OMPUTATIONAL

LABORATORIES
l
N UMBER

| .

THIRD EDITION
by
Hugh L. Montgomery

A Supplement to

AN INTRODUCTION TO THE THEORY OF NUMBERS
FirTH EDITION
by
Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery

John Wiley & Sons, Inc.

Publication history:

First Edition December, 1992
Second Edition September, 1994
Third Edition January, 2001

© Copyright 1992, 1994, 2001 by Hugh L. Montgomery

Preface to the Third Edition

Throughout its long history, number theory has been characterized by discovery based upon
empirically observed numerical patterns. By using a computer with appropriate software,
the student can now inspect data that is both more extensive and more accurate than in
former times. With this in mind, a set of 73 programs has been prepared for use in the
classroom as an aid to instruction, for use by students in individual study and exploration,
and also in structured laboratories. These programs are written in Borland’s Turbo Pascal
version 7.0, running under DOS on IBM PC-compatible machines. Source code is available
by request. Some of these programs, such as FacTab and PowerTab, display data in which
patterns may be detected. Other programs, such as EuAlgDem and PwrDemla, offer
demonstration of specific algorithms that are employed in computations. Finally, a third
class of programs, typified by Factor and GCD, perform useful calculations on demand.
The programs relevant to a particular section of NZM are listed in the table Programs by
Section. Before embarking on a section, the instructor may wish to experiment with these
programs, in order to become familiar with their operation.

It was intended that the algorithms employed in the accompanying programs should
be limited to those discussed in the text, so that the student would be in a position
to understand exactly what each program is does. As the programs developed, a few
exceptions to this rule have crept in, as follows: In the program Ind, for calculating the
index (i.e., discrete logarithm), a method of Shanks is used. This is explained in Laboratory
12, in the documentation of the program, and also in the demonstration provided by the
program IndDem. In the program ProveP, which is based on Problem 39 at the end of
§2.8, an extra device invented by H. C. Williams has been added. For details see the
description of this program in the Reference Guide to Turbo Pascal Programs, in this
manual. The scheme for calculating the Lucas functions, described in §4.4, has not been
followed, because the one sidestep formula involves division by 2, which is problematic when
the calculations are being done modulo m with m even. For an account of the method
actually used, see the description of the program Lucas in the Reference Guide to Turbo
Pascal Programs. The disadvantage of using only those algorithms found in the text is that
in some cases faster execution could have been achieved by using some other algorithm.
This particularly the case with programs that involve factoring (the number field sieve
is faster), proving primality (the Atkin-Morain and the Adleman-Rumely methods are
faster), or locating the roots of polynomial congruences modulo p (the Cantor-Zassenhaus
method is much faster).

il

If your students have experience in programming, you may wish to make the source
code of these programs available to them. By examining the source code, a student may
see in detail how a particular algorithm has been implemented. On the other hand, an
effort has been made to design programs whose operation is so natural that very little
time will be needed to learn how to use them. Thus students unfamiliar with computers
or programming should have no difficulty.

In order to avoid the necessity of programming in multiple precision arithmetic, in-
tegers in these programs are limited to at most 10'® in size. This is adequate for most
purposes, but is a disadvantage in some contexts.

If you encounter any problem with the operation of the Turbo Pascal programs, or
have suggestions for their improvement, please communicate your comments to me at
hlm@math.lsa.umich.edu, or by snail mail.

These computational laboratories are still in an experimental stage. More labs and
programs are needed. In addition, some labs may be too long, or too difficult, or may
ask the wrong questions. Any thoughts you have would be appreciated. You may want to
compose your own, but it is hoped that the ones here at least offer inspiration.

It is a pleasure to thank A. O. L. Atkin, J. D. Brillhart, H. Flanders, D. E. G. Malm,
C. Pomerance, J. L. Selfridge, R. C. Vaughan, Ulrike M. A. Vorhauer, and S. S. Wagstaff
Jr. for their helpful comments and suggestions.

Hugh L. Montgomery
29 December, 2000

v

Contents

Preface

Programs by Type

Programs by Section

Warning
Laboratories
1 GCDs & The Euclidean Algorithm 1
2 Factorization and Prime Numbers 7
3 Congruences 11
4 Sums of Two Squares 13
5 Solutions of Congruences & Binomial Coefficients 17
6 Linear Congruences & The Chinese Remainder Theorem
7 Powering Algorithms & Primality Testing 25
8 Factoring Strategies 29
9 RSA Public Key Cryptography 35
10 Hensel’s Lemma, 43
11 Power Residues & Primitive Roots 45
12 Indices — The discrete Logarithm 49
13 Proving Primality 55
14 Square Roots Modulo p 59
15 Quadratic Residues 61
16 Binary Quadratic Forms 65
17 Arithmetic Functions 69

