on a model to calculate
F(θ, θ′). With this statistic and assuming the concordance
model; it is found that less than 1% of realizations of the
standard model have au A(0.53) less than those found for the
masked skies. For the full-sky ILC map approximately 8% of
realizations have a smaller value. Though less constraining
than making no assumptions about the theory through the
use of the S1/2 statistic, these results are consistent with those
we previously found.

Another approach advocated by Efstathiou et al. [35] is
to reconstruct the full-sky C(θ) from the partial sky and
compare the reconstructed full-sky C(θ) (using, say S1/2)
to the predictions of the model. This approach employs
the usual map making algorithm on the low-! spherical
harmonic coefficients, a!m. In this approach it is assumed
that the statistical properties of the a!m above some !max are
known. In particular it assumes there are no correlations
between the a!m with ! < !max and those with ! > !max. The
method is very similar to a maximum likelihood analysis (see
e.g., [36]). As we have seen above (e.g., in Figure 5) it is not
surprising that this approach will be consistent with the full-
sky ILC results, as these authors have verified. As mentioned
in the previous subsection, however, this procedure poses
a different question of the data than the one that has been
addressed by the S1/2 statistic applied to a masked sky. With
the map-making technique a full-sky map is constructed that
is consistent with the sky outside the mask but relies on
assumptions to fill in the masked region. As is clear from
Figure 6 it is precisely the region inside the mask that is
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introducing correlations with the region outside the mask.
Thus, the assumptions required to allow filling in the masked
region also produce two-point angular correlations.

Whether or not reconstructing the full-sky is a “more
optimal” approach than direct calculation of the cut-sky
C(θ) is moot, but likely depends on the actual (rather
than the assumed) statistical properties of the underlying
fluctuations as well as on the particular realization of those
distributions. What is important is to make an “apples to
apples” comparison between the observed sky and simulated
realizations of the ensemble of possible skies. As we have
shown, the pixel-based two-point correlation function on
the region of the sky outside a conservative galactic mask
is inconsistent with the predictions of the standard ΛCDM
model for the identical pixel-based two-point correlation
function on the identically masked sky. The fact that the
full-sky analysis shows less statistical significance is not
in contradiction with the cut-sky result, although it may
eventually help in pointing to a cause of this anomaly.

4.4. Summary. The striking feature of the two-point angular
correlation function as seen in Figure 5 is not that it disagrees
with ΛCDM (though it does at > 90% C.L.) but that
at large-angles it is nearly zero. This lack of large-angle
correlations is unexpected in inflationary models. The S1/2

statistic quantifies the deviation from zero and shows that a
discrepancy exists at more than 99.9% C.L. Equally striking
is the fact that the little correlation that does exist in the
full-sky ILC map, or equally in the MLE estimated a!m,
comes from correlations between the masked foreground
region and the expectedly cleaner CMB regions of the sky.
Thus this residual correlation, which still is discrepant with
generic inflationary predictions at about 95% C.L., comes
from the reconstruction procedure. This surprising lack of
large-angle correlation outside the masked region remains an
open problem.

We also note that the vanishing of power is much more
apparent in real space (as in C(θ)) than in multipole space
(as in C!). The harmonic-space quadrupole and octopole
are only moderately low (e.g., [37]), and it is really a range
of low multipoles that conspires to make up the vanishing
C(θ). Specifically, as discussed in [31], there is a cancellation
between the combined contributions of C2, . . . ,C5 and the
contributions of C! with ! ≥ 6. It is this conspiracy that is
most disturbing, since it violates the independence of the C!

