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ABSTRACT

We perform a systematic analysis of the effects of photometric redshift uncertainties on weak-lensing tomography.
We describe the photo-z distribution with a bias and Gaussian scatter that are allowed to vary arbitrarily between
intervals of �z ¼ 0:1 in redshift.While themere presence of bias and scatter does not substantially degrade dark energy
information, uncertainties in both parameters do. For a fiducial next-generation survey each would need to be known
to better than about 0.003–0.01 in redshift for each interval in order to lead to less than a factor of 1.5 increase in the
dark energy parameter errors. The more stringent requirement corresponds to a larger dark energy parameter space,
when redshift variation in the equation of state of dark energy is allowed.Of order 104–105 galaxieswith spectroscopic
redshifts fairly sampled from the source galaxy distribution will be needed to achieve this level of calibration. If the
sample is composed of multiple galaxy types, a fair sample would be required for each. These requirements increase in
stringency for more ambitious surveys; we quantify such scalings with a convenient fitting formula. No single aspect
of a photometrically binned selection of galaxies such as their mean or median suffices, indicating that dark energy
parameter determinations are sensitive to the shape and nature of outliers in the photo-z redshift distribution.

Subject headinggs: cosmology: theory — gravitational lensing — large-scale structure of universe

Online material: color figures

1. INTRODUCTION

Weak gravitational lensing of galaxies by large-scale struc-
ture is rapidly becoming one of the most powerful cosmological
probes (Bartelmann & Schneider 2001; Refregier 2003). Fol-
lowing the first detections a few years ago (Van Waerbeke et al.
2000; Kaiser et al. 2000; Bacon et al. 2000; Wittman et al. 2000;
Refregier et al. 2004), weak lensing has produced increasingly
better constraints on the matter density relative to critical�m and
the amplitude of mass fluctuations �8 (Hoekstra et al. 2002; Pen
et al. 2002, 2003; Brown et al. 2003; Jarvis et al. 2003; Heymans
et al. 2005; Van Waerbeke et al. 2005). While weak lensing is
most sensitive to the amount and distribution of dark matter, it
also has the potential to probe the dark energy through its effect
on the growth of structure and distances (Hu & Tegmark 1999;
Huterer 2002; Hu 2002b; Takada & Jain 2004; Song & Knox
2004; Ishak 2005). Indeed, when combined with other cosmo-
logical probes, weak-lensing data already produce interesting
constraints on the dark energy (Jarvis et al. 2005).

By utilizing source galaxy redshifts to study the growth of
structure and the distance-redshift relation tomographically, sub-
stantially more dark energy information can be recovered (Hu
1999). In fact, future weak-lensing surveys such as PanSTARRS,1

Supernova/Acceleration Probe2 (SNAP; Aldering et al. 2004),
and Large Synoptic Survey Telescope3 (LSST) are expected to
impose constraints on dark energy that are comparable to those
from Type Ia supernovae (see, e.g., Refregier et al. 2004). In the
more near term, the Canada-France-Hawaii Telescope Legacy
Survey4 (CFHTLS) and the Dark Energy Survey5 are expected
to help bridge the gap between the current and ambitious future
surveys.

Powerful future surveys will require a much more stringent
control of the systematics. Recent work has addressed systematic
errors from the computation of the nonlinear power spectrum
(Vale & White 2003; White & Vale 2004; Heitmann et al. 2005;
Huterer & Takada 2005; Hagan et al. 2005), baryonic cooling
and pressure forces on the distribution of large-scale structures
(White 2004; Zhan & Knox 2004), approximations in inferring
the shear from the maps (Dodelson & Zhang 2005;White 2005),
and the presence of dust (Vale et al. 2004). Such studies have
stimulated work on how to improve the point-spread function
(PSF) reconstruction (Jarvis & Jain 2004), estimate shear from
noisy maps (Bernstein & Jarvis 2002; Hirata & Seljak 2003;
Hoekstra 2004), and protect against the small-scale biases in the
power spectrum (Huterer & White 2005).

In this work we consider the effect of errors in photometric
redshifts of source galaxies on weak-lensing tomography. Of
course, the total number of galaxies, which is currently in the
millions and might be in the billions with future surveys, is too
large for spectroscopic measurements to be feasible. One there-
fore needs to rely on the photometric redshifts whose accuracy
with the current state of the art in photometry, algorithms, galaxy
classification, etc., while presently adequate, may not be suffi-
cient for future surveys that are expected to have very small
statistical errors. Uncertain photometric redshifts blur the tomo-
graphic bin divisions of source galaxies. In the extreme case
when photometric redshift errors are comparable to the width
of the distribution itself, one completely loses tomographic in-
formation, degrading the cosmological parameter accuracies by
up to an order of magnitude.

In this paper we study how the photometric redshift uncer-
tainties affect cosmological parameter determinations. We con-
struct an explicit mapping between the photometric and true
redshifts and parameterize it to allow an arbitrary evolution of
the bias and scatter between discrete redshift intervals. We then
study how accurately the photometric redshifts need to be known
a priori and, in particular, which details of the photometric redshift
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1 See http://pan-starrs.ifa.hawaii.edu.
2 See http://snap.lbl.gov.
3 See http://www.lsst.org.
4 See http://www.cfht.hawaii.edu/Science/CFHLS.
5 See http://cosmology.astro.uiuc.edu/DES.
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error distribution are the main source of degeneracy with cos-
mological parameters. We hope that this study will help stim-
ulate work on assessing and improving existing algorithms for
photometric redshift estimation (e.g., C. E. Cunha et al. 2005, in
preparation).

