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ABSTRACT
Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including
on small physical scales, where matter clustering is affected by baryonic physics in galaxies
and galaxy clusters, such as star formation, supernovae feedback, and active galactic nuclei
feedback. While muddying any cosmological information that is contained in small-scale
cosmic shear measurements, this does mean that cosmic shear has the potential to constrain
baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey
(DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales,
and using the Mead et al. (2015) halo model to account for baryonic feedback. While the SV
data has limited statistical power, we demonstrate using a simulated likelihood analysis that
the final DES data will have the statistical power to differentiate among baryonic feedback
scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic
shear measurements, presenting estimates of the size of several other systematic effects that
make inference from small scales difficult, including uncertainty in the modelling of intrinsic
alignment on non-linear scales, ‘lensing bias’, and shape measurement selection effects. For
the latter two, we make use of novel image simulations. While future cosmic shear data sets
have the statistical power to constrain baryonic feedback scenarios, there are several systematic
effects that require improved treatments, in order to make robust conclusions about baryonic
feedback.
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1 IN T RO D U C T I O N

The high galaxy number densities of typical weak lensing data sets,
and the subsequent large number of galaxy pairs with ∼arcminute
angular separation, make shear two-point correlations a powerful
probe of the density field on �1 Mpc physical scales, where den-
sity fluctuations are highly non-linear. The shear two-point signal
depends on the matter power spectrum, Pδ(k, z), which describes
statistically the two-point clustering of matter as a function of scale
(the physical wavevector, k) and redshift, z. We need to be able to
predict Pδ(k, z) accurately, given a set of cosmological parameters,
if we are to infer anything about those cosmological parameters.

For k � 0.1 h Mpc−1, N-body simulations are required to predict
the non-linear matter clustering. Epic computational demands come
from the requirement that the simulations are large enough to in-
clude the effects of large-scale power and subdue sampling variance,
and have sufficiently high resolution to reach the large k required to
make predictions of e.g. the small-scale cosmic shear signal (see e.g.
Heitmann et al. 2010 for discussion of the simulation requirements
for matter power spectrum prediction). To make predictions for a
range of different cosmological models, we require the simulations
to be re-run many times i.e. a suite of simulations is required. The
most advanced example of this sort of suite is the Extended Coy-
ote Universe simulations (Heitmann et al. 2014), which was used
to build a matter power spectrum emulator accurate to 5 per cent
up to k = 10 h Mpc−1 and z = 4. These types of simulations are
often called ‘dark matter only’ simulations, although ‘gravity-only’
would perhaps be more appropriate since they do have �b > 0,
but do not include the effects of non-gravitational physics. As we
discuss below, non-gravitational or ‘baryonic’ physics may have a
significant effect on the matter clustering on non-linear scales.

White (2004), Zhan & Knox (2004), and Huterer & Takada (2005)
first identified the potential of baryonic physics to contaminate the
cosmic shear signal, using simple theoretical models to predict sev-
eral percent changes in the shear power spectrum at multipoles
l � 1000. Jing et al. (2006), Rudd et al. (2008), Hearin & Zentner
(2009), Guillet, Teyssier & Colombi (2010), Casarini et al. (2012)
used hydrodynamic simulations to account for the many complex
baryonic processes such as active galactic nuclei (AGNs) feedback,
gas cooling, and supernovae feedback which affect the matter power
spectrum. Hydrodynamic simulations incorporate gas physics by
including fluid dynamics as well as gravity, and are consequently
more computationally expensive than gravity-only simulations. To
fully simulate the relevant baryonic physical processes would re-
quire far higher resolution than can currently be achieved for the
large volumes required for cosmology, so they are added using
‘sub-grid’ prescriptions. Since we have incomplete understanding
of these physical processes, these sub-grid prescriptions need to be
calibrated against observables. For example in the state-of-the-art
EAGLE simulations (Schaye et al. 2015; Crain et al. 2015), stel-
lar and AGNs feedback efficiency is calibrated to reproduce the
observed z ∼ 0 galaxy stellar mass function (GSMF). While this
guarantees that the feedback implementation is accurate in its effect
on the z ∼ 0 GSMF, it does not guarantee the feedback implementa-
tion is accurate in its effect on e.g. the z ∼ 1 GSMF or the non-linear
matter power spectrum. One might conclude that although hydro-
dynamic simulations can give us indications of the size and scale
dependence of baryonic effects on the matter power spectrum, they
are not yet sufficiently advanced to make predictions at the level of
accuracy required for precision cosmology.

Various works have made use of the overwhelmingly large sim-
ulations (OWLS, Schaye et al. 2010), a suite of hydrodynamic

simulations incorporating a variety of baryonic physics scenarios,
for assessing the possible impact of baryonic physics on cosmic
shear. van Daalen et al. (2011) measure matter power spectra from
the different OWLS simulations which Semboloni et al. (2011)
propagate to the shear two-point functions, finding deviations from
the dark matter only case as large as 10–20 per cent for shear corre-
lation functions ξ+(θ = 1 arcmin) and ξ−(θ = 10 arcmin).

Most previous cosmic shear studies have either ignored bary-
onic effects or discarded small scales from their analysis to re-
duce any potential bias from baryonic effects (see e.g. Kitching
et al. 2014; MacCrann et al. 2015 for the latter approach). Recently
however, Joudaki et al. (2016) performed a tomographic analysis
of the CFHTLenS (Heymans et al. 2012) data, and marginalized
over the possible baryonic feedback on the matter power spectrum,
using a one free parameter version of the Mead et al. (2015) halo
model (see Section 3 for further details). Unlike this work, their
aim is to investigate the much discussed (e.g. Planck Collaboration
XVI 2013; Battye & Moss 2014; MacCrann et al. 2015) tension
with the Planck cosmic microwave background (CMB) constraints,
rather than attempting to differentiate baryonic feedback scenarios,
and they do not report constraints on baryonic feedback models.

Kitching et al. (2016) also investigate the tension between
CFHTLenS and Planck by fixing the cosmological parameters to
best-fitting values from Planck Collaboration XIII (2016b), and
constraining various weak lensing nuisance parameters using the
CFHTLenS data, including those sensitive to baryonic effects and
intrinsic alignments. When allowing a free intrinsic alignment am-
plitude, they demonstrate a weak preference for a decrement in the
matter power spectrum at small scales (compared to the no-baryonic
feedback prediction), but no significant evidence for baryonic feed-
back. Harnois-Déraps et al. (2015) also use the CFHTLenS data to
investigate baryonic feedback by fixing the cosmological parame-
ters to best-fitting WMAP9 (Hinshaw et al. 2013) values, and con-
straining a 15 free parameter fitting formula describing deviations
in the matter power spectrum due to baryonic feedback.

Most recently, Hildebrandt et al. (2016) use the same prescription
as Joudaki et al. (2016) to marginalize over uncertainty due to
baryonic feedback in their cosmic shear analysis of KiDS1 survey
data. Viola et al. (2015) also use KiDS weak lensing data, but use
the tangential shear signal around galaxy groups. They compare the
group mass as a function of BCG luminosity to predictions from
the OWLS simulations, and observe a decrement in group mass at
high luminosity that favours the prediction of the OWLS simulation
containing AGNs feedback.

The Dark Energy Survey Collaboration et al. (2016) (DES16
henceforth) presented cosmological constraints from 150 deg2 of
Dark Energy Survey Science Verification (DES-SV) data. Using
DECam (Flaugher et al. 2015), the final DES survey will image
an area around 30 times this size. The DES-SV galaxy shear cata-
logues are described in Jarvis et al. (2016), the photometric redshift
estimates in Bonnett et al. (2016), and the shear two-point measure-
ments in Becker et al. (2016). They used the matter power spectra
from van Daalen et al. (2011) to calculate a set of minimum angular
scales on which to use the measured shear correlation functions,
that would reduce any bias due to baryons to below the level of the
statistical errors. This paper is motivated by the significant signal
to noise (S/N) that this procedure wastes. Fig. 1 demonstrates this;
it shows the total S/N of the DES-SV non-tomographic shear cor-
relation functions ξ±(θ ), as a function of θmin(ξ±), the minimum

1 http://kids.strw.leidenuniv.nl
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Figure 1. S/N of the DES-SV non-tomographic correlation functions
ξ±(θ ), as a function of the minimum scale use in ξ±, θmin(ξ±). The red
outlined star marks the minimum scales used in DES16; clearly there is
further signal to be exploited by reducing the minimum scales used.

scales used in ξ±(θ ). The red star marks the minimum scales used
in DES16, and it is clear that more S/N (from ∼8 up to ∼13) can
be gained by reducing these minimum scales. Even if astrophysical
uncertainties are such that we cannot reliably infer cosmological
parameters from the small-scale cosmic shear signal, it may be pos-
sible to learn about the astrophysical effects themselves. Therefore,
it is tempting to try and exploit the extra S/N by including the small
scales, and attempting to model the effects of baryons.

