AN INTRODUCTION TO THE THEORY OF NUMBERS
Fifth Edition, Corrected Printings by
Ivan Niven
Herbert S. Zuckerman
Hugh L. Montgomery

John Wiley (New York), 1991

ERRATA AND REVISIONS FOR PRINTINGS 3 AND HIGHER

PAGE/LINE
$\mathrm{v} /-15 . .-6$ In place of the passage 'The instructor may ... subdirectory / pub/clint.' subsitute:

Instructors can obtain a set of solutions to the starred exercises by contacting the third author, whose web page also provides useful software, a manual of computational laboratories, and several supplements.
vi/11 for 'Appendixes' read 'Appendices'
$1 / 12,13 \quad$ replace 'natural number such as' by
'natural number greater than 1 such as'
$1 /-2 \quad$ replace 'any exponent' by 'any integral exponent'
$2 / 5 \quad$ replace 'natural numbers' by 'integers'
$3 /-10,-11 \quad$ replace 'is a logical consequence of the first' by
'is logically equivalent to the first'
18/3 between 'of' and 'integers' insert 'two or more'.
29/-3 replace 'numbers n ' by 'numbers $n \geq 4$ '
[Thanks to Art Benjamin for pointing this out.]
56/2 Replace ' $a d-b c$ ' by ' $a d+b c$ '
57 /Exercise 14 replace 'all n ' by 'all $n \geq 0$ '
$88 / 6 \quad$ replace ' $f^{\prime}(5)=1 \not \equiv 0(\bmod 7)$ ' by ' $f^{\prime}(5)=11 \not \equiv 0(\bmod 7)$ '
[Thanks to Peter Kahn for pointing this out.]
102/1 The term 'quadratic residue' is defined in Definition 3.1 on page 131.
$107 / 4 \quad$ replace ' $p \mid\left(a^{2 n}+1\right)^{\prime}$ by ' $p \mid\left(a^{2^{n}}+1\right)$ '
110/-2 The term 'quadratic nonresidue' is defined in Definition 3.1 on page 131.
137/*22. \quad Replace ' $(p+1)^{1 / 2}$ ' by ' $p-1$ '
157/-4 Replace ' $a x^{2}+b x y+y^{2}$ ' by ' $a x^{2}+b x y+c y^{2}$,

NZM corrections, continued

161/15 To the end of the definition append: '(When $d<0$, we count /it only the positive definite forms.)'
182/1 Replace 'de Plignac's formula.' by '(Legendre)'
195/Problem 5Replace ' $2^{\omega(n) .}$ ' by ' $2^{\omega(n)}$.'
197/-8 for 'Slow' read 'Show'
207/13 Replace 'permits' by 'permutes'
$237 / 10 \quad$ Replace ' $(-1,1),(0,1),(3,11)$,' by ' $(-1, \pm 1),(0, \pm 1),(3, \pm 11)$ '
293/-20 replace 'Section 1.1 ' by 'Section 1.2 '
[Thanks to Harley Flanders for pointing this out.]
308/6 \quad Replace $\sqrt{5}$ ' by $\sqrt[3]{5}$,
318 Between Corollary 6.27 and its proof, insert the following paragraph:
With a small amount of calculation one can show that 33 is not the sum of five positive perfect squares, but that every integer $n, 34 \leq n \leq 169$, is the sum of five positive squares. Hence the constant 169 in the corollary above can be replaced by 33 , but not by any smaller number. [Thanks to P. T. Bateman for suggesting this.]
$321 / 12 \quad$ Wrong font: ' $\mathbf{b} f_{1}=g$ ' should be ' $\mathbf{b} \mathbf{f}_{1}=g$ '
$356 /-7 \quad$ Replace ' $x_{2}=y_{2} \sqrt{d}$ ' by ' $x_{2}+y_{2} \sqrt{d}$ '
[Thanks to Greg Martin for pointing this out.]
448/-1 Replace ' $q^{e}(n)=q^{o}(n)$ ' by ' $q^{e}(n)-q^{o}(n)$ '
[Thanks to Greg Martin for pointing this out.]