The outline of the paper is as follows. In x 2 we introduce
the formalism and parameterizations of both cosmology and
photometric redshift errors. We explore the loss of lensing infor-
mation on the dark energy to photometric redshift uncertainties
in x 3. We show how this lost information is regained as we
impose prior knowledge of the photometric redshift parameters
in x 4. We discuss our results and conclude in x 5.

2. METHODOLOGY

In this section we discuss the modeling of the photometric
redshift distribution. We then illustrate the flexibility of this de-
scription through two different fiducial models for the distribu-
tion. Finally, we discuss its relationship to lensing observables
and the Fisher formalism for addressing its impact on parameter
estimation.

2.1. Photo-z Distribution

Having only the photometric redshift (‘‘photo-z’’) of the source
galaxies at hand, the observer will necessarily bin the galaxies by
their photometric redshifts zph rather than true (spectroscopic)
redshifts z. With a probability distribution p(zphjz) in zph at a
given z, the true redshift distributions of the bins necessarily
overlap.

In general, this distribution can vary arbitrarily with z. The
true distribution of galaxies ni (z) that fall in the ith photo-z bin
with z

(i )
ph < zph < z

(iþ1)
ph

becomes

ni zð Þ ¼
Z z

iþ1ð Þ
ph

z
ið Þ
ph

dzph n zð Þp zphjz
� �

: ð1Þ

Here n(z) ¼ d 2N /dz d� is the overall galaxy redshift distribu-
tion and is chosen to have the form

n zð Þ / z� exp � z=z0ð Þ�
h i

: ð2Þ

Unless otherwise stated, we adopt � ¼ 2, � ¼ 2 and fix z0 such
that median redshift is zmed ¼ 1. The total number of galaxies
per steradian

nA ¼
Z 1

0

dz n(z) ð3Þ

fixes the normalization, and we analogously define

nA
i ¼

Z 1

0

dz ni(z) ð4Þ

for the bins.
By construction, the sum of the individual distributions equals

the total �ini(z) ¼ n(z). Therefore, regardless of how compli-
cated the photo-z probability distribution gets and hence the red-
shift distributions of the tomographic bins, the total distribution
of galaxies n(z) is unchanged.

This construction cleanly separates uncertainties due to the
photometric redshifts of the individual survey galaxies charac-
terized by p(zphjz) from uncertainties in the redshift distribution
of the underlying total distribution of galaxies n(z). We mainly

consider the former in this work but comment on the latter in x 5
(see also Huterer et al. 2005; Ishak &Hirata 2005). The rationale
is that even without any knowledge of the photo-z’s of the survey
galaxies themselves, one can at least bin all of the galaxies to-
gether assuming that the underlying redshift distribution or se-
lection function of the survey is known. In practice, this means
that one must obtain information about the underlying distri-
bution from an independent source (say, another survey through
a study of the luminosity function) or from a fair subsample of
survey galaxies with spectroscopic redshifts.

2.2. Photo-z Models

Any photo-z model may be described by providing a function
for the distribution of photometric redshifts given the true red-
shift, p(zphjz). For the purposes of this paper we take the simpli-
fying assumption that this function is a Gaussian at each redshift,
i.e.,

p zphjz
� �

¼ 1ffiffiffiffiffiffi
2�

p
�z

exp �
z� zph � zbias
� �2

2�2
z

" #
: ð5Þ

However, we allow the bias zbias(z) and scatter �z(z) to be ar-
bitrary functions of redshift. The redshift distribution of the
tomographic bins defined by equation (1) can then be written as

ni zð Þ ¼ 1
2
n zð Þ erf xiþ1ð Þ� erf xið Þ½ �; ð6Þ

with

xi � z
ið Þ
ph � zþ zbias

� �
=

ffiffiffi
2

p
�z; ð7Þ

where erf (x) is the error function.
TheGaussian assumption is not as restrictive as itmight naively

seem. By allowing the bias and scatter to be arbitrary functions of
redshift, one can obtain arbitrarily complex redshift distributions
in the tomographic bins through equation (1). In fact, the mapping
is in principle completely general for finite bins and a smooth
underlying distribution. Galaxies in a finite range of redshift over
which the distribution is nearly constant can then be mapped to
any zph.
In practice we represent the free functions zbias(z) and �z (z)

with a discrete set ofNpz photo-z parameters. They represent the
values of the functions at z� that are equally spaced from z ¼ 0
to 3. To evaluate the functions at an arbitrary redshift, we take a
linear interpolation of the discrete parameters in redshift.
While a finite Npz does restrict the form of the distribution, it

still allows radically different redshift distributions given the same
tomographic bins. For example, consider two different photo-z
models:

1. Model I: zbias(z) ¼ 0; �z(z) ¼ 0:05(1þ z).
2. Model II: zbias(z) ¼ 0; �z(z) ¼ 0:2 for z < 1:0 and �z(z) ¼

0:5 for z > 1:0.