In Section 2, we present new DES-SV cosmic shear measure-
ments, using the galaxy shape catalogues described in Jarvis et al.
(2016). These measurements are extended to smaller scales than
those used in Becker et al. (2016) and DES16. In Section 3, we
review some methods for modelling or parametrizing the effect of
baryons on the matter power spectrum, including the extended halo
model of Mead et al. (2015), and apply the Mead et al. (2015)
model to these new cosmic shear measurements. We also fore-
cast the potential of the final DES 5-yr (Y5) data to constrain
this model.

Although baryonic effects may be the largest, there are sev-
eral additional systematic effects that arise on small scales, which
we describe in Section 4. We estimate several of these, and test
their impact on the DES Y5 forecasted results. First, the observed
(two-point) cosmic shear signal is usually considered to be sen-
sitive only to second-order correlations in the underlying density
field (and hence can be written as an integral over the matter
power spectrum, see e.g. Bartelmann & Schneider 2001). In Sec-
tion 4.1, we describe the corrections at third order in the density
field that become significant on small scales. Meanwhile, the re-
moval of blended objects during shape measurement can intro-
duce a selection bias on the cosmic shear signal at small scales
(Hartlap et al. 2011); we call this ‘blend-exclusion bias’, and in-
vestigate this effect using image simulations in Section 4.2. A fur-
ther possible complication in interpreting the small-scale signal is
intrinsic alignments, for which the successful large-scale models
such as the (non-linear–) linear alignment (LA) model (Catelan,
Kamionkowski & Blandford 2001; Hirata & Seljak 2004; Bridle
& King 2007) are likely to break down; we discuss this in Sec-
tion 4.3. Finally, we note that constraints from cosmic shear will
of course be cosmology dependent, and one would expect the con-
straints on baryonic physics to be most degenerate with other phe-
nomena that produce a scale-dependent change in the matter power

spectrum, for example massive neutrinos. We investigate this de-
generacy in Section 4.4.

2 SMALL-SCALE EXTENDED D ES-SV SHEAR
C O R R E L AT I O N F U N C T I O N S

In this section, we extend the DES-SV shear correlation function
measurements to smaller scales. Fig. 2 shows measurements of the
shear correlation functions ξ± in 15 angular bins between 0.5 and
300 arcmin, in the same three redshift bins described in Becker
et al. (2016) and DES16 (0.30 < zmean < 0.55, 0.30 < zmean <

0.55, and 0.55 < zmean < 1.30, where zmean is the mean of the
photometric redshift PDF). We follow DES16 by excluding an-
gular scales greater than 60 arcmin from ξ+, to reduce the im-
pact of additive systematics. There is a significant signal at scales
down to 0.5 arcmin, particularly for the highest redshift bin. At
scales less than a few arcminutes shape-noise, which arises from
the uncorrelated intrinsic (unsheared) shapes of galaxies, is the
dominant contribution to the covariance, so the data points are
only weakly correlated. We conservatively choose 0.5 arcmin as
the smallest separation used. While there still may be some signal
below this, shape measurement systematics due to blending may
become important.

The original DES16 cosmic shear analysis used a covariance ma-
trix calculated from 126 mock survey simulations, as described in
Becker et al. (2016). Becker et al. (2016) discussed the limitations
on the accuracy of the parameter constraints that can be achieved
when the number of simulation realizations is not much greater
than the number of data points in the data vector (Dodelson &
Schneider 2013; Taylor, Joachimi & Kitching 2013). For the ex-
tended tomographic data vector that we use in this work, this re-
quirement is clearly not satisfied. We therefore use a covariance
inferred from lognormal realizations of the lensing convergence
across the survey area.

On large scales, the weak lensing convergence field (and therefore
shear fields) is well described by Gaussian statistics, so a simple
approximation to the cosmic shear covariance can be obtained by
generating many Gaussian random shear fields with the expected
shear power spectrum, and computing a sample covariance matrix
using the same method as on the mocks. Since generation of the
Gaussian realizations is very fast, the covariance uncertainty due to
having a finite number of realizations can be made negligible. On
smaller scales, the convergence field is sensitive to non-linearities in
the density field, and the Gaussian approximation is no longer a good
approximation. However, Taruya et al. (2002) and Takahashi et al.
(2011) demonstrate that lognormal statistics provide a good descrip-
tion of the convergence field, while Hilbert, Hartlap & Schneider
(2011) demonstrate that a covariance matrix obtained under the
lognormal approximation results in very accurate confidence inter-
vals on cosmological parameters, even when using sub-arcminute
scales. Clerkin et al. (2016) found that the probability distribution
function of both galaxy overdensity and convergence in the DES-
SV data could be well approximated as lognormal, although they
only investigated large (>10 arcmin) scales.

It is probable that the non-Gaussian terms in the covariance will
be more accurately accounted for using the halo model (Peacock
& Smith 2000; Seljak 2000), as in e.g. Sato et al. (2009), Takada
& Hu (2013), and Eifler et al. (2014), which is a more physically
motivated analytic description for the non-Gaussianities. However,
accounting for the survey mask is likely to be more difficult in this
approach.

MNRAS 465, 2567–2583 (2017)
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Figure 2. Shear correlation functions, ξ±(θ ) from DES-SV data, now using a data vector extended to smaller scales than in DES16 (open symbols indicate
these smaller scales). The redshift bin pairing is shown in the upper right corner of each ξ+ panel, and the corresponding ξ− measurement in the panel below.
The solid line in each panel is the prediction using the Planck 2015 cosmology described in Section 3.2, and using the Takahashi et al. (2012) version of HALOFIT

(Smith et al. 2003). The dashed line shows the prediction from the OWLS AGN matter power spectrum (see Section 2 for details.)

3 MO D E L L I N G BA RYO N I C EF F E C T S
O N T H E MAT T E R P OW E R SP E C T RU M

3.1 Modelling approaches

We know from hydrodynamic simulations that baryonic physics
can have a significant effect on the matter power spectrum at small
scales. However, as described in Section 1, given the uncertainty in
what physical processes to add to the simulations at the sub-grid
level (as well as the uncertainties due to different implementations
of the same sub-grid physics), the magnitude, scale dependence,

and redshift dependence of the effect is very uncertain. In order to
extract any information from the small scales, a model or nuisance
parametrization that is sufficiently flexible to describe the baryonic
effects, is required. Judging how flexible is ‘sufficiently’ flexible
is always a challenge when assessing the suitability of a nuisance
parametrization. The fact that a nuisance parametrization is required
means that we lack knowledge about the physical process. However,
deciding on a parametrization and priors on the nuisance parameters
requires assumptions (presumably based on some knowledge) about
the same physical process.

MNRAS 465, 2567–2583 (2017)
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In the case of baryonic effects on the matter power spectrum,
hydrodynamic simulations arguably provide a level of knowledge
sufficient to provide the basis of a nuisance parametrization, or
usefully test the flexibility of a modelling approach. The proposal
of Eifler et al. (2015) makes this assumption; they propose using
principal component analysis (PCA) to identify modes with the
most variance between multiple simulations with different baryonic
treatments. These modes can then be projected out of the analysis,
providing a way of retaining only the information unaffected by
baryonic effects that is more sophisticated than e.g. simply imposing
a minimum angular scale.

More recently, Foreman, Becker & Wechsler (2016) present
a method for using cosmic shear to constrain the matter power
spectrum in a fairly model independent way; by allowing de-
viations from the dark matter only Pδ(k, z) at grid points in k
and z. They demonstrate that using PCA to identify the best-
constrained modes allows a decrease in the number of free param-
eters used, while retaining most of the information on any power
spectrum deviation.

Another approach is to use a theoretical model for the matter
power spectrum, with some physically motivated free parameters to
account for possible baryonic effects. Zentner, Rudd & Hu (2008)
and Hearin & Zentner (2009) showed that the effect of baryons on
the matter power spectrum could be qualitatively reproduced in the
halo model framework. The halo model (Peacock & Smith 2000;
Seljak 2000) is an analytic model for the matter distribution in
the Universe, that, given its simplicity, is extremely successful at
reproducing the matter power spectrum, even on non-linear scales.
The model assumes that all matter is contained in spherical haloes.
The halo radial density profile is assumed to depend only on the
mass of the halo. The statistical properties of the matter field are
then set by three inputs: (i) the relation between the halo density
profile and mass, (ii) the number density of haloes of a given mass,
and (iii) the large-scale distribution of haloes, which just depends on
the linear matter power spectrum. The halo density profile is usually
taken to be the NFW profile (Navarro, Frenk & White 1996), which
for a given mass, has one free parameter, the concentration. Input
(i) is then the ‘concentration–mass relation’. Input (ii) is the halo
mass function, the fraction of haloes in a given mass range. Both
the concentration–mass relation and the halo mass function can be
calibrated using N-body simulations.

Mead et al. (2015) use the halo model as a basis for which
to tackle the problem of predicting the non-linear matter power
spectrum. They first implement various adjustments to the basic halo
model described above which are required to accurately predict the
dark matter only matter power spectrum. With these adjustments,
they achieve a 5 per cent matter power spectrum accuracy for k ≤
10 h Mpc−1, z ≤ 2, which they judge by comparison with the Coyote
Universe simulations. In fact, the accuracy exceeds 2 per cent apart
from around scales of k = 0.2 h Mpc−1 where damping of the BAO
is important, which they do not attempt to model.