of different ! that defines statistical isotropy.
In [31] we therefore explored the possibility that the

vanishing of C(θ) could be explained simply by changing
the values of the theoretical low-!C! , as might be the
result, say, of a modified inflaton potential. In particular,
we replaced C2 through C20 in the best-fit ΛCDM model
with the values extracted from the cut-sky ILC five-year map.
From these C! ’s, 200000 random maps were created, masked,
and S1/2 computed. Under the assumptions of Gaussianity
and statistical isotropy of these C! ’s only 3 percent of the
generated maps had S1/2 less than the cut-sky ILC5 value.
Thus, even if the C! are set to the specific values that produce
such a low S1/2, a Gaussian random, statistically isotropic

realization is unlikely to produce the observed lack of large-
angle correlations at the 97% C.L. Moreover, in work in
progress we show that almost all of those 3% are skies with
several anomalously low C!—not at all the sky we see. Only
a tiny fraction of the 3% represent skies in which most of the
individual C! ’s were close to the ΛCDM prediction but they
conspire to cancel one another in the large-angle C(θ). This
shows that either (i) the low-!C! ’s are correlated, contrary
to the assumption of statistical isotropy or (ii) our Universe
is an extremely unlikely realization of whatever statistically
isotropic model one devises (Though this appears to be
an unlikely explanation since correlations between the C!

generically increase the variance of the S1/2 statistic [33]).
It is for this reason that theoretical efforts to explain “low

power on large scales” must focus on explaining the low C(θ)
at θ " 60 deg, rather than the low quadrupole.

Finally, one might ask if the observed lack of correlation
and the alignment of quadrupole and octopole are corre-
lated. This issue was studied by Rakić & Schwarz [38] for
the full-sky and by Sarkar et al. [39] for the cut-sky case. In
both cases, it was shown that low power and alignments are
uncorrelated, that is, that having one does not imply a larger
or smaller probability of having the other. This was shown by
applying a Monte-Carlo analysis to sky realizations with the
underlying standard Gaussian random, statistically isotropic
cosmological model, without any further constraints. Thus
one might view the 99.6% C.L. of quadrupole-octopole
alignment presented in the previous section and the 95%
C.L. for lack of correlation in full-sky maps reported in this
section as statistically independent.

5. Quest for an Explanation

Understanding the origin of CMB anomalies is clearly
important. Both the observed alignments of the low-! full-
sky multipoles, and the absence of large-angle correlations
(especially on the galaxy cut-sky) are severely inconsistent
with predictions of standard cosmological theory. There are
four classes of possible explanations:

(1) astrophysical foregrounds,

(2) artifacts of faulty data analysis,

(3) instrumental systematics,

(4) theoretical/cosmological.

In this section, we review these four classes of explana-
tions, giving examples from each. First, however, we discuss
two generic ways to break statistical isotropy and affect
the intrinsic (true) CMB signal—additive and multiplicative
modulations—and illustrate in general terms why it has been
so difficult to explain the anomalies.

5.1. Additive versus Multiplicative Effects. Why is it difficult
to explaining the observed CMB anomalies? There are three
basic reasons:

(i) Most explanations work by adding power to the large-
angle CMB, while the observed anisotropies actually
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have less large-scale power and particularly less large-
angle correlation, than the ΛCDM cosmological
model predicts.

(ii) Unaccounting for sources of CMB fluctuations in the
foreground, even if possessing/causing aligned low-
! multipoles of their own, cannot bring unaligned
statistically isotropic cosmological perturbations into
alignment. Therefore, aligned foregrounds as an
explanation for alignment work only if the cosmo-
logical signal is subdominant, thus exacerbating the
lack of large-angle correlations.

(iii) The alignments of the quadrupole and octopole
are with respect to the ecliptic plane and near the
dipole direction. It is generally difficult to have these
directions naturally be picked out by any class of
explanations (though there are exceptions to this—
see the instrumental example below).

Gordon et al. [40], Rakić and Schwarz [38] and Bunn and
Bourdon [41] explored generic “additive models” where the
temperature modification that causes the alignment is added
to

Tobserved(ê) = Tintrinsic(ê) + Tadd(ê). (20)

Here Tadd(ê) is the additive term—perhaps contamination
by a foreground and perhaps an additive instrumental or
cosmological effect. They showed that additive modulations
of the CMB sky that ameliorate the alignment problems tend
to worsen the overall likelihood at large scales (though they
may pick up offsetting positive likelihood contribution from
higher multipoles). The intuitive reason for this is that there
are two penalties incurred by the additive modulation. First,
since the power spectrum at low ! is lower than expected,
one typically needs to arrange for an accidental cancellation
between Tintrinsic and Tadd; the cancellation moreover must
leave aligned quadrupole and octopole even though the
quadrupole and octopole of Tintrinsic are not aligned. (Very
similar reasoning argues against additive explanations of the
suppression of large-angle correlations.) Second, the simplest
models for the additive contribution that are based on an
azimuthally symmetric modulation of a gradient field can
only affect m = 0 multipoles around the preferred axis,
while as we mentioned earlier the observed quadrupole
and octopole as seen in the preferred (dipole) frame are
dominated by the m = ! components.