The distribution p(zphjz) is illustrated in Figure 1 for Npz ¼ 31
through the 1 � scatter region. The resulting redshift distribu-
tions for Ndiv ¼ 5 tomographic bins are shown in Figure 2. These
specific choices of Npz and Ndiv are motivated in x 3.
Model II demonstrates that sharp changes in the Gaussian

photometric parameters canmap neighboring galaxies in redshift
to quite different tomographic bins. The redshift distributions of
the bins can thus have features that are sharper than the assumed
scatter. Additionally, photo-z degeneracies that take two distinct
spectroscopic redshift ranges into a single photometric redshift
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and lead to bimodality in the binned distribution can be modeled
by a large zbias. Finally, galaxy types with different photo-z dis-
tribution at a given redshift can be approximated by discontin-
uous jumps between infinitesimally spaced redshift bins. Such
considerations, while potentially important, are beyond the scope
of this work.

In summary, allowing our set of parameters to freely vary, one
can access a wide range of tomographic redshift distributions.
Uncertainty in these parameters will then cause uncertainties in
tomographic dark energy determinations.

2.3. Lensing Observables

The convergence power spectrum at a fixedmultipole l and for
the ith and j th tomographic bin P�

ij(l ) is given by (Kaiser 1992,
1998)

nA
i n

A
j P

�
ij lð Þ ¼

Z 1

0

dzWi zð ÞWj zð Þ H zð Þ
D2 zð Þ P kl; zð Þ; ð8Þ

where H(z) is the Hubble parameter and D(z) is the angular
diameter distance in comoving coordinates. P(kl; z) is the three-
dimensional matter power spectrum and kl ¼ l/D(z) is the wave-
number that projects onto the multipole l at redshift z. The weights
W are given by

Wi zð Þ ¼ 3

2
�m

H 2
0D zð Þ
H zð Þ 1þ zð Þ

Z 1

z

dz0 ni z
0ð Þ DLS z; z0ð Þ

D z0ð Þ ; ð9Þ

where DLS(z; z0) is the angular diameter distance between the
two redshifts. The power spectrum is computed from the transfer

function of Eisenstein & Hu (1999) with dark energy mod-
ifications from Hu (2002a) and the nonlinear fitting function of
Peacock & Dodds (1996).

With tomographic binning, the number-weighted power spec-
trum nA

i n
A
jP

�
ij and not P�

ij is the fundamental observable. Even
given photometric redshift uncertainties in the binning, it is al-
ways possible to recover the total weighted power spectrum
(Hu 1999)

nA
� �2

P� ¼
XNdiv

i; j¼1

nA
i n

A
j P

�
ij ; ð10Þ

since the weighting is based on the observed nA
i . By treating

nA
i n

A
j P

�
ij as the observable, one guarantees that the addition of

photo-z estimates for the individual galaxies can only add in-
formation. This would not be true if P�

ij were taken as the only
observable quantity. Given that changes in photo-z parameters
induce changes in nA

i , the binned power spectra P
�
ij do not con-

tain enough information to weight the power spectra and re-
cover the total P�.

That the binned angular number densities nA
i are observed

quantities also implies that there is additional direct information
on the photo-z parameters that does not depend on shear mea-
surements. For example, a high fraction of galaxies in bins with
zph larger than the median redshift would imply a large photo-z
bias. We choose not to consider this sort of information since
it is not directly related to lensing. Furthermore, for the small
changes in nA

i that we will typically be considering, the sample
variance between the observed nA

i and that predicted by the
underlying redshift distribution and the photo-z parameters
cannot be ignored (Hu & Kravtsov 2003). Therefore, we con-
sider the number-weighted power spectra nA

i n
A
j P

�
ij as the fun-

damental lensing observables.

2.4. Fisher Matrix

The Fisher matrix quantifies the information contained in the
lensing observables

Oa¼i i�1ð Þ=2þj lð Þ ¼ nA
i n

A
j P

�
ij lð Þ i � jð Þ ð11Þ

Fig. 1.—Parameterization of the photo-z distribution and two illustrative fi-
ducial models. The distribution spreads galaxies at a given redshift z into a
distribution in zph characterized here by a bias zbias and a scatter �z whose evo-
lution is parameterized by interpolating their values at Npz redshifts z�. In both
models zbias ¼ 0, whereas �z, given in x 2.2, is illustrated here formodel I (shaded
region) and model II (dashed lines) as 1 � bands. Galaxies binned according to
their photometric redshifts (Ndiv horizontal bands) then have overlapping redshift
distributions determined by the 2Npz photo-z parameters. [See the electronic
edition of the Journal for a color version of this figure.]

Fig. 2.—Source galaxy redshift distribution n(z). Top: Photo-z model I.
Bottom: Photo-z model II. The solid line is the overall galaxy distribution de-
fined in eq. (2). The other lines are the true (spectroscopic) distributions that
correspond to the sharp divisions in photo-z space (denoted by dotted vertical
lines). [See the electronic edition of the Journal for a color version of this figure.]
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on a set of cosmological and photo-z parameters p�. Under the
approximation that the shear fields are Gaussian out to lmax, the
Fisher matrix is given by

F�� ¼
Xlmax

l¼2

2l þ 1ð Þ fsky
X
ab

@Oa

@p�
C�1
� �

ab

@Ob

@p�
; ð12Þ

so that the errors on the parameters are given by�p� ¼ ½F�1�1=2�� .
Given shot and Gaussian sample variance, the covariance

matrix of the observables becomes

Cab ¼ nA
i n

A
j n

A
k n

A
l Ptot

ik P
tot
jl þ Ptot

il P
tot
jk

� �
; ð13Þ

where a ¼ i(i� 1)/2þ j, b ¼ k(k � 1)/2þ l. The total power
spectrum is given by

Ptot
ij ¼ P�

ij þ �ij
	 2
int

nA
i

; ð14Þ

where 	int is the rms shear error per galaxy per component
contributed by intrinsic ellipticity and measurement error. For
illustrative purposes we use lmax ¼ 3000, fsky corresponding
to 4000 deg2, n̄A corresponding to 55 galaxies arcmin�2, and
	int ¼ 0:4. The value of lmax is motivated by simulations that
find substantial deviations from Gaussianity and weak-lensing
approximations on arcminute scales (White & Hu 2000; Vale &
White 2003). For our choice of noise parameters above, the
results are insensitive to lmax since the measurements are noise
dominated on those scales.