Reference Guide to Turbo Pascal Programs

iii

vi

viii

ix

21

73

Programs by Type

CALCULATIONS

Carmichael function car(m)
Chinese Remainder Theorem
convert decimal to rational
convert rational to decimal
determinant modulo m

discrete logarithm base g of a modulo p

factor n
by trial division
by p — 1 method
by rho method
find next prime
greatest common divisor
index base g of a modulo p
Jacobi symbol (g)
Lucas functions U,, V,, modulo m
multiply residue classes modulo m
order of a modulo m
phi function ¢(n)
m(x)
power a®¥ modulo m
primitive root of prime p
prove primality of p
reduce az? + by + cy?
represent n as sum of s k-th powers
roots of
ar =b (mod m)
f(z) =0 (mod p)
P(z) =0 (mod m)
z2=a (mod p)
Ax = b in integers
square root modulo p
strong pseudoprime test of m base a

car [m]

crt [a1 mq{ as m2]
d2r [x]

r2d [a q]

detmodm

ind [g a p]

factor [n]

p-1 [n [al]
rho [n [c]]
getnextp [x]
ged [b c]

ind [g a p]
jacobi [P Q]
lucas [n [a b| m]
mult [a b m|
order [a m [c]]
phi [n]

pi [x]

power [a k m]
primroot [p [a]]
provep [p]
reduce a b ¢
sumspwrs [n s K]

lincon [a b m
hensel
polysolv
sqrtmodp [a p]
simlinde
sqrtmodp [a p]

spsp [[a] m]

DEMONSTRATIONS

Chinese Remainder Theorem
determinants modulo m

discrete logarithm base g of a modulo p

Euclidean algorithm

vi

crtdem
detdem
inddem [g a p|
eualgdem

factorization

by p — 1 method p-1ldem

by rho method rhodem [n]
greatest common divisors fastged, slowged

(see also Euclidean algorithm)
heapsort algorithm hsortdem
index base g of a modulo p inddem [g a p|
Jacobi symbol (g) jacobdem [P Q]
linear congruence az =b (mod m) 1ncndem [a b m]
Lucas functions lucasden [n [a b| m]
multiplication of residue classes multdeml, multdem2, multdem3
order of a modulo m orderdem [a m [c]]
powering algorithm pwrdemla [a k m|,

pwrdemlb [a k m|,
pwrdem2 [a k m|

RSA encryption rsa, rsapars
square root modulo p sqrtdem [a p]
strong pseudoprime test of m base a spspden [[a] m]

TABLES

arithmetic functions w(n),Q(n), u(n),d(n), #(n),o(n) arfcntab
base conversions for integers basestab
binary quadratic forms

reduced forms qformtab

forms equivalent to f(x,y) reduce
binomial coefficients modulo m pascalst
class numbers clanotab
congruential arithmetic cngartab
discrete logarithms indtab
factorials modulo m fctrltab
Farey fractions fareytab, fractab
greatest common divisors gcdtab
indices indtab
intersection of arithmetic progressions intaptab
Jacobi symbols jacobtab
least prime factor factab
linear combinations lncomtab
Lucas functions lucastab
Pascal’s triangle modulo m pascalst
order of a (mod m) ordertab
powers of a modulo m powertab

representations as sums of powers
roots of

f(z) =0 (mod p)

P(z) =0 (mod m)

sumspwrs, wrngtab

hensel
polysolv

vii

Programs by Section

viii

1.2

1.3
1.4
2.1

2.2
2.3
24

2.5
2.6
2.7
2.8

2.9
2.10
3.1
3.2
3.3
3.5
3.6
3.7
4.2
4.4
5.1
5.2
6.1
7.1

Div, CoDivTab, SlowGCD, FastGCD, GCD, EuAlgDem,
LnComTAb, GCDTab, CoMulTab

FacTab, Factor, Pi, GetNextP

PascalsT

CngArTab, FctrlTab, PowerTab, Phi, Mult, Power, DetModM,
DetDem, SumsPwrs

PolySolv, LinCon, LnCnDem

IntAPTab, ResComp, CRT, CRTDem, Phi

MultDem1, MultDem2, MultDem3, PwrDem1la, PwrDem1b,
PwrDem?2, SPsP, SPsPDem, Rho, RhoDem, P-1, P-1Dem
RSA, RSAPars