In contrast to the additive models, the multiplicative
mechanisms, where the intrinsic temperature is multiplied
by a spatially varying modulation, are phenomenologically
more promising. As a proof of principle, a toy-model
modulation [40]

Tobserved(ê) = f [1 + w2Y20(ê)] Tintrinsic(ê) (21)

(where the modulation is a pure Y20 along the dipole axis)
can increase the likelihood of the WMAP data by a factor
of exp(16/2) and, at the same time, increase the probability
of obtaining a sky with more alignment (e.g., higher angular
momentum statistic) 200 times, to 45%; see Figure 7.

Indeed, Groeneboom et al. [42], building on the work of
Groeneboom and Eriksen [43] and Hanson and Lewis [44]
and motivated by a model due to Ackerman et al. [45],
have identified a 9σ quadrupolar power asymmetry, recently
confirmed by the WMAP team [46]; this anomaly can,
however, be fully explained by accounting for asymmetric
beams [47]. Recently, Hoftuft et al. [48] found a greater than
3-σ evidence for nonzero dipolar modulation of the power.

5.2. Astrophysical Explanations. One fairly obvious possibil-
ity is that there is a pernicious foreground that contaminates
the primordial CMB and leads to the observed anomalies.
Such foregrounds are, of course, additive mechanisms, in
the sense of the preceding section, and so suffer from
the shortcomings described therein. Moreover, most such
foregrounds are Galactic, while the observed alignments
are with respect to the ecliptic plane. One would expect
that Galactic foregrounds should lead to Galactic and not
ecliptic foregrounds. This simple expectation was confirmed
in [14], where we showed that, by artificially adding a
large admixture of Galactic foregrounds to WMAP CMB
maps, the quadrupole vectors move near the z-axis and
the normal into the Galactic plan, while for the octopole
all three normals become close to the Galactic disk at 90◦

from the Galactic center. Therefore, as expected Galactic
foregrounds lead to Galactic, and not ecliptic, correlations
of the quadrupole and octopole (see also studies by [49, 50]).

Moreover, in [14], we have shown that the known Galac-
tic foregrounds possess a multipole vector structure very
different from that of the observed quadrupole and octopole.
The quadrupole is nearly pure Y22 in the frame where the
z-axis is parallel to the dipole (or ŵ(2,1,2) or any nearly
equivalent direction), while the octopole is dominantly Y33

in the same frame. Mechanisms which produce an alteration
of the microwave signal from a relatively small patch of sky—
and all of the recent proposals fall into this class—are most
likely to produce aligned Y20 and Y30. This is essentially
because the low-! multipole vectors will all be parallel to each
other, leading to a Y!0 in this frame.

A number of authors have attempted to explain the
observed quadrupole-octopole correlations in terms of a
new foreground—for example the Rees-Sciama effect [38,
51], interstellar dust [52], local voids [53], or the Sunyaev-
Zeldovich effect [54]. Most if not all of these proposals have
a difficult time explaining the anomalies without severe fine-
tuning. For example, Vale [55] cleverly suggested that the
moving lens effect, with the Great Attractor as a source,
might be responsible for the extra anisotropy; however,
Cooray and Seto [56] have argued that the lensing effect is
far too small and requires too large a mass of the Attractor.