They further extend this halo model to account for baryonic
effects. We will refer to this extended halo model as the ‘M+15’
model. Since baryonic physics are likely to change the internal
structure of haloes, but have a lesser effect on their positions or
total masses, they propose two extra nuisance parameters to allow
for the former. First, they allow to vary A, the amplitude in the
concentration–mass relation i.e. increasing A makes haloes of all
masses more concentrated. The second free parameter is η0, which
they call the ‘halo bloating parameter’, since it produces a (mass-
dependent) bloating of the halo profile. To describe the effect of η0,
we first define

Figure 3. The fractional change in the halo density profile (as a function of
radius in units of the virial radius of the η = 0 halo) due to non-zero η = η0

− 0.3σ 8(z), for a high-mass (ν > 1) and low-mass halo (ν < 1). η0 is one of
the two free parameters in the Mead et al. (2015) halo model (see Section 3
for more details).

ν ≡ δc

σ (R(M))
, (1)

where δc is the linear theory overdensity collapse threshold and
σ (R(M)) is the linear theory density variance in spheres of radius R
that on average contain mass M. So ν < 1 haloes can be categorized
as low mass, while ν > 1 haloes can be categorized as high mass.
The halo profile in Fourier space, W(k, M) is modified as

W (k,M) → W (νηk, M), (2)

where η = η0 − 0.3σ 8(z). The result is that low-mass (ν < 1)
haloes are more concentrated when η > 0 and more bloated when
η < 0, while conversely high-mass (ν > 1) haloes are more bloated
when η > 0 and more concentrated when η < 0. Fig. 3 shows the
fractional change in the density profile of low- and high-mass haloes
for positive and negative η. The figure demonstrates that the change
in a ν = 0.6 (i.e. low-mass) halo profile due to setting η = 0.1 is the
same as the change in a ν = 1.67 (i.e. high-mass) halo profile due
to setting η = −0.1.

They test this parametrization by fitting the model to matter power
spectra from three of the OWLS simulations, and in all cases achieve
similar accuracy (∼<2 per cent up to k = 10 h Mpc−1, apart from
the BAO wiggles) in the matter power spectrum as for the dark
matter only case (at the cost of these two extra nuisance parame-
ters). The three OWLS simulations used are the ‘REF’, ‘DBLIM’,
and ‘AGN’ simulations. The ‘REF’ simulation contains radiative
cooling and heating, stellar evolution, chemical enrichment, stellar
winds, and supernova feedback. The ‘AGN’ simulation is similar to
the ‘REF’ simulation but additionally contains feedback from AGN.
The ‘DBLIM’ simulation is again similar to ‘REF’ but has addi-
tional supernovae energy in wind velocity, and a top heavy initial
mass function at high pressure. See Schaye et al. (2010) for de-
tailed description of these simulations. We note here that the recent
study of Cui et al. (2016) indicates that the methodology used in
the OWLS simulations suite should be thought of as one of several
that have not yet demonstrated convergence. That study shows that
the even the sign of the effect on halo internal mass structure varies
among simulation methods. Our use of OWLS as a reference in this
work should be considered as illustrative of the potential magnitude
of these complex effects.

MNRAS 465, 2567–2583 (2017)
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Figure 4. DES-SV cosmic shear 1σ and 2σ constraints on the two nuisance
parameters of the M+15 halo model (Mead et al. 2015). The data vector
has been extended to smaller scales than the original analysis (DES16). The
purple filled and outlined contour is the fiducial analysis, the same three
redshift bins as DES16, and angular scales in the range 0.5–300 arcmin. The
green filled contour models galaxy intrinsic alignments using the LA model
(Catelan et al. 2001; Hirata & Seljak 2004) rather than the NLA model
(Bridle & King 2007) used for the fiducial analysis. The black markers
show the best-fitting parameters for several different OWLS simulations,
calculated by Mead et al. (2015). The plus is ‘REF’, the cross is ‘AGN’, the
triangle is ‘DBLIM’, and the circle is for no baryonic effects (see Schaye
et al. 2010; Mead et al. 2015 for descriptions of the OWLS simulation
names).

To implement the M+15 model, we use HMCODE,2 code made
publicly available by Mead et al. (2015), and included in the
COSMOSIS (Zuntz et al. 2015) package. We use the COSMOSIS frame-
work for all parameter inference in this work.

3.2 Constraints from DES-SV

Fig. 4 shows the constraints on A and η0 from the DES-SV cosmic
shear measurements described in Section 2. As well as the two halo
model parameters, the same set of systematics parameters as used
in DES16 are marginalized over: a redshift bin shift parameter per
redshift bin, δzi; a multiplicative shear bias per redshift bin, mi;
and an intrinsic alignment amplitude, AIA. For the purple contour
labelled ‘fiducial’, the intrinsic alignment model used is the ‘non-
linear–linear alignment’ (NLA) model of Bridle & King (2007),
which was the fiducial model used in DES16. As in DES16, Gaus-
sian priors of width 0.05 are used for the δzi and mi, and a uniform
prior [−5,5] on AIA is used. Cosmological parameters are fixed to
the Planck Collaboration XIII (2016b) ‘Planck TT + lowP’ values.
The allowed ranges of the parameters A and η0 are those plotted,
which Mead et al. (2015) showed to be comfortably wide enough
to span the space of simulations considered there.

Although the constraints from DES-SV are fairly weak, the high
A, low η0 region of the parameter space is strongly disfavoured.
Shown as black marks are the best-fitting halo model parameters
to various cosmological simulations, as estimated by Mead et al.
(2015): the circle is the (A, η0) which they find to be the best fit
to the Coyote Universe simulations, which do not contain baryonic
feedback effects; we call this the ‘baseline’ case. The plus is the best
fit (A, η0) for the OWLS ‘REF’ simulation, which contains radiative

2 https://github.com/alexander-mead/HMcode

cooling and heating, stellar evolution, chemical enrichment, stellar
winds, and supernova feedback (see Schaye et al. 2010 for detailed
descriptions of the OWLS simulations). The cross is the best fit
(A, η0) for the OWLS ‘AGN’ simulation, which is similar to the
‘REF’ simulation, but additionally contains feedback from AGN.
The triangle is the best fit (A, η0) for the OWLS ‘DBLIM’ simula-
tion, which is again similar to ‘REF’, but has additional supernovae
energy in wind velocity, and a top heavy initial mass function at
high pressure.

Note that we do not constrain the likelihood of the OWLS sim-
ulations directly – rather the parameters of the M+15 halo model,
which we assume is flexible enough to account for a wide range
of baryonic effects. So when we say e.g. ‘the AGN model is dis-
favoured with X per cent confidence’, we really mean the (A, η0) pre-
ferred by the OWLS AGN simulation is disfavoured with X per cent
confidence. Given the success of the M+15 model in encapsulating
the different OWLS simulations, we believe this is a reasonable
way to report constraints, but it is important to be clear that our
constraints are on the halo model parameters, rather than on the
OWLS simulations directly.

For the AGN model, the preferred (A, η0) lies on the contour
of equal-probability containing 22.8 per cent of the posterior prob-
ability. We define the quantity CM, for baryonic model M with
(A, η0) = (AM, ηM

0 ), as the percentage of the posterior weight con-
tained within the contour of equal posterior on which (AM, ηM

0 )
lies. So CAGN = 22.8 per cent. A model M with CM of 95 per cent
would be considered disfavoured with 95 per cent confidence. We
find Cbaseline = 82.9 per cent, CDBLIM = 52.0 per cent and CREF =
86.9 per cent, so none of the models are strongly disfavoured by the
DES-SV cosmic shear data.

4 PR E D I C T E D BA RYO N I C C O N S T R A I N T S
F RO M D E S C O S M I C SH E A R
AND SMALL-SCALE SYSTEMATI CS

While current cosmic shear data such as DES-SV only weakly con-
strains models of baryonic physics and its effects on the Universe’s
matter distribution, upcoming data sets will have far greater statisti-
cal power. The final DES data set, which we call ‘Y5’, since it will
be composed of 5 yr of data, will be around 30 times larger in area
than DES-SV. The purple filled/outlined contour in Fig. 5 shows the
expected constraints on the M+15 halo model parameters from Y5
cosmic shear data. To perform this forecast we use as a ‘simulated’
data vector a theoretical prediction, and then run an MCMC param-
eter estimation analysis, as would be performed on a measured data
vector. The simulated data vector has no baryonic physics added.
The covariance and data vector are the same as that used in Foreman
et al. 2016, which assumes a five tomographic bin analysis, over
the angular range 0.5 < θ < 300 arcmin, with eight galaxies per
square arcminute, and an area of 5000 deg2. The covariance ma-
trix was computed using COSMOLIKE (Eifler et al. 2014; Krause &
Eifler 2016). Again (and unless otherwise specified), we fix cosmo-
logical parameters to the Planck Collaboration XIII (2016b) values
described in Section 3.2 (we explore variations in cosmological
parameters, including the neutrino mass, in Section 4.4).