For the cosmological parameters, we consider four parame-
ters that affect the matter power spectrum: the physical matter
density �mh

2 (=0.14), physical baryon density �bh
2 (=0.024),

tilt ns (=1), and the amplitude �
 (=5:07 ; 10
�5; or A ¼ 0:933;

Spergel et al. 2003). Values in parentheses are those of the fidu-
cial model. Unless otherwise stated, we take priors on these four
parameters of � ln�mh

2 ¼ � ln�bh
2 ¼ � ln �
 ¼ �ns ¼ 0:05.

These priors represent only a modest improvement over current
determinations. Our results on the relative degradation in con-
straints caused by photo-z errors are insensitive to reasonable
variations in this choice.

To these four cosmological parameters, we add either two
or three dark energy parameters: the dark energy density �DE

(=0.73), its equation of state today w0 ¼ pDE/�DEjz¼0 (=�1),
and optionally its derivative wa ¼ �dw/dajz¼0 (=0) assuming a
linear evolution with the scale factor w ¼ w0 þ (1� a)wa.

Note that throughout this paper our notational convention is Latin
indices for tomographic bins and Greek indices for parameters.

3. DARK ENERGY INFORMATION LOSS

In this section we consider the nature of the tomographic infor-
mation on the dark energy and its loss to photo-z uncertainties.We
establish the maximal information that can be gained through
tomographic redshift divisions for a given dark energy parame-
terization. We then determine the number of photo-z degrees of
freedom that would be required to lose this information. This
loss of information is caused by a degeneracy between cos-
mological and photo-z parameters. We explicitly construct an
example of this degeneracy as both an illustration and test of our
statistical methodology.

3.1. Maximal Information and Ndiv

For any given choice of dark energy parameterization, the
information contained in lensing will saturate with some finite

number of tomographic bins Ndiv (Hu 1999). Since the broad
lensing kernel of equation (9) makes the shear for neighboring
source redshifts highly correlated, most of the information is
contained in a few coarse bins. The exact number depends on
the type of information that is to be extracted. Roughly speak-
ing, the number of bins should exceed the number of dark en-
ergy parameters.
Figure 3 (lines) quantifies this expectation through improve-

ment in the errors on dark energy parameters as a function of
Ndiv for model I. For a two-parameter dark energy space {w0,
�DE}, Ndiv ¼ 3 divisions equally spaced from z ¼ 0 to 3 are
enough for the improvements in w0 to saturate. For a three-
parameter dark energy space {w0, wa, �DE}, Ndiv ¼ 4 divisions
are sufficient for wa. Note that Ndiv ¼ 1 corresponds to no to-
mography or no photo-z information on the individual galaxies.
The dark energy parameters that are not shown in Figure 3 be-
have similarly. In what follows we conservatively adopt Ndiv ¼
5 as sufficient to extract the dark energy information. With
Ndiv ¼ 5 and photo-z parameters fixed, the constraints on dark
energy parameters are shown in Table 1.
Note that improvements relative to the no-tomography case

are more significant in the larger parameter space. This is due to
the fact that w0 is nearly degenerate with wa since lensing mainly
constrains w(z) at some intermediate redshift (see below). Even
the small amount of information in the fine-binned tomography
assists the breaking of the degeneracy.

3.2. Maximal Degradation and Npz

Next we choose the number of photo-z parameters Npz that
describe each of the functions zbias(z) and �z (z). We seek to allow
enough freedom in the photo-z parameters so that in the absence
of prior information on their values all of the tomographic in-
formation is lost. Because the limit of no tomographic informa-
tion corresponds to Ndiv ¼ 1, we have a quantitative means of
assessing the minimal Npz. When Npz becomes large enough, the
variations in redshift, which act on the characteristic scale of

Fig. 3.—Relative errors in dark energy parameters as a function of the
number of tomographic divisions Ndiv. Solid lines correspond to wa for the set
{w0, wa, �DE}; dashed lines to w0 for {w0, �DE}. Both lines assume that all
photo-z parameters are perfectly known (i.e., fixed). Note that the results
converge at smaller Ndiv for a smaller dark energy space and that Ndiv ¼ 5
is more than sufficient in either case. The symbols correspond to the same
cases, but now with 2Npz ¼ 62 photo-z parameters marginalized (photo-z
priors of ��z ¼ �zbias ¼ 10 are applied). Here essentially all tomographic
information is lost so that the errors are comparable to those of Ndiv ¼ 1 or no
tomography. [See the electronic edition of the Journal for a color version of
this figure.]
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�z ¼ 3:0/(Npz � 1), are rapid enough that they do not mimic any
variation in cosmological parameters.