It is also interesting to ask if any known or unknown
Solar system physics could lead to the observed alignments.
Dikarev et al. [57, 58] studied the question of whether solar
system dust could give rise to sizable levels of microwave
emission or absorption. Surprisingly, very little is known
about dust grains of mm to cm size in the Solar system,
and their absorption/emission properties strongly depend
on their chemical composition. While iron and ice particles
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Figure 7: A realization of the multiplicative model where the quadrupole (left column) and octopole (right column) exhibit an alignment
similar to WMAP. (a): intrinsic (unmodulated) sky from a Gaussian random isotropic realization. (b) (single column): the quadrupolar
modulation with f = −1 and w2 = −7 (see (21)) in the dipole direction. (c): the modulated sky of the observed CMB. (d): WMAP full-sky
quadrupole and octopole. Adopted from [40].

can definitely be excluded to contribute at significant levels,
carbonaceous and silicate dust grains might contribute up
to a few µK close to the ecliptic plane, for example, due to
the trans-Neptunian object belt. Such an extra contribution
along the ecliptic could give rise to CMB structures aligned
with the ecliptic, but those would look very different from
the observed ones. On top of that, Solar system dust would
be a new additive foreground and could not explain the
lack of large-angle correlations. Thus it seems unlikely

that Solar system dust grains cause the reported large-
angle anomalies, nevertheless they are sources of microwave
absorption and emission and may become important to
precision measurements in the future.

Finally, it has often been suggested to some of us in
private communications that the anomalies may not reflect
an unknown foreground that has been neglected, but rather
the “missubtraction” of a known foreground. However, it
has never quite been clear to us how this leads to the
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observed alignments or lack of large-angle correlations, and
we are unaware of any literature that realizes this suggestion
successfully.

5.3. Data Analysis Explanations. Most of the results discussed
so far have been obtained using reconstructed full-sky maps
of the WMAP observations [1, 22, 59]. In the presence
of the sky cut of even just a few degrees, the errors in
the reconstructed anisotropy pattern, and the directions of
multipole vectors, are too large to allow drawing quantitative
conclusions about the observed alignments [15]. These
large errors are expected: while the power in the CMB
(represented, say, by the angular power spectrum C!) can be
accurately recovered since there are 2!+1 modes available for
each !, there are only 2 modes available for each multipole
vector; hence the cut-sky reconstruction is noisier. However
the cut-sky alignment probabilities, while very uncertain, are
consistent with the full-sky values [14, 50]; more generally,
the alignments appear to be rather robust to Galactic cuts
and foreground contamination [60].

A different kind of explanation of missing large-scale
power, or missing large-angle correlations, has been taken by
Efstathiou et al. [35] who argued that maximum likelihood
estimators can be applied to the cut-sky maps to reliably
and optimally reconstruct the CMB anisotropy of the whole
sky; for a recent work that extends these ideas, see [33].
This approach yields more two-point correlations on large
scales (S1/2 ∼ 8000 (µK)4, which is ∼ 5% likely) than the
direct cut-sky pixel-based calculation which gives S1/2 ∼
1000 (µK)4 result and is ∼ 0.03% likely. These authors then
argue that the extremely low S1/2 obtained by the pixel-based
approach applied to the cut-sky is essentially a fluke, and the
more reliable result comes from their maximum-likelihood
reconstruction of the full-sky. It may indeed be true that
the pixel-based calculation is a suboptimal estimate of the
full-sky C(θ)for a statistically isotropic cosmology. However,
quantities calculated on the cut-sky are clearly insensitive to
assumptions about what lies behind the cut. We can only
observe reliably the ∼ 75% of the sky that was not masked,
and that is where the large-angle two-point-correlation is
near-vanishing. Any attempt to reconstruct the full-sky must
make assumptions about the statistical properties of the
CMB sky, and would clearly be affected by the coupling of
small-scale and large-scale modes—exactly what is necessary
to have a sky in which S1/2 is anomalously low, while the C! ’s
are individually approximately consistent with the standard
cosmology.

5.4. Instrumental Explanations. Are instrumental artifacts
the cause of the observed alignments (and/or the low large-
scale power)? One possible scenario would go as follows.
WMAP avoids making observations near the Sun, therefore
covering regions away from the ecliptic more than those near
the ecliptic. While the corresponding variations in the noise
per pixel are well known (e.g., as the number of observations
per pixel, Nobs; see [1, Figure 3]), and its effects on the large-
scale anomalies are ostensibly small, they could, in principle,
be amplified and create the observed ecliptic anomalies.