Hensel

PolySolv

Order, OrderDem, PrimRoot, Ind, IndTab, IndDem, HSortDem,
ProveP, Car

SqrtModP, SqrtDem

CngArTab

Jacobi, JacobTab

Jacobi, JacobTab

JacobDem

QFormTab, Reduce

Reduce, SumsPwrs

ClaNoTab

ArFcenTab

Lucas, LucasTab, LucasDem

SimLinDE

SimLinDE

FareyTab, FracTab

D2R

Warning

The accompanying programs are intended for educational use only. We make no warranty,
express or implied, that the programs are free of error, that they meet any particular
standard of merchantability, or that the values they yield are accurate. Some of these
programs have been put through strenuous tests, but many others have been checked only
in the most casual manner. In order to extend the range of integers that may be dealt
with, most of these programs use floating-point real arithmetic in their execution. Thus
the accuracy of the results cannot be guaranteed, and consequently these programs should
not be used for serious mathematical research. Any such use would be entirely at the
user’s own risk. The author disclaims all liability for direct, incidental, or consequential
damages resulting from your use of these programs.

X

Computational Laboratories in Number Theory

LABORATORY 1
GCDs & The Euclidean Algorithm

Programs Used: SlowGCD, FastGCD, GCD, EuAlgDem,
LnComTab, GCDTab

1. The most direct method of calculating the greatest common divisor of two numbers b
and ¢ would be to make a list of the common divisors, and note the value of the largest
common divisor. This would involve dividing each of the numbers 1,2,..., min(|b|,|c|)
into both b and c¢. This brute force method is used by the program SlowGCD. Use
SlowGCD to calculate the value of (1271,4521). (Type slowgcd [Enter], and then you
will be prompted for the arguments.) Note how long the calculation took. Formulate a
hypothesis about how much longer this program will take to evaluate (12712,45212). Test
your hypothesis by running SlowGCD with these arguments. Note the running time. In
trying out this program with various arguments, be careful to use small numbers. If you
put in large numbers then the program will run for a long time, and you will have to type
Ctrl-Alt-Del) to recover its use.

2. The ged symbol (b, c¢) is defined for any pair of integers, not both equal to 0. This
quantity enjoys four basic identities:

i) (b,¢) = (=b,c);

ii) (b,c) = (b+ mec, c) for all integers m;
iii) (b,c) = (¢, b);
iv) (b,0) = \b|

By using these identities systematically (recall pp. 10-12 of NZM), we may reduce the size
of the arguments until iv) applies, and the value emerges. For example,

(31,12) = (31 — 2-12,12) = (7,12)
=(12,7)=(12-1-7,7) = (5,7)
= (7,5) = (T—1-5,5) = (2,5)
=(5,2)=(5-2-2,2)=(1,2)
=(2,1) = (2—2 1,1) = (0,1)
=(1,0)=

Apply this reasoning to calculate (127,49), and type eualgdem 127 49 [Return] to verify
your arithmetic.

3. In the calculation displayed above, we have written down more than we need. Since
each new number is the remainder after division, it suffices to write down only these

1 Computational Laboratories in Number Theory

remainders, 31,12,7,5,2,1,0. The ged of any two consecutive members of this sequence is
constant throughout. When we consider the last two numbers, we see that the ged is the
last positive remainder in the sequence. Sequences generated in this way are very rapidly
decreasing, and hence are not very long. Thus the gecd is much more quickly determined by
this method—known as the Euclidean Algorithm. The program FastGCD uses this faster
method to evaluate gcds. Apply FastGCD to the same pairs of numbers that you used
with SlowGCD, and record the running times. Also use FastGCD to calculate the ged for
a pair of 2 digit numbers, a pair of 4 digit numbers, a pair of 8 digit numbers, a pair of
16 digit numbers. Make a record of the numbers used, and the running times. How does
the running time seem to depend on the size of the inputs?

4. The Euclidean Algorithm can be modified in various ways to make it still faster.
For example, in performing divisions, one may round to the nearest integer instead of
rounding down. This gives rise to negative remainders, but the remainders decrease in
absolute value a little faster than formerly. For example, to calculate (31,12) in this way,
we would generate the sequence of remainders 31,12, —5,2,1,0. This sequence saves one
step over the sequence of 3. above. The program GCD uses this enhanced scheme. Type
gcd 12345 54321 [Enter], and note the result. This program will prompt you for the
arguments if you forget to put them on the command line. Type gcd [Enter], and follow
the prompts.