Figure 4 shows the degradation in the errors on wa for the
cases of Npz ¼ 6, 11, 21, 31, and 61 as a function of the prior on
the photo-z parameters. Results for w0 are similar. To compare
priors for different Npz values, we have here rescaled the indi-
vidual parameter priors by (Npz /31)

1=2 so as to be equal for a
fixed redshift interval �z ¼ 0:1. The results have converged
with Npz � 21. To be conservative, in the rest of this paper we
use Npz ¼ 31, or a total of 62 photo-z parameters.

The impact of this choice ofNpz ¼ 31 as a function ofNdiv for
dark energy parameters is shown in Figure 3 (symbols). For all
Ndiv, these constraints match those with no tomographic bin-
ning very well, showing that without prior information on the
photo-z parameters all tomographic information has been effec-
tively destroyed and we recover the case with a single redshift
division. The small discrepancy comes from the inadequacies in
the Fisher matrix, one of which is the local approximation to the
parameter errors, as we discuss in the next section.

3.3. Photo-z–Dark Energy Degeneracy

With a sufficient number of unknown photo-z parameters
2Npzk 62, the Fisher matrix results of the previous section imply
that dark energy information in tomography is completely lost.
This fact implies that there is a nearly perfect degeneracy between
photo-z, dark energy, and other cosmological parameters. Here we
examine that aspect of the degeneracy that involves the photo-z
and dark energy parameters only. This degeneracy alone suf-
fices to destroy most of the tomographic information and will
remain even if the other cosmological parameters are perfectly
measured from other sources.

Constructed from parameter derivatives, the Fisher matrix is a
local expression of the degeneracy in parameter space. Because
the Fishermatrix results imply that the degeneracy persists to large
changes in the dark energy parameters, it is important to assess
the extent of the degeneracy more directly and test the validity of
the Fisher approximation. If the degeneracy relation ‘‘curves’’
in parameter space, the Fisher approximation will only find the
local tangent.

We start by identifying this local tangent with the Fisher ma-
trix. To isolate the degeneracy between dark energy and photo-z
parameters, we eliminate the other cosmological parameters,
formally by adding strong priors to the Fisher matrix. For nu-
merical reasons we also add a weak prior on photo-z parameters
(�zbias ¼ ��z ¼ 1) to control numerical errors from the nearly
singular Fisher matrix. Of the eigenvectors of this Fisher matrix
that involve the dark energy, those with the smallest eigenvalues
will be responsible for most of the photo-z dark energy degen-
eracy. We find that a single linear combination of parameters
(dark energy and photo-z) contributes most (�98%) of the errors
in dark energy parameters w0 and wa. Thus, the degeneracy is
essentially one-dimensional in the multidimensional parameter
space. Let us call this direction, or the eigenvector of the Fisher
matrix, ew.

The true extent of the degeneracy is quantified by the change
in �2 between the fiducial model p� and a trial model p̃�,

��2
true ¼

Xlmax

l¼2

2l þ 1ð Þ fsky
X
ab

Oa l; p�
� �

� Oa l; p̃�
� �� �

; C�1
� �

ab
Ob l; p�

� �
� Ob l; p̃�

� �� �
: ð15Þ

If the Fishermatrix approximationwere valid out to, say, 1� along
the degeneracy, then the trial model p̃� ¼ p� þ �wew, where ��2

w

is the eigenvalue corresponding to ew, would be separated by

��2
F ¼ �2

we
T
wFew ¼ 1; ð16Þ

due to the orthonormality of the eigenvectors. In practice,
��2

true ¼ 857 for this extrapolation, indicating a curvature in
the degeneracy direction. In other words, p� and p̃� are highly
distinguishable models in spite of the Fisher prediction that they
are indistinguishable.

Even given curvature in the degeneracy direction, the Fisher
approximation remains useful if it accurately predicts the extent
of the degeneracy. This is especially true if the curvature lies
mainly in the photo-z nuisance parameters, which exist only to
be marginalized. To assess the extent of the degeneracy, we use
the Fisher matrix as a local approximation of the degeneracy
with the following procedure. Starting at the fiducial model,
calculate the Fisher matrix and find ew as defined above, then
take a small step along the ew direction. Now calculate the
Fisher matrix at the new point, find the new ew, and take another
small step along this new direction. Repeat. The smallness of
the steps is controlled such that the change of �2 between steps
agrees within 10%with that predicted by the Fisher matrix. This
10% error may add up to a much bigger percentage after a few
steps. To make sure that we stay on the degeneracy direction,
local minimum of ��2

true is searched after a few steps out.
From this construction we find that the extent of the degen-

eracy in w is accurately predicted by the Fisher matrix. Figure 5
shows that the model with��2

F ¼ 1 (thick dashed line) is almost
identical to the model with ��2

true ¼ 1 (thick solid line) in w(z).

TABLE 1

Baseline Constraints on Dark Energy Parameters

Photo-z Model Parameters �(�DE) �(w0) �(wa)

I .............................. {�DE, w0} 0.0062 0.061 . . .

{�DE, w0, wa} 0.024 0.25 0.69

II ............................. {�DE, w0} 0.0073 0.070 . . .