However a successful proposal for such an amplification has
not yet been put forward.

Another possibility is that an imperfect instrument cou-
ples with dominant signals from the sky to create anomalies.
Let us review an example given in [40]: suppose that the
instrumental response Tinstr(ê) to the true sky signal T(ê) is
nonlinear

Tinstr(ê) = f
∑

i

αi

[
T(ê)
f

]i

. (22)

Here f is an arbitrary normalization scale for the nonlinear-
ity of the response, and αi are arbitrary coefficients with α1 =
1. If αi>1 /= 0 then Tinstr /=T and the observed temperature
is a nonlinear modulation of the true temperature. The
dominant temperature signal for a differencing experiment
such as WMAP is the dipole arising from our peculiar
motion, T(ê) = Tdip cos θ, with Tdip = 3.35 mK and θ the
polar angle in the dipole frame. Taking f = Tdip,

Tinstr(ê)
Tdip

= α1P1(cos θ) + α2

[
2

3P2(cos θ)
+ 1
]

+ α3

[
2

5P3(cos θ)
+

3
5P1(cos θ)

]
+ · · · ,

(23)

where P! are the Legendre polynomials. Note that with α2 ∼
α3 ∼ O(10−2), the 10−3 dipole anisotropy is modulated
into a 10−5 quadrupole and octopole anisotropy which are
aligned in the dipole frame with the m = 0 multipole
structure. Unfortunately (or fortunately!), WMAP detectors
are known to be linear to much better than 1%, so this
particular realization of the instrumental explanation does
not work. As an aside, note that this type of explanation
needs to assume that the higher multipoles are not aligned
with the dipole/ecliptic and, moreover, requires essentially
no intrinsic power at large scales (that is, even less than what
is observed).

To summarize, even though the ecliptic alignments (and
the north-south power asymmetry) hint at a systematic effect
due to some kind of coupling of an observational strategy
and the instrument, to date no plausible proposal of this sort
has been put forth.

5.5. Cosmological Explanations. The most exciting possibility
is that the observed anomalies have primordial origin, and
potentially inform us about the conditions in the early
universe. One expects that in this case the alignments with
the dipole, or with the solar system, would be statistical
flukes.

The breaking of statistical isotropy implies that the usual
relation 〈a∗!ma!m〉 = C!δ!!′δmm′ does not hold any more;
instead

〈
a∗!ma!m

〉
= C!!′mm′ , (24)

where the detailed form of the quantity on the right-hand
side is model dependent (see the more detailed discussions
in [61–63]).
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There are many possibilities for how the absence of
statistical isotropy might arise; for example, in a nontrivial
spatial topology, the fundamental domain would not be
rotationally invariant, and so the spherical harmonics (times
an appropriate radial function) would not be a basis of
independent eigenmodes of the fluctuations. This would
certainly lead to a correlation among a!m of different m and
also !, although not necessarily to aligned multipoles. The
hope would be that the shape of the fundamental domain
would lead to these alignments, while a lower density of states
at long wavelength (compared to the covering space) would
lead to the absence of large-angle correlations. No specific
model has been suggested to accomplish all of those, and the
matter is complicated by known bounds on cosmic topology
[64–68] which force the fundamental domain to be relatively
large.

Alternately, in the early universe, asymmetry in the
stress-energy tensor of dark energy [69] or a long-wavelength
dark energy density mode with a gradient in the desired
direction [40], could both imprint the observed alignments
via the integrated Sachs-Wolfe mechanism; but it is hard
to see how they would explain the lack of large-angle
correlations. The authors of [70] have put forward a model
where the Sachs-Wolfe contribution to low-! multipoles is
partly cancelled by the Integrated Sachs-Wolfe contribution,
but which still fails to explain the lowness of S1/2 or the
alignments of low-! multipoles. Models where the anomalies
are caused by breaking of the statistical isotropy [71, 72] are
especially well studied; see [73] for the equally interesting
possibility that the translational invariance is broken.