In the left-hand panel, no weak lensing systematics nuisance pa-
rameters (i.e. the δzi, mi, and AIA described in Section 3.2) are
marginalized over. In the right-hand panel these systematics pa-
rameters are included, although we now use Gaussian priors of
width 0.02 for the δzi and mi, which we hope will be justified by
higher quality data and improved data reduction tools. Even with-
out such improvements, it is likely that future DES analyses will
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Figure 5. Expected constraints (assuming the baseline model) on the M+15 model parameters from DES Year 5 cosmic shear. We assume a tomographic data
vector with five redshift bins, using an angular range 0.5 < θ < 300 arcmin. Left-hand panel: the weak lensing nuisance parameters described in Section 3.2
are not marginalized over. The purple (outlined and filled) contours show the constraints with no systematics added to the simulated data vector, hence the
input halo model parameters are correctly recovered. For the orange outlined (green filled) contours, we include a correction to the simulated data vector for
reduced shear (lensing bias). When fitting the simulated data vector, we do not include either correction, hence the contours are shifted, and the inferred halo
model parameters are somewhat biased. Right-hand panel: the purple and orange contours are the same as in the left-hand panel, except now marginalizing
over the 11 weak lensing nuisance parameters (a δzi and mi per redshift bin and an intrinsic alignment amplitude AIA), hence the constraints on the halo model
parameters become weaker, and the bias due to ignoring the reduced shear correction becomes less significant. For comparison, the black dotted line shows the
constraints without marginalizing over the weak lensing (WL) nuisance parameters (i.e. the purple contour in the left-hand panel). In both panels, the black
markers are the same as in Fig. 4.

combine shear two-point measurements with galaxy–galaxy lensing
and galaxy clustering measurements which will tighten constraints
on systematic parameters (see e.g. Joachimi & Bridle 2010; Zhang,
Pen & Bernstein 2010). In order to make robust conclusions about
baryonic physics, we must ensure that any other uncertainties or sys-
tematic biases in the small-scale cosmic shear signal are accounted
for. The green filled contour in Fig. 4 shows an example of this.
For these contours an alternative model of galaxy intrinsic align-
ments is assumed, the linear alignment model (Catelan et al. 2001;
Hirata & Seljak 2004, see Section 4.3 for more details). When this
intrinsic alignment model is assumed, the REF and baseline M+15
halo model parameters (the ‘+’ in Fig. 4) are now disfavoured, with
Cbaseline = 97.0 per cent and CREF = 97.2 per cent. This is a simple
demonstration that even with DES-SV data, including uncertainties
in the intrinsic alignment modelling is important.

In this section, we discuss various theoretical/systematic un-
certainties that can potentially bias conclusions from small-scale
cosmic shear measurements, including intrinsic alignments (Sec-
tion 4.3). We use the Y5 forecast to quantify the importance of the
various systematic effects. In particular, we calculate the credible
interval, Ctruth in the A − η0 plane, on which the true (A, η0) (i.e.
those used to generate the simulated data vector) lie, when we in-
clude a particular systematic in the simulated data vector, but do
not include it in the modelling. A Ctruth value of 90 per cent would
indicate that ignoring that systematic would result in the true values
of (A, η0) being ruled out with 90 per cent confidence. So Ctruth

quantifies the severity of the bias caused by a particular systematic
effect.

4.1 Reduced shear and lensing bias

In this section, we consider two contributions to the observed cosmic
shear signal that arise from third-order correlations of the conver-
gence or equivalently third order in the gravitational potential, 


(usually only the second-order correlations are considered, in which
case the cosmic shear signal can be written as a projection of the

matter power spectrum, see e.g. Bartelmann & Schneider 2001).
Krause & Hirata (2010) investigate corrections up to O(
4), and
although the O(
4) terms will be non-negligible for future surveys,
the O(
3) terms are around an order of magnitude larger, and so we
only consider the latter here. The observable in cosmic shear is the
two-point correlation of the observed ellipticity, 〈εobs(x)εobs(x′)〉. It
is usually assumed that this is an unbiased estimate of the two-point
correlation of the shear 〈γ (x)γ (x)〉. Ignoring intrinsic alignments,
we describe below two O(
3) reasons why this is not quite correct.

First, the ellipticity that we measure is actually an estimate of the
reduced shear, g, which is related to the shear via

g(x) = γ (x)

1 − κ(x)
≈ γ (x)(1 + κ(x)). (3)

This requires a ‘reduced shear’ correction to the predicted signal,
which is derived in the Appendix, following Shapiro (2009).

Secondly, we only observe the shear at the position of galaxies,
so when we compute a ‘shear’ two-point correlation function, we
are effectively computing the correlation function of the galaxy
density-weighted reduced shear, gobs, given by

gobs(x) = (1 + δobs(x))g(x), (4)

where δobs(x) is the observed galaxy overdensity at x. We consider
two ways in which an observed galaxy overdensity at angular co-
ordinate θ and radial coordinate χ can arise (apart from random
fluctuations). First there could be an overdensity in the galaxy num-
ber at (θ , χ ) e.g. if there is a cluster there. Secondly, there could
be a change in the number density of galaxies that we can observe,
due to lensing magnification e.g. if there is a cluster at (θ , χ ′ < χ ).
The first leads to the ‘source-lens clustering’ (Bernardeau 1998;
Hamana et al. 2002), which is zero in the Limber limit (see the Ap-
pendix). The second effect produces what is known as lensing bias
(or sometimes ‘magnification bias’), and we derive an expression
for it in the Appendix, following Schmidt et al. (2009).
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Figure 6. The fractional difference in the shear power spectrum due to
reduced shear (solid lines) and lensing bias (dashed lines) are compared
to that from the OWLS AGN model (dotted lines). We used the DES-SV
tomographic redshift distributions, and for clarity only show the correlations
with the highest redshift bin.

4.1.1 The reduced shear correction

From Shapiro (2009), the reduced shear correction to the projected
shear power spectrum for tomographic bin pairs i and j is given by

δredC
κ
ij (l) = 2

∫
d2l′

(2π)2
cos(2φl′ − 2φl) Bij (l ′, l − l ′, −l), (5)

where

Bij (l1, l2, l3) = 1

2

∫
dχ

χ4
Wi(χ )Wj (χ )[Wi(χ ) + Wj (χ )]

× Bδ(k1, k2, k3; χ ), (6)

Bδ(k1, k2, k3; χ ) is the matter bispectrum, and Wi(χ ) is the radial
lensing kernel for redshift bin i. We use the fitting formula for the
matter bispectrum from Scoccimarro & Couchman (2001). Fig. 6
shows the effect of reduced shear on the shear power spectrum,
for the same redshift bins as used in the DES-SV analysis in Sec-
tion 3.2. The fractional bias is ∼1 per cent at l of a few hundred and
∼10 per cent at l of 104.

Fig. 7 shows the effect of the reduced shear on the shear corre-
lation functions ξ±, which at 1 arcmin is ∼2 per cent for ξ+ and
∼8 per cent for ξ−. Hence, the reduced shear correction, although
not as large as the effect of baryons in the OWLS AGN model, is
non-negligible for small-scale cosmic shear measurements.

4.1.2 The lensing bias

In the Appendix, we derive (drawing heavily on Schmidt et al. 2009)
the lensing bias correction to the shear power spectrum, which for
a pair of redshift bins i and j is

δlensingC
κ
ij (l) =

∫
d2l′

(2π)2
cos(2φl′ − 2φl)B

q
ij (l ′, l − l ′,−l), (7)

where

B
q
ij (l1, l2, l3) = 1

2

∫
dχ

χ4
Wi(χ )Wj (χ )[qiWi(χ ) + qjWj (χ )]

×Bδ(l1/χ, l2/χ, l3/χ ; χ ). (8)

The quantity qi is given by

qi = 2βf + βr − 2, (9)

where

βf ≡
∫

dr

∫
df

∂ε(f , r)

∂(ln(f ))
�(f , r), (10)

βr ≡
∫

dr

∫
df

∂ε(f , r)

∂(ln(r))
�(f , r). (11)

ε(f, r) is the survey selection function in galaxy flux, f, and size,
r; �(f, r) is the true galaxy distribution in flux and size. We make
use of the Balrog simulations (Suchyta et al. 2016) to estimate
ε(f, r) and �(f, r). Balrog is a method for simulating observed
galaxy catalogues, by injecting simulated objects with known prop-
erties into real survey images. The resulting ‘simulated’ images
therefore contain many of the important properties of the real data,
including observational systematics that would be otherwise diffi-
cult to simulate, as well as a small3 number of extra injected objects.
The properties (both morphology and multiband fluxes) of the in-
serted objects are based on COSMOS observations, which also have
accurate redshifts. By running the same catalogue creation software
(in this case SEXTRACTOR, Bertin & Arnouts 1996) on these sim-
ulated images as is run on the real data, and then repeating the
injection and catalogue creation process many times over, we can
estimate the mapping from the true properties of a galaxy to the
properties estimated by SEXTRACTOR in our galaxy catalogues. For
example, we can estimate the probability of detecting a galaxy with
a particular true flux and size, or more generally, the survey se-
lection function as defined above, ε(f, r). We estimate �(f, r) and
ε(f, r) as follows.