{�DE, w0, wa} 0.034 0.36 0.96

Fig. 4.—Error degradations in wa (that is, errors in wa relative to the error
with perfect knowledge of photo-z parameters) as a function of the photo-z prior.
The photo-z priors are rescaled by a factor of (Npz/31)

1=2 so that they reflect
constraints per �z ¼ 0:1 independently ofNpz. Different lines from top to bottom
correspond to different Npz: 61 (short-dashed line), 31 (solid line), 21 (double-
dot–dashed line), 11 (dot-dashed line), and 6 (long-dashed line). Note that the
results have converged with Npz � 21; we use Npz ¼ 31 just to be conservative.
[See the electronic edition of the Journal for a color version of this figure.]
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In Figure 5 we also show intermediate models along the de-
generacy with��2

true < 1. That they all pass through essentially
a single point in w(z) space is another indication that the degen-
erate direction lies almost entirely along a specific linear com-
bination of dark energy parameters as predicted by the Fisher
matrix. The curvature in parameter space mainly involves the
photo-z parameters.

The redshift at which these lines intersect is z � 0:7, and at
this redshift measurements ofw are essentially immune to photo-
metric redshift errors. This immunity reflects the fact that even
without tomography lensing can constrain the equation of state at
some effective redshift. With two parameters to describe w(z),
there is only one remaining linear combination to be affected by
photometric redshifts. With a more general parameterization of
w(z) we expect that there will be multiple degenerate directions
with roughly the same single aspect of w(z) preserved.

Furthermore, the two estimates (true and Fisher) agree on the
amplitude of the photo-z parameter variation along the degen-
erate direction. For example, as shown in Figure 6, at a point
along the ew direction that is 1 � away from the fiducial model,
the Fisher matrix indicates that the photo-z parameters changed
by �zbias < 0:06 and ��z < 0:07, while the actual bounds on the
variations are �zbias < 0:04 and ��z < 0:07. Note that these
changes are fairly small and imply that subtle variations in the
redshift distributions for the tomographic bins are responsible
for a degeneracy that degrades errors inw0 andwa by an order of
magnitude. Figure 6 also shows the difference between these
distributions for��2

true ¼ 1.We expect that with a change in the
photo-zmodel, the specific photo-z variations that establish this
degeneracy will change, but a strong degeneracy will remain.

In summary, we find that the Fisher matrix is an adequate tool
for assessing the existence and extent of degeneracies between
photo-z and dark energy parameters. It should not, however, be
used to infer the specific changes in the photo-z parameters that
establish the degeneracy.

4. PHOTO-z INFORMATION RECOVERY

In the previous section we established the existence of a de-
generacy between photo-z parameters and dark energy parame-

ters and tested the validity of the local Fisher matrix approx-
imation to this degeneracy. In this section we use the Fishermatrix
formalism to investigate the extent to which prior information
on the photo-z distributions helps recover the tomographic dark
energy information. We assume 2Npz ¼ 62 photo-z parameters
andNdiv ¼ 5 tomographic bins throughout this section (see x 3).

4.1. Photo-z Priors

Wenow explore the effect on dark energy parameter constraints
of priors on each of the photo-z parameters zbias(z�) and �z(z�).
For simplicity, we begin by applying a redshift-independent prior
on the parameters. In practice, parameters controlling the dis-
tributions well above and well below the median redshift require
weaker priors. We discuss this point in x 4.3.
Figure 7 shows the error degradation in w0 assuming the {w0,

�DE} parameterization (left panel ) and wa assuming the {w0,wa,
�DE} parameterization (right panel ). For reference the baseline
errors for the fiducial survey are listed in Table 1.
As in the previous section where other cosmological param-

eters were artificially fixed, we find that the larger dark energy
parameter space is more susceptible to photo-z errors. For ex-
ample, for the extreme case of no photo-z information, i.e., very
weak priors on both bias and scatter parameters, dark energy
parameters of the {w0, �DE} parameterization are degraded by
about a factor of 2 while those of {w0,wa,�DE} parameterization
are degraded by about a factor of 10.
In the more relevant case where we demand that the dark

energy error degradation be no larger than 1.5, the requirement
per photo-z parameter is about 0.01 for {w0,�DE} and 0.003 for
the {w0, wa, �DE} parameterization. Figure 7 also shows that
both bias and scatter parameters are important and that knowledge

Fig. 5.—Equations of state of dark energy w(z) that are degenerate with
photo-z parameters. Solid lines show a series of degenerate models stepping out
by�w0 ¼ 0:2 and ending at a model with�w0 ¼ 1:14, which deviates from the
fiducial model at +1 � for the fiducial survey. The tight correlation between w0

andwa along the degeneracy direction results in the tight ‘‘waist’’ or pivot where
w(z) remains well determined. The dashed line shows that the +1 � degenerate
model as predicted by the Fisher matrix is in good agreement with the true
degeneracy even out to large�w0. [See the electronic edition of the Journal for
a color version of this figure.]

Fig. 6.—Comparison of the fractional differences of the redshift distribution
�ni /n in each of the i ¼ 1, : : : , 5 tomographic bins that establishes the 1 � de-
generacy with dark energy parameters of an extent �w0 � 1. Also shown are the
changes in the two sets of discrete photo-z parameters �pz ¼ (��z; �zbias) that
cause these differences, connected by lines to guide the eye. Top: Fisher approxi-
mation for the 1 � degeneracy. Bottom: True degeneracy. [See the electronic edition
of the Journal for a color version of this figure.]
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of the bias is only slightly more important than that of the scatter.
Furthermore, dark energy parameters that are not shown in
Figure 7 have very similar requirements to those plotted in either
parameterization.