A commonly used mechanism to explain such anoma-
lies is inflationary models that contain implicit breaking
of isotropy [40, 74–80]. Pontzen [81] helpfully shows
temperature and polarization patterns caused by various
classes of Bianchi models that explicitly break the statistical
isotropy. However, outside of explaining the anomalies, the
motivation for these anisotropic models is not compelling
and they seem somewhat contrived. Moreover, the authors
have not investigated whether the low S1/2 is also observed.
Nevertheless, given the large-scale CMB observations, as
well as the lack of fundamental theory that would explain
inflation, investigating such models is well worthwhile.

A very reasonable approach is to describe breaking of
the isotropy with a phenomenological model, measure the
parameters of the model, and then try to draw inferences
about the underlying physical mechanism. For example, a
convenient approach is to describe the breaking of isotropy
via the direction-dependent power spectrum of dark matter
perturbations [82]

P
(−→
k
)
= A(k)


1 +

∑

!m

g!m(k)Y!m

(
k̂
)

, (25)

where k = |
−→
k |, g!m(k) quantifies the departure from

statistical isotropy as a function of wavenumber k, and A(k)
refers to the statistically isotropic part of the power spectrum.
In this model, the power spectrum, normally considered
to depend only on scale k, now depends on direction in a

parametric way. Statistically significant finding that g!m /= 0
for any (!,m) would signal a violation of statistical isotropy.

As with the other attempts to explain the anomalies, we
conclude that, while there have been some interesting and
even promising suggestions, no cosmological explanation to
date has been compelling.

5.6. Alignment Explanations: What Next. While future
WMAP data is not expected to change any of the observed
results, our understanding and analysis techniques are likely
to improve. The most interesting test will come from the
Planck satellite, whose temperature maps, obtained with a
completely different instrument and observational technique
than WMAP, could shed significant new light on the
alignments. Moreover, polarization information could be
extremely useful in distinguishing between different models
and classes of explanations in general; for example, Dvorkin
et al. [83] explicitly show how polarization information
expected from Planck can help identify the cause of the
alignments. Finally, one could use the large-scale structure
(i.e., galaxy distribution) data on the largest observable
scales from surveys such as Dark Energy Survey (DES) and
Large Synoptic Survey Telescope (LSST) to test cosmological
explanations (see, e.g, [84, 85]).

6. Explanations from the WMAP Team

In their seven year data release the WMAP team explicitly
discusses several CMB anomalies [46] including the two
main ones described in this paper. For the first major
issue—the alignment of low multipoles with each other—
the WMAP team agrees that the alignment is observed and
arguse, based on work by Francis and Peacock [86], that
the integrated Sachs-Wolfe (ISW) contribution of structures
at small redshifts (z * 1) could be held responsible.
There are serious problems with this argument. Firstly, the
ordinary Sachs-Wolfe (SW) effect typically dominates at
these ! over the ISW. Thus, only if the ordinary SW effect
on the last scattering surface is anomalously low will the
ISW contribution dominate. Secondly, though the ISW may
lead to alignment of the quadrupole and octopole it is not
an explanation for the observed Solar system alignments.
This alignment would need to be an additional statistical
fluke. Finally, this explanation does nothing whatsoever to
mitigate the lack of large scale angular correlation because
the ISW effect acts as an additive component and should
be statistically uncorrelated from the primordial CMB.
Therefore, even if the ISW reconstruction is taken as reliable,
this argument would imply

(1) an accidental downward fluctuation of the SW suffi-
cient for the ISW of local structure to dominate and
cause an alignment,

(2) an accidental cancellation in angular correlation
between the SW and ISW temperature patterns.