(i) We start with the SV NGMIX (Sheldon 2014) shape catalogue
(that was used in DES16), and the Balrog catalogue used in Suchyta
et al. (2016), the latter of which contains both ‘observed’ fluxes and
sizes i.e. those estimated by SEXTRACTOR, as well as true fluxes and
sizes (those used when drawing the simulated objects into the DES
images) and redshifts. Note that the observed sizes are point spread
function (PSF)-convolved.

(ii) For a given redshift bin of the SV NGMIX data, we re-weight
the Balrog data to have the same redshift distribution. Then we
compute �(f, r) using weighted kernel-density-estimation (KDE)
in the true flux and size of these weighted Balrog objects.

(iii) We then re-weight the Balrog data to have the same observed
flux and size distribution as the NGMIX shape catalogue, for that
particular redshift bin. For the observed flux and size we use the
i-band SEXTRACTOR quantities MAG_AUTO and FLUX_RADIUS
to do this and make use of the HEP_ML package4 to perform Gradient
Boosting5 re-weighting. With this new set of weights, we again use
weighted KDE to estimate �obs(f, r), given by

�obs(f , r) = ε(f , r)�(f , r). (12)

(iv) We then estimate ε(f, r) as �obs(f, r)/�(f, r).

4.1.3 Impact on signal and baryonic constraints

Having estimated �(f, r) and ε(f, r), the expressions in equa-
tions (10) and (11) can be calculated and substituted into (9). We
find q1 = −1.02 ± 0.02, q2 = −0.79 ± 0.01, q3 = −0.64 ± 0.01 (the
errors are derived by jackknifing the galaxies used for the KDEs).

3 Sufficiently small that we need not consider any interaction between the
injected objects.
4 https://github.com/arogozhnikov/hep_ml
5 https://en.wikipedia.org/wiki/Gradient_boosting
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Figure 7. The fractional difference in the projected shear correlation functions ξ± due to reduced shear (solid lines) and lensing bias (dashed lines) are
compared to that from the OWLS AGN model (dotted lines). We used the DES-SV tomographic redshift distributions, and for clarity only show the correlations
with the highest redshift bin.

We use these q values to estimate the lensing bias contribution to the
shear power spectra (Fig. 6, dashed lines), and the shear correlation
functions (Fig. 7, dashed lines), for the redshift binning used in the
DES-SV analysis. The lensing bias correction has the same scale
dependence and similar magnitude to the reduced shear correction,
but the negative values of qi make it negative, partially cancelling
out the reduced shear correction.

We now turn to the DES Y5 forecast to demonstrate the im-
portance of accounting for the reduced shear and lensing bias. We
perform simulated likelihood analyses where either the reduced
shear correction or lensing bias correction is used to generate the
‘simulated’ data vector from theory, but not included in the mod-
elling during parameter estimation. For the lensing bias, we assume
qi = −1 for all redshift bins for simplicity (but the procedure outline
in Section 4.1.2 could be used with the DES Y5 data in order to
estimate the qi). Fig. 5 shows the shift in the contours in the (A, η0)
plane, due to ignoring either the reduced shear or lensing bias. In
the left-hand panel, the case where no lensing systematics (i.e. the
nuisance parameters used in the analysis of Section 3.2 accounting
for multiplicative shear bias, photometric redshift bias, or intrinsic
alignments) are marginalized over, the shifts in the halo model pa-
rameters from ignoring these effects are significant. For the reduced
shear case (green filled contour), we find Ctruth = 97.4 per cent,
implying that the true values of (A, η0) would be excluded with
97.4 per cent confidence if the reduced shear correction were ig-
nored. As expected, the shift due to ignoring lensing bias is almost
identical, but in the opposite direction. However, the shifts in the
contours are still small compared to the differences between the dif-
ferent OWLS simulations in the (A, η0) plane, so we concluded that
marginalizing over any uncertainty (due to e.g. imperfect knowledge
of the bispectrum, or the survey selection function) in the reduced
shear or lensing bias corrections will not significantly reduce the
power of DES Y5 to differentiate between the OWLS models used
here.

For the right-hand panel of Fig. 5, the weak lensing nuisance
parameters are now marginalized over, increasing the size of the

contours, and reducing the significance of the M+15 parame-
ter shifts. In this case, when ignoring the reduced shear, we find
Ctruth = 43.6 per cent, so the recovered parameters are within ‘1σ ’
of the truth.

In these calculations, we have assessed the impact of reduced
shear and lensing bias separately; however, in real weak lensing
data they will of course both be present. While the magnitude of
the reduced shear correction depends only on the redshift distribu-
tion of the sources and the cosmological model, the magnitude of
the lensing bias correction depends on the complex way in which
galaxies are selected for shear estimation, which will vary between
different weak lensing data sets. We have estimated the qi for the
DES-SV data to be ∼− 1, leading to a correction that largely cancels
the reduced shear correction, and for the DES Y5 forecast we took
qi = −1, which would lead to exact cancellation with the reduced
shear correction (i.e. a Ctruth = 0 per cent when lensing bias and re-
duced shear are considered simultaneously). However, equation (9)
indicates that the qi need not be close to −1 and can be positive or
negative, so one cannot assume that the reduced shear and lensing
bias will largely cancel in the general case.

4.2 Blend-exclusion bias: estimates using BCC-UFig

Estimating the shear of a noisy, PSF-convolved galaxy is a noto-
riously difficult problem (see e.g. Mandelbaum et al. 2014). The
difficulty is further increased if the galaxy has a closely neighbour-
ing object, since the shear estimation is likely to be disrupted by the
contaminating light from the neighbour. We can categorize objects
as blended if they overlap at a particular isophotal level, for example
SEXTRACTOR identifies objects by first finding groups of contiguous
pixels above some detection threshold, and then deciding how many
objects to split these pixels into (this decision is part of the deblend-
ing process). If that number of objects is more than one, then these
objects will be flagged as blended objects. Shape or photometry esti-
mates (required for photo-z estimation) from these objects should be
used with caution. Indeed in the DES-SV shape catalogues (Jarvis
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Figure 8. A measurement of blend-exclusion bias using BCC-UFig. The ratio of the shear correlation functions estimated from the BCC-UFig simulations
after removing SEXTRACTOR blends, to the correlation functions using the full galaxy sample. The two samples were weighted to have the same redshift
distributions, and the true input shears to the simulations were used to calculate ξ±, in order to isolate the selection effect. For clarity only correlations with
the highest redshift bin (bin 3) are shown. The dashed lines show the prediction of the toy model described in Section 4.2

et al. 2016), we excluded any objects that SEXTRACTOR judged to be
blended.

Hartlap et al. (2011) realized that this exclusion of blended objects
produces a selection bias by the following mechanism: blended ob-
jects are more likely to be in crowded regions of the sky (e.g. along
the same line of sight as a cluster), and these crowded regions will
have higher convergence than average (e.g. because of the afore-
mentioned cluster). Therefore by excluding blended objects, we
are undersampling the higher convergence regions of the sky, com-
pared to the less-crowded, lower convergence regions. Thus, we
will underestimate the shear two-point signal, especially on small
scales, where sensitivity to those crowded, high convergence re-
gions is highest. We call this effect blend-exclusion bias. Hartlap
et al. (2011) estimated the magnitude of this effect by starting with
a mock weak lensing catalogue (produced from ray-traced N-body
simulations), and cutting out galaxies based on various criteria;
for example, they apply what they call the ‘FIX’ criterion, where
if a pair of galaxies is separated by less than some angle θFIX,
they exclude one of those galaxies. For θFIX = 2 arcsec(5 arcsec),
they find a −1(−2) per cent bias in ξ+(θ = 1 arcmin), and a
−2(−7) per cent bias in ξ−(θ = 1 arcmin).

These sorts of criteria give a useful indication of the expected bias;
however, on real data, the criteria we use for deciding whether to use
a galaxy are often not so well defined. As explained above, in the
DES-SV analyses (e.g. Becker et al. 2016, DES16; Jarvis et al. 2016)
SEXTRACTOR was used to decide whether a galaxy is blended, and
the behaviour of SEXTRACTOR is dependent on the details of the
images, for example the PSF, the noise levels, and the distribution
of galaxy fluxes and sizes. These details are not captured in the
approach taken by Hartlap et al. (2011), since they do not simulate
survey images. The approach we take uses the blind cosmology
challenge-ultrafast image generator (BCC-UFig) image simulations
(Chang et al. 2015), which allows investigation of the behaviour
of the same selections we use on the real data. The BCC-UFig
image simulations start with a cosmological mock galaxy simulation

(the BCC, Busha et al. 2013), with lensing information from ray-
tracing (Becker 2013). This is used as input to an image generator
(the UFig, Bergé et al. 2013; Bruderer et al. 2016) that produces
images with properties like noise levels and PSF well matched to
DES data (see Chang et al. 2015; Leistedt et al. 2016). The BCC-
UFig catalogues are then produced by running SEXTRACTOR on these
simulated images, with a configuration designed to match that run
on the DES-SV data by the DES data management pipeline.