5. The program LnComTab displays linear combinations zb + yc of two given integers b
and c. Start with b = 9, ¢ = 15. Note that the resulting table is antisymmetric about
the origin. Why is this? What is the smallest number (in absolute value) that you see?
How is this related to (9,15)? (Recall Theorem 1.4 of NZM.) Is the table periodic in
any way? At what locations do you find a 0?7 Let C denote a collection of 5 consecutive
columns. Show that every number that occurs somewhere in the table is found exactly
once in C. Do the same for R, which consists of 3 consecutive rows of the table. Where
do the numbers “5” and “3” come from? What would they be replaced by, if the values
of b and ¢ were changed? Take now b = 3, ¢ = 5. How is this new table related to the
one you were looking at before? Note that small values on the table follow a line pointing
roughly NorthWest-SouthEast. Use the arrow keys to follow these small values. What is
the slope of the line along which these small values lie?

6. Type eualgdem [Enter], and then provide the arguments b = 12345, ¢ = 54321.
The remainders are now presented in a neat table. The arguments can be altered without
leaving the table. Type b, then 54321 [Enter], then c, and finally 12345 [Enter].
The two arguments have been reversed. What effect does this have on the sequence of
remainders generated? Does this persist in general? Can you prove it?

Substitute some large arguments, say > 10'6. The table of remainders is now too
large to fit on one screen. Use PgDn and PgUp to scroll down and up through the table.

7. Let j = j(b,c) be the index of the last positive remainder in the sequence of remainders
generated by the Euclidean Algorithm, so that r; = (b,¢) and rj41 = 0. Thus j +1

divisions have been performed in the calculation. For given b and c, the value of j(b,c)

2 Computational Laboratories in Number Theory

is easily determined by reading the index of the bottom line in the table provided by
EuAlDem?2. Using this program, try to answer the following questions. What is the least
pair of integers b, ¢ with b > ¢ > 0 such that j(b,c) =17 =27 =37 =47 Can you
spot a pattern? Can you prove that it persists?

8. Use EuAlgDem as in 6. to determine the value of j(b,c). If b and ¢ are large, is j(b, c)
necessarily large? For 10 different pairs of “randomly chosen” large values of b and c,
record the value of j(b,c). How large is j(b,c) on average?

9. The quotients ¢; generated by the Euclidean Algorithm are displayed in the table
provided by EuAlgDem. By hand calculation, find a pair b, ¢ of integers, each > 103,
such that ¢; = 1 for all 4. (Hint: Start at the end and work back toward the beginning.
If r,=1and rj_; =1 then

T'j_2=7‘j_1Qj+7‘j=1-1—|—1=2,
rj—3 =Tj—2Qj—1 +7Tj-1 =2-14+1=3,

and so on.) Similarly, find a pair b and c of integers > 105 for which ¢; = 10 for all
1. In both cases, confirm your results by using EuAlgDem. Quite clearly, the sequence
of ¢; could be anything. However, for most pairs b, ¢ the g¢; follow a definite statistical
distribution. About 0.415 of them are = 1, about 0.170 of them are = 2, about 0.093
of them are = 3, and so on. More precisely, we expect that ¢; = k for a proportion of
approximately

(log(1+ 1/k) —log(1+1/(k + 1))/ log 2

of the 7. Gauss claimed to have proved this, but his proof (if he had one) is unknown. The
first known proof was given in 1928 by R. O. Kuz’min. Using modern tools, one finds this
result as an easy consequence of the ergodic theorem. Choose a pair of large integers b, c
at random, and use EuAlgDem to generate the ¢;. How close to the expected distribution
are the ¢; 7

10. As is discussed on pp. 1315 of NZM, each remainder r; generated by the Euclidean
Algorithm is a linear combination of the b and ¢ that initiated the sequence. That is,
r; = x;b+y;c. These z; and y; are not uniquely determined. (For example, if we replace z;
by z;4c and at the same time replace y; by y; —b then the value of x;b+y;c is unchanged.)
However, one set of natural values for the x; and y; is given by the recursions

Ti = Ti—2 — ¢iTi—1,
Yi = Yi—2 — §iYi—1-
Indeed, it is this same recursion,
Ty = Ti—2 — ¢iTi—1
that generates the r;. These z; and y; are displayed by EuAlgDem. What do you note

about the signs of these numbers? About their absolute values? Can you prove that these
patterns hold in general? What values are taken on by z;y; 1 — z;—1v;?

3 Computational Laboratories in Number Theory

11. The program GCDTab displays the greatest common divisors of pairs of integers.
After invoking this program, use the arrow keys to move away from the origin. Each
gcd displayed is calculated (by the Euclidean Algorithm, of course) and then immediately
written to the screen. Admire how quickly this is accomplished. What value occurs most
frequently? Enter b = 3300 and ¢ = 2200 to move to a new location in the screen. Note
that there are two columns near the middle of the screen that consist entirely of 1’s. Use
the 1 and | keys to examine more entries in these columns. Why do these columns contain
so many 1’s? Where in these columns will one find larger entries?