4.2. Dependence on Fiducial Model

The results above are for a specific choice of the fiducial
model for the photo-z distribution and survey. To explore the
dependence on the former, we take the very different photo-z
model II, where the scatter is substantially larger and jumps
discontinuously in redshift. Even so, the requirements on the
photo-z parameters are very similar; see Figure 8. In particular,
within the interesting regime where the photo-z prior is smaller
than unity and the degradation in dark energy parameter errors
is a factor of a few or lower, the two models agree very well.

On the other hand, photo-z requirements do depend on the
parameters fsky, 	int , and nA that determine the level of sample
and noise variance in the survey. The trend is that the more ambi-
tious the survey, the more stringent the requirements on photo-z

parameters. The scaling for the priors on photo-z parameters can
roughly be described as

�p fsky; 	int; nA; d
� �

�p 0:1; 0:4; 55; 1:5ð Þ ¼
g dð Þ
g 1:5ð Þ

ffiffiffiffiffiffiffi
0:1

fsky

s
1þC

	2
int

0:16

55

nA
� 1

� 	
 �
;

ð17Þ

where �p ¼ �zbias ¼ ��z gives the photo-z priors and nA is
in units of arcmin�2. Here g (d ) ¼ �p(0:1; 0:4; 55; d ) scales
the prior requirement to alternate levels of degradation d ; it is
shown in Figure 8 as d (g) and is only weakly dependent on the
fiducial photo-z model. With the best fit C ¼ 0:6 this scaling is
good up to a factor of 2 for any reasonable set of survey parameters.

Finally, the photo-z precision requirement is not very sensitive
to zmed, the median source redshift of the survey. For 0:68 <
zmed < 1:3, �p varies by less than 40%.

4.3. Training Set Size

The priors on the photo-z parameters ultimately require a train-
ing set of galaxies with measured spectroscopic redshifts. Opera-
tionally suppose that a photo-z training set has N�

spec spectroscopic
redshifts per redshift interval determined by Npz (here �z ¼ 0:1).

Given a Gaussian distribution for the photo-z distribution and
a fair sample of spectroscopic galaxies selected from this dis-
tribution, the training set would independently determine the
bias and scatter to

�zbias z�
� �

¼ �z z�
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=N�
spec

q
;

��z z�
� �

¼ �z z�
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=N�
spec

q
: ð18Þ

For a fixed dark energy degradation, N�
spec depends on two

things: the fiducial �z and the required prior as scaled from
equation (17). Since the photo-z prior requirement is roughly
independent of �z as shown in Figure 8, the larger the scatter, the
larger the required training set. Note that Nspec (�

P
�N

�
spec ) is

robust to changes in the number of photo-z parameters or �z. For
example, a binning of �z ¼ 0:05 would imply twice as many
photo-z parameters that would need to be constrained a factor offfiffiffi
2

p
less well, yielding the same requirement on Nspec.

For determining the redshift extent of the training set, it is
important to go beyond our simple redshift independent prior.

Fig. 7.—Error degradations for constant w0 (left) and those for wawhen both
w0 and wa are varied (right), as a function of photo-z parameter priors. Here the
degradations are defined as actual errors relative to errors that assume the photo-z
parameters to be perfectly known. Priors on the photo-z parameters zbias(z�) and
�z(z�) are shown on the x-axis and y-axis, respectively. Fiducial photo-zmodel I is
assumed and the photo-z parameter spacing in redshift is �z ¼ 0:1.

Fig. 8.—Comparison of the photo-z requirements for our two fiducial photo-z
models. The solid line shows the degradations for model I, while the dashed line
corresponds to model II. The fiducial errors inwawhen the photo-z’s are perfectly
known are �0(wa) ¼ 0:69 (model I) and 0.96 (model II).

Fig. 9.—Cumulative requirement of Nspec for 1.5 dark energy error degra-
dation. The corresponding photo-z prior templates are shown in Fig. 10 with the
dashed line as the flat prior and the solid line as the weighted prior.
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Figure 9 shows the cumulative Nspec(>z) required for 1.5 deg-
radation in dark energy. Notice that this flat prior assumption
would require a substantial number of galaxies across the whole
redshift range (105), including 8 ; 104 galaxies above z ¼ 1:5.
This number is artificially high since the actual requirements
on the prior fall sharply away from the median redshift of the
distribution.

To illustrate the difference, we constructed aweighted template
of how the bias and scatter priors vary with redshift to produce a
fixed degradation in dark energy parameters. We choose a simple
power law of n̄i, which is the number of galaxies in each redshift
interval (�z ¼ 0:1 for the fiducial choice of Npz ¼ 31) corre-
sponding to the photo-z parameters. At z < 1:2, the power is
chosen as�1. To account for the difficulty in measuring redshifts
at z > 1:5 from optical bands, we steepen the index to �3 for
z > 1:2. Figure 10 compares the flat prior to the weighted one.
The requirement for the weighted one drops to a total of 4 ; 104,
but more importantly only 300 at z > 1:5.

For dark energy degradations other than 1.5, we provide in
Figure 11 the ratio of Nspec for an arbitrary dark energy degra-
dation to that of 1.5 degradation. In order to find out the Nspec

requirement for any dark energy degradation, all one needs to do

is to look up the ratio in Figure 11 and multiply it by the Nspec in
Figure 9.
We have tested that the scaling relation to surveys with dif-

ferent fiducial parameters of equation (17) works equally well
for both the flat and weighted priors. Using the scaling relation,
the requirement of Nspec could be scaled to different surveys
easily.