We estimate the size of the blend-exclusion bias as follows.

(i) We start with the DES-SV shape catalogue split into the three
redshift bins presented in Becker et al. (2016) and re-weight the
BCC-UFig catalogue to have the same observed magnitude, size,
and redshift distribution. We use the i-band SEXTRACTOR quantities
MAG_AUTO and FLUX_RADIUS to match the magnitude and
size distributions since we have these for both the SV data, and the
BCC-UFig catalogues. We call this re-weighted catalogue the ‘full’
UFig catalogue.

(ii) We measure the shear correlation functions ξ±(θ ) from the
full UFig catalogue, using the true input shears to the simulation. We
use the true input shears, since the aim here is to isolate the selection
bias, rather than study any other shape measurement biases. We call
this signal ξ full

± (θ ).
(iii) We then impose a cut on the SEXTRACTOR flag value in the

full UFig catalogue that removes blended objects or those with
bright, close neighbours (around 15 per cent of the objects). This
is the same cut that was applied to the DES-SV shape catalogues
for weak lensing analyses. We re-weight the resulting catalogue
to have the same redshift distribution as the full UFig catalogue,
and call this the ‘cleaned’ UFig catalogue. We measure the shear
correlation functions from the cleaned UFig catalogue, and call this
signal ξ cleaned

± (θ ). Then the fractional bias is ξ cleaned
± (θ )/ξ full

± (θ ) − 1.

The ratio ξ cleaned
± (θ )/ξ full

± (θ ) is plotted in Fig. 8. We show only
correlations with the highest redshift bin for clarity, but there is
no clear redshift dependence of the bias. For ξ+, the bias reaches
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∼3 per cent at 1 arcmin, while for ξ−, the bias reaches this level
at 10–20 arcmin. Thus, the effect is of the same order as found in
Hartlap et al. (2011) and is similar in magnitude and scale de-
pendence to the reduced shear and lensing bias effects. Thus, we
conclude that the blend-exclusion bias will produce a similar level
of bias in the inferred M+15 halo model parameters as the reduced
shear and lensing bias.

This similarity is perhaps not surprising, since this blend-
exclusion bias can be thought of as a form of source-lens clustering
whereby the exclusion of blended objects produces changes in the
source galaxy density that are correlated with the density field;
this is also the result of the lensing bias described in Section 4.1.2.
Motivated by this similarity, we formulate a toy model for the blend-
exclusion bias. In this toy model, we assume the probability of a
galaxy at θ being blended depends only on the amount of light
from neighbours in that area of sky. This can be quantified as the
excess flux density (above the mean flux density), which we will
call κflux(θ ). Consider the contribution to κflux(θ ) from a comoving
volume element dV at comoving distance χ . The contribution to
the excess flux in area element d� is

�κflux(θ , χ )dχ d� = δL(θ , χ )

4πdL(χ )2
dV , (13)

where dL(χ ) is the luminosity distance. δL(θ , χ ) is the comoving
volume luminosity overdensity at (θ , χ ), given by

δL(θ , χ ) = L(θ , χ ) − L̄(χ )

L̄(χ )
, (14)

where L(θ , χ ) is the luminosity density at (θ , χ ) and L̄(χ ) is the
mean luminosity density at comoving distance χ . The comoving
volume element can be replaced using dV = χ2dχ d�, yielding

�κflux(θ , χ )dχ = δL(θ , χ )

4πdL(χ )2
χ2dχ . (15)

We make the assumption that the luminosity overdensity δL(θ , χ )
is proportional to the matter overdensity δ(θ , χ ). This would be the
case if galaxies did not evolve with redshift, and had luminosity-
independent bias (hence we call this a toy model!). Then

�κflux(θ , χ )dχ ∝ χ2δ(θ , χ )

dL(χ )2
dχ (16)

and

κflux(θ ) ∝
∫

dχ
χ2δ(θ , χ )

dL(χ )2
. (17)

We assume that the observed galaxy overdensity (i.e. the fractional
excess in galaxy number density) due to blending is proportional to
the excess flux density κflux(θ ), so using equation (17),

δblend
obs (θ ) = ακflux(θ ) = α

∫
dχ

χ2δ(θ , χ )

dL(χ )2
(18)

where α is a constant of proportionality, which we expect to be neg-
ative, since an excess in flux density should lead to more blending,
and so a negative δblend

obs .
Like the convergence, δblend

obs (θ ) is a projection in χ of the matter
overdensity, δ, but with a kernel

W ′(χ ) = αχ2

d2
L(χ )

= αχ2

(1 + z(χ ))2D2
A(χ )

(19)

instead of the lensing kernel. So the effect on the shear power
spectrum can be calculated in exactly the same way as the reduced
shear correction, but replacing the lensing kernels [Wi(χ ) + Wj(χ )]

in equations (5) and (6), with 2W′(χ ). The dashed lines in Fig. 8
show the prediction of this toy model, with α = −0.1 showing
qualitative agreement with the measurement from BCC-UFig.

It worth noting finally that the magnitude of this selection bias
(and indeed the lensing bias described in Section 4.1.2) will depend
on the estimator used for the two-point cosmic shear signal. For
example a pixel-based estimator (i.e. where the mean shear is cal-
culated in pixels on the sky, and then these mean values are used in
the two-point statistic) may be less susceptible to biases that arise
from variations in the source density. However, if the pixels are
weighted by the number of galaxies in each pixel, to approximate
inverse-variance weighting, then in the small pixel limit, the pixel
estimator will be equivalent to the estimators used here.

4.3 Intrinsic alignments

The observed intrinsic alignments of bright red galaxies (see e.g.
Singh, Mandelbaum & More 2015) on linear and mildly non-
linear scales are well described by theoretical models that assume
tidal alignment, in which the galaxy ellipticity is assumed to align
with the local tidal field. The simplest of these is the LA model
(Catelan et al. 2001; Hirata & Seljak 2004), in which the alignment
is assumed to be linear in the linear tidal field, which leads to an
alignment power spectrum that depends on the linear matter power
spectrum. The LA model has only one free parameter, an ampli-
tude AIA that is of order unity (this is just called ‘A’ in DES16).
A popular variation is the NLA model, which was introduced by
Bridle & King (2007), who replaced the linear matter power spec-
trum with the non-linear matter power spectrum; this model has
been more successful than the LA model in fitting observations on
mildly non-linear scales (e.g. Joachimi & Schneider 2010), despite
the fact that it does not include all non-linear corrections in a con-
sistent way. Blazek, Vlah & Seljak (2015) systematically include
non-linear corrections (at one-loop order in perturbation theory) to
the LA model, producing a model that provides a further improved
fit in the mildly non-linear regime. Meanwhile, it is commonly
assumed that the intrinsic alignments of spiral galaxies, which are
primarily angular momentum supported, are better described by the-
ories based on tidal torquing (White 1984); these are also known as
quadratic alignment models (Crittenden et al. 2001; Mackey, White
& Kamionkowski 2002; Hirata & Seljak 2004). Blazek et al. (in
preparation) propose a perturbative model for populations of mixed
galaxy type that consistently includes both tidal alignment and tidal
torque-type contributions. Halo model-based intrinsic alignment
models (see e.g. Schneider & Bridle 2010) are likely to be more
successful in the fully non-linear 1-halo regime. A detailed study of
intrinsic alignments on non-linear scales is beyond the scope of this
work; we perform a simple test to gauge the order of the uncertainty
in this section.

We use the difference between the LA model and the NLA model
as a proxy for the uncertainty in the behaviour of intrinsic alignments
on non-linear scales. The green contours in Fig. 4 shows the DES-
SV constraints on the halo model parameters when the LA model is
assumed rather than the fiducial NLA model (purple filled/outlined
contours). The is a ∼1σ shift in the contours, towards the low A
favoured by the ‘AGN’ model. This can be understood as follows:
the wide redshift binning means that the dominant effect of intrinsic
alignments is the negative ‘GI’ term. The NLA model therefore
produces a larger negative contribution at small scales than the
LA term. When the LA model is assumed, a lower A (leading to
reduced halo concentration, and thus a reduced small-scale cosmic
shear signal), is required to fit the observed signal.
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Figure 9. Expected constraints from DES Y5 on M+15 halo model pa-
rameters given different assumptions about intrinsic alignments. The purple
(filled and lined) contour is the same as in the right-hand panel of Fig. 5.
For the green filled contour, the LA model is used to fit the simulated data
vector, instead of the NLA model which was used to generate the simulated
data vector (with AIA = 0.5). This results in biased recovery of the M+15
halo model parameters.