12. In EuAlgDem, the quotients are initially determined by rounding down,

q; = [Ti—z/rz'—l],

but one can switch to rounding to the nearest integer by pressing N. For several pairs b,
c¢ compare the to calculations. How many steps are saved when rounding to the nearest
integer? Is there much in common among the two sets of ;7 Try the pairs b, ¢ that you
found in 9. with all ¢; =1 and all ¢; = 10. What do you find?

13. For the programmer. Write a program in which b and ¢ run independently from 1 to
some number N. For each pair, evaluate (b,c). Count the number K of pairs for which
(b,c) = 1. What is the proportion K/N2? How close is it to 6/727 How does the running
time of this program depend on N7 For any fixed g > 0, the density of pairs b, c, for
which (b,c) = g is asymptotically 6/(mg)2. You could write your program so as to track
the incidence of other small values of the gcd.

14. For the hopelessly addicted programmer. Construct a routine that evaluates j(b,c).
Use this in a program that chooses pairs b, ¢ of large integers (~ 107) at random,
and tabulates the value of j(b,c). For 10,000 such pairs, say, how are the values of j
distributed? What is their mean? Max? Min? Standard deviation? For the theory behind
this, consult J. Dixon, The number of steps in the Euclidean Algorithm, J. Number Theory
2 (1970), 414-422. How close are your numerical values to the theoretical prediction?

15. For the truly ambitious. In addition to rounding to the nearest integer, the Euclidean
Algorithm may be enhanced by removing powers of 2 whenever possible. Your machine
knows b as a string of binary digits, so the power of 2 dividing b can be read as a block
of trailing 0’s. One may divide by 2 by right-shifting the binary expansion. This is much
faster than long division (or at least it should be). Suppose that 27||b and that 2¥|c.
Put ¥ =b/27, ¢ = ¢/2*, and set m = min(j, k). Then (b,c) = 2™(¥,c'). Now use the
following identities, as appropriate:

) (b,c) = (¢, b) (use this to ensure that b > ¢ > 0),

ii) (b,c) = (b—c¢,c) (use this when b>¢ >0 and b and ¢ are both odd),
iii) (b,c) = (b/2 c) (if b is even and c¢ is odd),
iv) (b,0) = (if b>0).

4 Computational Laboratories in Number Theory

The point here is that if b and ¢ are odd then b— ¢ is even, so that iii) becomes applicable
after ii) has been applied. Division by 2 is accomplished by right-shifting the binary
expansion. Thus the usual division, which is slow, is avoided. With gcd evaluated in
this way, write a program that calls gcd repeatedly, and keeps track of the elapsed time.
Compare these times with the times obtained similarly using FastGCD. Because of slow
string manipulation, in Turbo Pascal, it may emerge that your new—and complicated—
version of ged is in fact slower. It may be necessary to resort to assembly language if a
gain is to be realized.

) Computational Laboratories in Number Theory

Computational Laboratories in Number Theory

LABORATORY 2

Factorization and Prime Numbers
Programs Used: FacTab, Factor, GetNextP

The program FacTab produces a table of least prime divisors of odd numbers, up to
10°. The values are calculated by dividing small primes into the numbers in the desired
range, until the only numbers for which a least prime divisor has not been found are prime.
Let p be a given prime number. The least composite integer n such that p is the least
prime factor of n is n = p?. (In this connection, recall Problem 24. on p. 30 of NZM.)
Thus if one is to prepare a table of least prime factors of integers in an interval [a, b], then
it is useful to have on hand a table of all primes p < b/2. In the case of FacTab, the
intervals considered are of the form [10N, 10N + 200] with N < 10®. Since 31607 and
31627 are consecutive primes, and since

316072 < 10° + 200 < 316272,

it suffices to have a table of primes through the prime 31607. Such a table of primes may
be constructed as follows: Consider a sequence ai, as, ..., azigor of 0’s and 1’s. Initially
we take a; = 0, and a; =1 for all + > 1. We operate on this sequence so that eventually
a; = 1 if ¢ is prime, a; = 0 otherwise. Start with p = 2, and while p < 173 perform
the following operations: Put j = p?. This is the least composite integer such that a; is
still 1. Put a; = 0. Replace j by j + p, and set a; = 0. Replace j by j + p. Continue
in this manner until j7 > 31607. By examining the numbers a,;1,apy2, ..., find the least
integer ¢ such that ¢ > p and a, = 1. Then ¢ is the least prime number greater than
p- Replace p by ¢, and start over. This method of generating primes is known as the
Sieve of Eratosthenes. It suffices to sieve only to p = 173, since 173 is the largest prime
< V/31607. FacTab constructs a table of small primes in this way when the program is
first loaded, with one modification: Since the even numbers are immediately eliminated,
FacTab saves time and memory by applying the sieve only to the odd integers.