4.4. Mean versus Median

We now estimate the amount of information that comes
from knowing the median or mean of the redshift distribution of
source galaxies in each tomographic bin. Note that this is dis-
tinct from priors on the photo-z bias or mean photo-z at a given
redshift. This question is interesting in its own right, but also
because other work, parallel to this (Huterer et al. 2005), has
parameterized the photo-z uncertainty by the centroids of the
tomographic bins, which when varied shift the overall distri-
bution of the corresponding tomographic bin. While one intu-
itively expects that the centroid of the photo-z bin (or more
generally its mean) carries the most information, we now have
the tools to precisely examine the relative contribution of the
mean relative to that of the higher moments.
Figure 12 shows degradations of the error in wa as a function

of priors on the mean or median of the tomographic bins. All
of the photo-z parameters are given a weak prior of unity for
numerical stability. A prior of 10�3 on the mean is enough to
render the mean essentially precisely known. But the dark en-
ergy degradation is still a factor of 2 even with perfect mean
measurements showing that there remains information lost to
the higher moments of the distribution.
Similarly, while the mean of the tomographic distribution

does carry the majority of the information, the median carries sig-
nificantly less (see Fig. 12). The reason is that the mean has extra
information about the tails of the redshift space distribution while
the median does not. This sensitivity to the tails will make ob-
taining precise measurements of the mean difficult. One still re-
quires a fair sample from each of the tomographic redshift bins
extending to high redshift. In the end,mean priors require a similar
number of training set galaxies as above.

5. DISCUSSION

We have performed a systematic study of the effects of im-
perfect photometric redshifts on weak-lensing tomography. De-
scribing the photo-z distribution with a bias and scatter that can

Fig. 10.—Photo-z prior templates of how the bias and scatter priors vary with
redshift to produce a fixed error degradation in dark energy parameters. The
degradation on wa is 1.5. The dashed line is the flat template used in Fig. 7. The
solid line is the weighted template constructed according to the galaxy number
density. At z < 1:2 the line follows n̄�1

i , while at z > 1:2 the line follows n̄�3
i .

Here n̄i is the number of galaxies in each redshift interval �z ¼ 0:1.

Fig. 11.—Ratio of required Nspec for an arbitrary wa degradation relative to
that of 1.5 degradation for the two prior templates of Fig. 10.

Fig. 12.—Effect of the mean or median of tomography bins. Vertical axis is
dark energy error degradation. The solid line and the dashed line are for the case of
mean andmedian, respectively. Photo-z priors of��z ¼ �zbias ¼ 1 are assumed.
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vary arbitrarily between redshift intervals of �z ¼ 0:1, we studied
the degeneracies between photo-z and dark energy parameters,
as well as the resulting degradations in dark energy parameter
errors.

Not surprisingly, we find that there exist significant degener-
acies between the dark energy and photo-z parameters. Assum-
ing that the overall distribution of galaxies n(z) is independently
known and the photometric redshifts are used only for tomo-
graphic subdivision, we find that larger dark energy spaces suffer
more degeneracy with photo-z than the smaller ones.

Without any information on photo-z parameters, one recovers
the no-tomography casewhere errors on fiducial parameters are a
factor of 2 times worse (for the {w0, �DE} parameterization) or
10 times worse (for the {w0, wa, �DE} parameterization) than
those for the 10 bin tomography case with perfect photo-z’s.

For the fiducial survey, in order to have less than a factor of 1.5
degradation in dark energy parameter errors, the uncertainties of
photo-z parameters zbias and �z (defined in the redshift interval
�z ¼ 0:1) should each be controlled to better than 0.003–0.01,
depending again on the size of dark energy parameter space. We
provide a convenient approximation for scaling these require-
ments to different surveys. Importantly, no single number such as
the mean or median of galaxies in the tomographic bin captures
all of the effect of photo-z errors. That the mean captures more of
the information than the median indicates that the dark energy
information is sensitive to the tails of the distribution.

In order to achieve less than a factor of 1.5 degradation in the
evolution of the equation of state, a training set of a few times
104 galaxies with spectroscopic redshifts is required. Again, one
can easily rescale the number of galaxy requirements to differ-
ent surveys using our scaling relation.

There are several caveats to our assessment that merit future
study. Although our parameterization can handle photo-z de-
generacies, for example, from multiple galaxy types, that lead

to bimodality and catastrophic errors, we have limited our study
to fiducial models around which their effects are small. Such
effects will increase the required number of training set galax-
ies. Moreover, we have assumed that the parent redshift dis-
tribution of the survey is known and that photometric redshifts
are only employed to subdivide the galaxy sample for tomog-
raphy. Uncertainties in the parent distribution can further de-
grade dark energy determinations.

On the other hand, uncertainties in the parent distribution are
also constrained by the training set. If one assumes that n(z) is a
smooth function that is parameterized by relatively few param-
eters, uncertainties in the parent distribution should be smaller
than those of the tomographic bins. For illustrative purposes, if
we parameterize n(z) with the three parameters of equation (2),
we find that the constraint on n(z) from N�

spec is good enough to
have dark energy parameter errors differ by less than 10% from
the case where n(z) is fixed.

Given the current state-of-the-art of photo-z algorithms, as
well as expected improvements with multiwavelength obser-
vations of all source galaxies, prospects for sufficiently accurate
determination of photometric redshifts are bright. Nevertheless,
it will be an important and challenging task to achieve good
control of the photo-z accuracy for the specific types of galaxies
selected in lensing surveys and then propagate the remaining
photo-z errors into the final cosmological constraints.
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