A similar shift in contours is observed for the Y5 forecast, shown
as the green contours in Fig. 9. In this case, the ‘simulated’ data
vector uses the NLA model, with AIA = 0.5, with the green contours
resulting from fitting this data vector using the LA model. In this
case, Ctruth = 82.8 per cent so the shift is significant. One could
imagine marginalizing over extra nuisance parameters to account for
the uncertainty in the intrinsic alignment modelling on non-linear
scales. As a simple example, we implement an intrinsic alignment
model that is a mixture of the LA and NLA models, with the amount
of non-linearity determined by a free parameter αnl, such that the
intrinsic ellipticity power spectrum, PII(k, z) becomes

PII(k, z) = αnlP
NLA
II (k, z) + (1 − αnl)P

LA
II , (20)

and similarly for the intrinsic ellipticity-density cross spectrum PGI.
Despite this extra flexibility, the degradation of the M+15 parameter
constraints is negligible. While this particular model may not be
very realistic, this result suggests that the future cosmic shear data
will have the power to constrain additional nuisance parameters
which account for the uncertainty of intrinsic alignments on non-
linear scales, without significantly degrading the constraints on the
M+15 model parameters, and therefore models of baryonic physics.

4.4 Degeneracy with cosmology

Thus far, we have fixed all cosmological parameters, however, there
will be some degeneracy between the halo model parameters and
the cosmological parameters. In particular, neutrino mass also pro-
duces scale-dependent change in the matter power spectrum, so
we expect it to have some degeneracy with baryonic feedback.
Natarajan et al. (2014) investigate this degeneracy, concluding that
one can infer biased values of the neutrino mass from cosmic shear
if baryonic feedback is not accounted for. We now repeat the Y5
forecast, but allowing cosmological parameters (�m, �b, H0, ns,
As) to vary, while combining with Planck CMB constraints [specif-
ically we use the low-l TEB and high-l TT likelihoods presented
in Planck Collaboration XI (2016a)]. Note that we do not include
CMB lensing information. There is only a small increase in the
errorbars on the halo model parameters A and η0 (7 per cent in-
crease in

√
σAση0 ). When the neutrino density �νh2 is additionally

marginalized over, there is a further 23 per cent increase in
√

σAση0 .
This degradation is due to the presence of degeneracy between the
neutrino mass and the halo model parameters, as demonstrated in
Fig. 10. Hence, we conclude that marginalizing over cosmological
parameters, including the neutrino mass, will not greatly reduce the
ability of DES Y5 data to constrain baryonic effects on the matter
power spectrum, when combining with Planck CMB data.

5 D I SCUSSI ON

The small scales of cosmic shear measurements are rich in
both signal-to-noise and difficult-to-model systematic uncertain-
ties. Baryonic effects present the largest systematic uncertainty,
with 10–20 per cent deviations from the dark matter only case on
arcminute scales predicted by some hydrodynamic simulations. The
prospects for gaining useful cosmological information from the
small scales of cosmic shear do not look bright given these uncer-
tainties. However, small-scale cosmic shear measurements do still
provide unique observational constraints on the small-scale matter
clustering, since cosmic shear is the observational probe that can
most directly probe the total matter distribution on small scales.
These can be straightforwardly compared to e.g. the predictions
from hydrodynamic simulations, or analytic models.

We note that cosmic shear is not the only way to exploit weak
lensing data sets, which (either alone or in combination with galaxy
redshift surveys) can also be used for galaxy clustering measure-
ments or probing the cross-correlation between galaxy number den-
sity and shear. Viola et al. (2015) have already shown the sensitivity
of the latter to baryonic feedback. Furthermore, the addition of
galaxy clustering and number density–shear cross-correlation in-
formation will constrain some of the systematic effects that reduce
the effectiveness of cosmic shear-alone analyses, such as intrin-
sic alignments (Joachimi & Bridle 2010) and photometric redshift
uncertainties (Zhang et al. 2010; Samuroff et al. 2017).

While current cosmic shear data has limited constraining power
(such as the DES-SV constraints presented in Section 3.2), we have
shown that information from DES Y5 data has the potential to distin-
guish possible baryonic scenarios, producing information that could
be fed back into future hydrodynamic simulations, which in turn will
hopefully improve our ability to model the small-scale clustering.
In order to make robust conclusions about baryonic physics from
small-scale cosmic shear however, other non-negligible systemat-
ics should be accounted for, such as the reduced shear correction,
lensing bias, blend-exclusion bias, and uncertainties due to intrinsic
alignment modelling. We have demonstrated that all of these effects,
if not accounted for, can significantly bias the inferred small-scale
matter power spectrum. In particular, we have shown that these ef-
fects will bias the parameters of the Mead et al. (2015) halo model;
however, this conclusion will be true for whatever model or pre-
scription is used to account for the uncertainties in the small-scale
matter power spectrum.

While the theoretical framework for modelling the reduced shear
is well established, a prediction for the matter bispectrum is re-
quired, which on non-linear scales may also depend on the baryonic
feedback. We have demonstrated how novel image simulations can
be used to estimate the effect of lensing bias (which also requires a
prediction of the matter bispectrum), and the blend-exclusion bias.
Intrinsic alignment modelling on non-linear scales is still extremely
uncertain; however, we have shown the potential of future cos-
mic shear data to constrain uncertainty in the non-linear intrinsic
alignment modelling at the same time as the baryonic effects. Fi-
nally, although the baryonic effects on the matter power spectrum
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Figure 10. Forecasted degeneracy between the neutrino energy density �νh2 and the M+15 halo model parameters, for DES Year 5 combined with Planck
CMB constraints. For the simulated data vector, we assumed �νh2 = 6 × 10−4, approximately the minimal value allowed by solar neutrino oscillation
observations (Fukuda et al. 1998), and the halo model parameters corresponding to the baseline case (A = 3.13, η0 = 0.60).

are to some extent degenerate with the effect of massive neutri-
nos, we have shown that marginalizing over neutrino mass does not
greatly reduce the potential constraining power of DES Y5 cosmic
shear data, when it is combined with Planck CMB data.
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Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desen-
volvimento Cientı́fico e Tecnológico and the Ministério da Ciência,
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A P P E N D I X : T H I R D - O R D E R C O R R E C T I O N S
TO S H E A R – S H E A R C O R R E L AT I O N S

In cosmic shear, we attempt to measure the two-point correlation of
the shear, possibly between two different redshift bins i and j

ξi,j = 〈γi(x)γj (x′)〉. (A1)

Contributions to shear two-point correlation at third order in the
density field arise from two effects

(i) We observe the reduced shear,

g(x) = γ (x)

1 − κ(x)
≈ (1 + κ(x))γ (x). (A2)

(ii) We can only estimate the shear at positions of galaxies. So
any statistic (e.g. the mean shear or ξ±) estimated from the measured
shears will effectively be using the galaxy number density-weighted
reduced shear:

gobs(x) = (1 + δobs(x))g(x)), (A3)

= (1 + δobs(x))(1 + κ(x))γ (x), (A4)

where δobs(x) is the observed overdensity in galaxy number at posi-
tion x. This observed overdensity can be due to a true change in the
number density of galaxies at x (for example due to the presence
of a cluster), or due to a change in the observable number density
due to lensing magnification (for example due to the presence of a
cluster at lower redshift). The first effect leads to source-lens clus-
tering (Bernardeau 1998; Hamana et al. 2002) and the second leads
to lensing bias (Schmidt et al. 2009).

We start with the expression from Schmidt et al. (2009) for the
expectation of the standard ξ± estimator.

〈ξ obs
ij 〉 =

〈
gobs

i (x)gobs
j (x′)

1 + 2δobs + ̂δobsδobs

〉
, (A5)

where δobs is the mean observed galaxy overdensity across the sur-
vey (negligible for a wide survey), ̂δobsδobs is a mean product of
overdensities smoothed over the bin width (ξ gg(θ ) in the limit of
an infinite survey and narrow bin). Substituting for gobs

i from equa-
tion (A4), the terms up to third order in γ , κ , or δ are

〈ξ obs
ij 〉 = 〈γi(x)γj (x′)〉

+〈κ(x)γi(x)γj (x′)〉 + 〈γi(x)κ(x′)γj (x′)〉
+〈δobs(x)γi(x)γj (x′)〉 + 〈γi(x)δobs(x′)γj (x′)〉. (A6)

The first line is the ‘true’ shear–shear signal. The second line is the
reduced shear contribution, which is only zero if the convergence κ
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is not correlated with the shear at a given point on the sky, which
is unlikely, since they are sourced by the same structure. The third
line is the source-lens clustering (including ‘lensing bias’, since
magnification contributes to δobs). This would be zero if there was
no correlation between the source galaxy overdensity and the shear
at a given point on the sky e.g. if source galaxies were randomly
distributed.

For convenience, we label each term on the left-hand side of
equation (A6) as follows

〈γ obs
i (l, χ )γ obs,∗

j (l ′′, χ ′)〉 = 〈γi(l, χ )γ ∗
j (l ′′, χ ′)〉

+Rij + Rji + Sij + Sji, (A7)

where

Rij = 〈(κiγi)(l, χ )γ ∗
j (l ′′, χ ′))〉, (A8)

Rji = 〈γi(l, χ )(κjγj )∗(l ′′, χ ′)〉, (A9)

Sij = 〈(δobs,iγi)(l, χ )γ ∗
j (l ′′, χ ′))〉, (A10)

Sji = 〈γi(l, χ )(δobs,j γj )∗(l ′′, χ ′)〉, (A11)

and subscripts i and j denote shears/overdensities/convergences
taken from redshift bins i and j. It is more convenient to compute
these terms in Fourier space where the multiplicative adjustments
to the shear become convolutions i.e.