1. Use FacTab to view the least prime factors of the odd numbers in an interval. You will
note that the least prime factor of numbers of the form 10k + 5 display a certain pattern.
Describe this pattern, and prove that it persists.

2. Can you find any other patterns similar to the one noted above?

3. For 5 < k < 20, how many primes lie between e* and e*+100 ? How do these numbers
compare with 100/k ?

4. For several values of z and h (with h small compared with z), count the primes
between z and x + h, and compare the result with h/logz.

5. How many primes lie between 20831330 and 20831530 ? By using PgUp and PgDn,
determine whether this is typical of similar intervals in this vicinity. For a report of a more

7 Computational Laboratories in Number Theory

extensive study of the gaps between primes, see D. Shanks, On Maximal Gaps between
Successive Primes, Math. Comp. 18 (1964), 646-651.

6. For how many integers n < x is the least prime factor of n greater than 27 Greater
than 37 Than 57 Than 77 How do these numbers increase with 2?7 Formulate a conjecture
concerning the asymptotic behavior. Can you prove your conjecture? (Theorem 8.8(e) and
Theorem 8.29 of NZM are relevant here.)

7. A prime number p is called a twin prime if p + 2 is also prime. Repeat Problem 3
above, but this time counting only twin primes. How do the counts compare with 100/k2 ?
Do you conjecture that there are infinitely many twin primes, or do you conjecture that
there are only finitely many?

The program Factor determines the canonical factorization of an integer n by trial
division. Suppose that prime factors < d have been found, and removed, leaving an integer
m yet to be factored. If m = 1 then we are done. If 1 < m < d? then m is prime, and we
are done in this case also. Otherwise, we divide d into m. If d|m then d is prime, and we
repeatedly divide by d until d no longer divides the remaining number. Then we replace
d by d+ 1 and repeat the process. To save time, after powers of 2 have been removed,
only odd d are considered. Further savings can be obtained by noting that after removing
powers of 2 and of 3 it suffices to consider d of the forms d =6k —1, d = 6k+1. FacTab
takes this a step further: After powers of 2, 3, and 5 have been removed, only those d of
the eight forms 30k+1, 30k+7, 30k+11, 30k+13, 30k+17, 30k+19, 30k+23, 30k+29
are considered. Thus d is replaced by d + 30 after only 8 trial divisions. This method is
in principle slightly wasteful, because it would be enough to consider prime values of d,
but in practice it seems to take longer to generate a table of primes. (Try it, if you like to
write programs.) Instead of generating a table of primes, one could construct a permanent
file listing primes, and then call the needed primes from that file, but this seems to take
still longer.

8. Use FacTab to find the largest prime < 10* for k = 1,2,...,9. Apply Factor to each
of these nine primes, and note the time required to perform the calculations. Is the time
roughly c¢y/n 7 What values of ¢ do you observe?

9. Apply Factor to each of the numbers 10 — k for £k =1, 2, ..., 9. In some of these
cases, you will tire of waiting for a complete resolution. To interrupt the program, simply
press a key, and note how the program reports its partial results. (In laboratories 8 and
19 you will be introduced to programs that deal more quickly with numbers that resist
treatment by Factor.)

10. Apply factor to 20 randomly-chosen numbers =~ 10°. Make a record of these numbers,
and note which ones are square-free. What proportion of them are square-free? How close
is this proportion to 6/72 = 0.6079... ? How many integers n < x are not divisible by
47 How many are not divisible by 97 How many by neither 4 nor 97 The proportion of
n < z for which 4/n and 9/n tends to a limit as x tends to infinity. What is this limit?

8 Computational Laboratories in Number Theory

Can you guess how this limit would change if we also require that 25f/n ? (See Theorems
8.25 and 8.29 of NZM.)

The program GetNextP yields the least prime p greater than a given number a,
provided that a < 10°. For a in this range, GetNextP uses the same sieving procedure as
found in FacTab. For larger values of a, 10° < a < 10'8, the program GetNextP locates
the least integer ¢ > a that is likely to be prime. That is, the interval (a,q) contains
no prime number and ¢ is “probably” prime (in the sense that it passes several strong
pseudoprime tests; this is discussed on pp. 77, 78 of NZM, and also in Laboratory 7). In
Laboratory 11 technique is introduced by means of which it is possible to prove that a
number ¢ is prime, much more efficiently than would be done by trial division.