Neither the WMAP team nor Francis and Peacock estimate
the likelihood of these two newly created puzzles.
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Regarding the second major issue—the lack of angular
correlation—the WMAP team refers to a recent work by
Efstathiou et al. [35] who argue that quadratic estimators are
better estimates of the full-sky from cut-sky data and are in
better agreement with the concordance model. While these
estimators have been shown to be optimal under the assump-
tion of statistical isotropy, it is unclear why they should
be employed when this assumption is to be tested. (For a
contrary view, see [33].) The pixel-based estimator applied
to the cut-sky in our analysis does not rely on statistical
isotropy and it is more conservative as it does not try to
reconstruct temperature anisotropies inside the cut. Finally,
our claims that the pixel-based cut-sky two-point correlation
function is highly anomalous rely on comparisons to the
identical correlation function calculated on simulated cut
skies. Whether or not it is a good estimate of the full-
sky correlation function is answering a different question,
(see Section 5.2). Conversely, the estimator suggested in [35]
assumes that whatever is within the cut can be reconstructed
reliably by truncating the number of multipole moments
considered. The latter logic is equivalent to the assumption
of the statistical independence of low and high multipoles,
which is exactly a consequence of statistical isotropy.

These arguments from the WMAP team offer neither
new nor convincing explanations of the observed anomalies
discussed in this paper. At best they replace one set of
anomalies by another.

7. Conclusions

The CMB is widely regarded as offering strong substantiating
evidence for the concordance model of cosmology. Indeed
the agreement between theory and data is remarkable—the
patterns in the two-point correlation functions (TT, TE, and
EE) of Doppler peaks and troughs are reproduced in detail
by fitting with only six (or so) cosmological parameters. This
agreement should not be taken lightly; it shows our precise
understanding of the causal physics on the last scattering
surface. Even so, the cosmological model we arrive at is
baroque, requiring the introduction at different scales and
epochs of three sources of energy density that are only
detected gravitationally—dark matter, dark energy and the
inflaton. This alone should encourage us to continuously
challenge the model and probe the observations particularly
on scales larger than the horizon at the time of last scattering.

At the very least, probes of the large-angle (low-!)
properties of the CMB reveal that we do not live in a
typical realization of the concordance model of inflationary
ΛCDM. We have reviewed a number of the ways in which
that is true: the peculiar geometry of the ! = 2 and 3
multipoles—their planarity, their mutual alignment, their
alignment perpendicular to the ecliptic and to the dipole; the
north-south asymmetry; and the near absence of two-point
correlations for points separated by more than 60◦.

If indeed the observed ! = 2 and 3 CMB fluctuations
are not cosmological, one must reconsider all CMB results
that rely on the low !, for example, the measurement of the
optical depth from CMB polarization at low ! or the spectral

index of scalar perturbations and its running. Moreover,
the CMB galaxy cross-correlation, which has been used to
provide evidence for the Integrated Sachs-Wolfe effect and
hence the existence of dark energy, also gets contributions
from the lowest multipoles (though the main contribution
comes from slightly smaller scales, ! ∼ 10). Indeed, it is
quite possible that the underlying physical mechanism does
not cut off abruptly at the octopole, but rather affects the
higher multipoles. Indeed, several pieces of evidence have
been presented for anomalies at l > 3 (e.g., [87, 88]).
One of these is the parity of the microwave sky. While
the observational fact that the octopole is larger than the
quadrupole (C3 > C2) is not remarkable on its own,
including higher multipoles (up to ! ∼ 20) the microwave
sky appears to be parity odd at a statistically significant
level (since WMAP 5yr) [89–91]. It is hard to imagine a
cosmological explanation for a parity odd universe, but the
same holds true for unidentified systematics or unaccounted
astrophysical foregrounds, especially as this recently noticed
puzzle shows up in the very well studied angular power
spectrum.

While the further WMAP data is not expected to change
any of the observed results, our understanding and analysis
techniques are likely to improve. Much work remains to
study the large-scale correlations using improved foreground
treatment, accounting even for the subtle systematics and in
particular studying the time-ordered data from the space-
craft. The Planck experiment will be of great importance, as
it will provide maps of the largest scales obtained using a very
different experimental approach than WMAP—measuring
the absolute temperature rather than temperature differ-
ences. Polarization maps, when available at high enough
signal-to-noise at large scales (which may not be soon), will
be a fantastic independent test of the alignments, as each
explanation for the alignments, in principle, also predicts the
statistics of the polarization pattern on the sky.
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