(κγ )(l) =
∫

d2l′

(2π)2
γ (l ′)κ(l − l ′), (A12)

(δobsγ )(l) =
∫

d2l′

(2π)2
γ (l ′)δobs(l − l ′). (A13)

So

Rij =
∫

d2l′

(2π)2
〈γi(l ′, χ )κi(l − l ′, χ )γ ∗

j (l ′′, χ ′)〉, (A14)

Rji =
∫

d2l′

(2π)2
〈γi(l, χ )γ ∗

j (l ′, χ ′)κj (l ′′ − l ′, χ ′)〉, (A15)

Sij =
∫

d2l′

(2π)2
〈δobs,i(l ′, χ )γi(l − l ′, χ )γ ∗

j (l ′′, χ ′)〉, (A16)

Sji =
∫

d2l′

(2π)2
〈γi(l, χ )γ ∗

j (l ′, χ ′)δ∗
obs,j (l ′′ − l ′, χ ′)〉. (A17)

We use the following:

γi(l) = e2iφl κi(l), (A18)

κ∗
i (l) = κi(−l), (A19)

δ∗
obs,i(l) = δobs,i(−l), (A20)

where φl is the angle made by l with the x-axis, to obtain

Rij =
∫

d2l′

(2π)2
e2i(φl′ −φl′′ )〈κi(l ′, χ )κi(l − l ′, χ )κj (−l ′′, χ ′)〉,

(A21)

Rji =
∫

d2l′

(2π)2
e2i(φl−φl′ )〈κi(l, χ )κj (−l ′, χ ′)κj (l ′ − l ′′, χ ′)〉,

(A22)

Sij =
∫

d2l′

(2π)2
e2i(φl′ −φl′′ )〈κi(l ′, χ )δobs,i(l − l ′, χ )κj (−l ′′, χ ′)〉,

(A23)

Sji =
∫

d2l′

(2π)2
e2i(φl−φl′ )〈κi(l, χ )κj (−l ′, χ ′)δobs,j (l ′ − l ′′, χ ′)〉.

(A24)

We can write the reduced shear terms Rij and Rji in terms of the
convergence bispectrum, B(κ1,κ2,κ3)(l1, l2, l3) defined as

〈κi(l1)κj (l2)κk, (l3)〉 = (2π)2δD(l1 + l2 + l3)B(κ1,κ2,κ3)

× (l1, l2, l3). (A25)

This can be related to the matter bispectrum using the Limber
approximation

B(κ1,κ2,κ3)(l1, l2, l3) =
∫

dχ

χ4
W1(χ )W2(χ )W3(χ )Bδ(k1, k2, k3; χ ),

(A26)

where Wi(χ ) is the lensing kernel for redshift bin i and k1 = l1/χ

etc. Note the δD(l1 + l2 + l3) enforces a triangle configuration of
the three vectors. So Rij and Rji become

Rij =
∫

d2l′

(2π)2
e2i(φl′ −φl′′ )(2π)2B(κi ,κi ,κj )(l ′, l − l ′, −l), (A27)

Rji =
∫

d2l′

(2π)2
e2i(φl−φl′ )(2π)2B(κi ,κj ,κj )(l,−l ′, l ′ − l). (A28)

We can write the left-hand side of A7 as

〈γi(l)γ ∗
j (l ′′)〉 = (2π)2δD(l − l ′′)Cκ

ij (l), (A29)

so the change in Cκ
ij (l) due to reduced shear is

δredC
κ
ij (l) = [Rij + Rji]/(2π)2

=
∫

d2l′

(2π)2
e2i(φl′ −φl ) B(κi ,κi ,κj )(l ′, l − l ′, −l)

+ e2i(φl−φl′ )B(κi ,κj ,κj )(l, −l ′, l ′ − l). (A30)

We can arrive at equation 13 of Shapiro (2009) by taking the
real part, assuming some symmetry properties of the convergence
bispectrum [B(l1, l2, l3) = B(−l1, −l2, −l3) and B(l1, l2, l3) =
B(l3, l1, l2)] and defining the ‘2-redshift convergence bispectrum’

Bij (l1, l2, l3) = 1

2

∫
dχ

χ4
Wi(χ )Wj (χ )[Wi(χ ) + Wj (χ )]

× Bδ(k1, k2, k3; χ ), (A31)

which in our notation is equal to

1

2
[B(κi ,κi ,κj )(l1, l2, l3) + B(κi ,κj ,κj )(l1, l2, l3)]. (A32)

Substituting into equation (A30)

δredC
κ
ij (l) = 2

∫
d2l′

(2π)2
cos(2φl′ − 2φl) Bij (l ′, l − l ′, −l). (A33)

We now move on to the Sij and Sji terms. Various things can cause
a galaxy overdensity δobs, but we are concerned with ones that are
correlated with the density field. These arise from two sources. The
first and most obvious one is if the source galaxies trace the density
field e.g. with some linear bias bg

δobs,i(l, χ ) = Ni(χ )bg(χ )δ(l, χ ). (A34)

Then we have

Sij =
∫

d2l′

(2π)2
e2i(φl′ −φl′′ )〈κi(l ′, χ )bg(χ )Ni(χ )

× δ(l − l ′, χ )κj (−l ′′, χ ′)〉. (A35)
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In the Limber approximation (in which we assume density fluctu-
ations at different radial distances are uncorrelated), this term goes
to zero, by the following argument: κi(l ′, χ ) only depends on the
density field for radial distances less than χ , and so is uncorrelated
with δ(l − l ′, χ ). κj (−l ′′, χ ′) gets contributions from density fluc-
tuations all along the line of sight. Those produced by fluctuations
at χ ′! = χ will be uncorrelated with δ(l − l ′, χ ), so for χ ′! = χ ,
δ(l − l ′, χ ) is correlated with neither κi(l ′, χ ) or κj (l ′, χ ′). The
contribution to κj (−l ′′, χ ′) produced by fluctuations at χ ′ = χ will
be correlated with δ(l − l ′, χ ), but uncorrelated with κi(l ′, χ ). In
both these cases, one of the variables in the three-point correlator
is uncorrelated with the other two, and since all variables have zero
mean, the three-point correlation is zero. Hence for δobs(χ ) satisfy-
ing 〈δobs(χ )δ(χ ′)〉 = δD(χ − χ ′)〈δobs(χ )δ(χ ′)〉, Sij = Sji = 0. This
is the source-lens clustering term which is zero in the Limber ap-
proximation (see Valageas 2014 for a treatment beyond the Limber
approximation).

From Schmidt et al. (2009), the lensing bias produces an observed
galaxy overdensity δobs,i(θ , χ ) = qiκi(θ , χ ) (to first order in κ),
where q is a constant that depends on the survey selection function.
In this case, Sij = qiRij, and we get the same result as in the reduced
shear case, but for the qi prefactors

δlensingC
κ
ij (l) = [qiRij + qjRji]/(2π)2

=
∫

d2l′

(2π)2
cos(2φl′ − 2φl)B

q
ij (l ′, l − l ′, −l), (A36)

where

B
q
ij (l1, l2, l3) = 1

2

∫
dχ

χ4
Wi(χ )Wj (χ )[qiWi(χ ) + qjWj (χ )]

×Bδ(l1/χ, l2/χ, l3/χ ; χ ). (A37)

This is a generalization for tomography of the result of Schmidt
et al. (2009), who did not consider multiple redshift bins. Schmidt
et al. (2009) show that the factor q has contributions from three
effects. Let f, r, and θ denote the observed flux, size, and position
of a galaxy, and fg, rg, and θg the corresponding intrinsic (unlensed)
quantities. To first order in κ , the observed and intrinsic properties
are related via

θ = θg + dθ , f = Afg, r =
√

Arg, d2θ = Ad2θg , (A38)

where A = 1 + 2κ . The first contribution to the observed galaxy
overdensity comes from the change in the observed area element
– a small patch of unlensed sky of area δθ2 has area Aδθ2 due
to lensing, and so δobs is reduced by a factor A. The second and
third contributions come from the effect of magnification on the
observed galaxies fluxes and sizes. In positive convergence regions,
the magnification produces larger brighter galaxies, which are more
likely to be detected and have well-measured shapes. Schmidt et al.
(2009) show that the observed galaxy overdensity can be written
as

δobs(θ , χ ) = qκ(θ , χ ) = (2βf + βr − 2)κ(θ , χ ), (A39)

where

βf ≡
∫

dr

∫
df

∂ε(f , r)

∂(ln(f ))
�(f , r), (A40)

βr ≡
∫

dr

∫
df

∂ε(f , r)

∂(ln(r))
�(f , r). (A41)

ε(f, r) is the selection function (i.e. accounts for the exclusion
of faint, small galaxies) and �(f, r) is the true galaxy distribu-

tion in flux and size. These functions are normalized such that∫
df

∫
dr ε(f, r)�(f, r) = 1. Hence, if ε(f, r) is an increasing function

of flux and size, β f and βr will be positive, since we will observe
a higher galaxy number density due to the magnification when κ is
positive.
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32Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona,
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