11. Use GetNextP to find the least prime p > z, for several z ~ 108. How are the
differences p — x distributed? What is their mean? If you like to program, you could
conduct a larger study, and a more detailed statistical analysis.

The asyptotic situation remains a matter of conjecture, but it is expected that as =
tends to infinity, the mean lies between (1 — €)logx and (1 + €)logz. Also, for any fixed
¢ > 0, it is predicted that the proportion of integers x < X such that p—x > clogx tends
to e ¢ as X tends to infinity.

12. Write a program that deletes from a given sequence of integers those that are divisible
by the square of a prime. In this way, count the number of square-free integers in various
short intervals, and also the number of square-free integers not exceeding 10%.

In Theorem 8.25 of NZM it is shown that the number Q(z) of square-free integers
not exceeding x is cz + O(\/r) where ¢ = 6/72. (The O-notation is defined on p. 365
of NZM.) Tt is conjectured that the error term here is actually O(x%) for any 6 > 1/4.
Although such a strong upper bound for the magnitude of the error term has not yet been
proved, it is known that the error term does achieve the order of z!/* infinitely often.
Does the numerical evidence generated by your program support the stronger conjecture?
Still less is known concerning the variation in the number of square-free numbers in short
intervals.

9 Computational Laboratories in Number Theory

10

P = NP

(if N=1)

Computational Laboratories in Number Theory

LABORATORY 3

Congruences

New Programs: CngArTab, Mult, MultDem1, MultDem2, MultDem3,
PowerTab, FctrlTab, PolySolv

1. The program CngArTab displays the addition and multiplication tables of congruence
arithmetic. After entering an initial modulus m, you may switch between the two tables
by pressing s. Reduced residue classes are displayed in white, to aid in distinguishing
them from non-reduced residue classes, in yellow. In the multiplication table, which rows
constitute a complete residue system (each residue once and only once)? Refer to Theorem
2.6 of NZM.

2. If two reduced residue classes are multiplied, is their product necessarily a reduced
residue class? Experiment, and recall Theorem 1.8 of NZM.

3. When viewing the multiplication table, the display can be restricted to the reduced
residue classes by pressing r. Try this with m = 15, for example. Do the numbers in a
given row of the table constitute a system of reduced residues? Refer again to Theorem
2.6 of NZM. Try this also with m = 91, and note the location of the gaps in the reduced
residues.

4. Take m = 35 in CngArTab. For which a (mod 35) does there exist an z such that
ar =1 (mod 35)7 That is, in which rows of the multiplication table do you see a 17 Is

there any row containing more than one 1?7 (Numbers in the first column don’t count.)
Refer to Theorem 2.9 of NZM.

Suppose that 0 < a < m and 0 < b < m, and that we wish to find a number ¢
in this same interval such that ¢ = a +b (mod m). If a + b < m then this is easily
accomplished by taking ¢ = a+b. The only other possibility is m < a+b < 2m, in which
case it suffices to take ¢ = a + b — m. Thus it is easy to compute the sum of two residue
classes. Multiplication may be approached similarly: We first form ab, and then apply the
Division Algorithm, so that ab = ¢gm + r with 0 <r < m. Then ab=7r (mod m), and
we are done. However, a computational problem arises if m is large, because ab may be
nearly as large as m?2. For example, our Turbo Pascal programs perform integer arithmetic
accurately only up to 10'®. For m < 10% we proceed as above, but for 109 < m < 10'® we
have a challenge: Find r, 0 < r < m, so that ab=7r (mod m), with using only numbers
in the interval [—10'8 10'®]. One approach to this is sketched in Problem 21 at the end
of Section 2.4 of NZM. This procedure is displayed by the program MultDeml. It works
pretty well if m is not too large (say 10° < m < 10'2), but for really large m (those
close to the upper limit 10'®), this procedure is slow. An alternative method, described
in MultDem?2, is faster for 102 < m < 10'®. In practice we choose one or the other of
these methods, depending on the size of m. This is demonstrated in MultDem3. From

11 Computational Laboratories in Number Theory

the command line you can multiply residue classes by using the program Mult. Try typing
mult 2 3 5 [Enter]. Alternatively, type mult [Enter], and respond to the prompts.

5. Use the program PowerTab to investigate the following questions. For which values
of a (mod m) is the sequence a®, a', a2, ... (mod m) eventually periodic? Purely
periodic? Try all values of a for several moduli (say m = 4,5,6,7), and note the results.
Formulate conjectures concerning the general situation. How does the behavior for prime
m differ from composite m? Is the value of (a,m) relevant? For now you can assume
that PowerTab computes the powers of a (mod m) sequentially. Actually, this program
can skip forward to calculate a™ (mod m) quickly, without determining the intervening

powers. This involves an algorithm that will be discussed in Laboratory 7.

6. The number of reduced residue classes (mod m) is called ¢(m). (See pp. 50, 51
of NZM.) Determine the value of ¢(91) by the following method: There are precisely
13 numbers a, 0 < a < 91 such that 7|a. Similarly, there are precisely 7 numbers a,
0 < a < 91 for which 13|a, and precisely 1 number a, 0 < a < 91 for which both
7la and 13|a. Hence ¢(91) = 91 — 13 — 7+ 1 = 72. By using CngArTab to view the
multiplication table (mod 91) with only reduced residues displayed, you can confirm that
this calculation is correct. More generally, if n = p;ps where p; and p, are distinct primes,
then ¢(n) =n—n/p1 —n/pa+1=n(l—1/p1)(1 —1/ps). This approach can be extended
to numbers with more prime factors, by means of the principle of Inclusion-Exclusion (see
pp- 209, 210 of NZM). An alternative method of developing a formula for ¢(m), based on
the Chinese Remainder Theorem, is found on p. 69 of NZM. Use PowerTab to view the
powers of b, reduced modulo 91. Note that 52 =1 (mod 91) whenever (b,91) = 1, as
predicted by Euler’s Congruence (Theorem 2.8 of NZM). Is there a smaller exponent with
this same property?

7. The program FctrlTab generates a table of the numbers k! (mod m). Use FctrlTab to
view the factorials modulo 345345. What is the least k& such that k! =0 (mod 345345)7
Is it necessarily the case that (k,345345) > 17 Use Factor to determine the factorizations
of k and of 345345. Use FctrlTab to view the factorials (mod p) for several prime numbers
p. Is there any pattern exhibited by (p—1)! (mod p)? By (p—2)! (mod p)? By (p— 3)!
(mod p)? Formulate conjectures. Can you prove that each one of these conjectures implies
the others? See Wilson’s Theorem (Theorem 2.11 of NZM).

8. For each integer m let k(m) denote the least positive integer k such that k! = 0
(mod m). Clearly k(p) = p if p is prime. If m is composite then k(m) is smaller. How
much smaller? Is it usually small? Is it usually large? Does it oscillate a lot? Use FctrlTab
to determine k(m) for several values of m, and interpret your findings.

9. The program PolySolv allows you to define a polynomial f(z), and then find the roots
of the congruence f(z) =0 (mod m). The program runs rather slowly when m is large,
since f(a) is evaluated (mod m) for every a, 0 < a < m. Use PolySolv to find the roots of

r2=1 (mod p) for several small primes p, and note that the results conform to Lemma
2.10 of NZM.

12 Computational Laboratories in Number Theory

LABORATORY 4

Sums of Two Squares
New Programs: SumsPwrs, WrngTab

1. Apply the program PolySolv to the polynomial f(z) = x?+ 1. Take the modulus to be
a prime number =3 (mod 4), and note that the congruence has no solution, as proved
in Theorem 2.12 of NZM. Take p to be a prime =1 (mod 4). How many solutions are
there? How are they related to each other? Try several different primes =1 (mod 4).
Is the number of solutions always the same? Form a conjecture. (This conjecture can be
proved by applying Corollary 2.27, or by taking d = 4 in Corollary 2.30 of NZM.) How
many solutions are there when p = 27 Let N(m) denote the number of solutions of the
congruence z2+1=0 (mod m). Use PolySolv to determine the value of N(27), N(3%),
and N (57) for several small values of j. Does a pattern emerge?

2. The program SumsPwrs will find all representations of n as a sum of s k-th powers,
by exhaustive searching. If s is large compared with k£ then the time required for this
increases very rapidly with n. Type sumspwrs 1105 2 2 [Enter], or type sumspwrs
[Enter] and respond to the prompts. Let R(n) denote the number of representations of
n as a sum of two squares. That is, the number of ordered pairs (z,y) of integers such
that 2 + 32 = n. (Note that z and/or y may be negative.) Thus from SumsPwrs we
find that R(1105) = 32. A representation n = x? + y? is called proper if (z,y) = 1.
Let 7(n) denote the number of proper representations of n. Using Factor, PolySolv, and
SumsPwrs, determine entries for the table below:

n Factorization R(n) r(n) N(n)

13
17
65
91

1105

The functions N(n) and r(n) are closely related. Can you spot the connection? (These
functions are discussed in §3.6 of NZM, as an application of the theory of binary quadratic
forms.) Theorem 2.15 of NZM asserts that one can determine whether n is a sum of two
squares by inspecting the canonical factorization of n. Is your data above consistent with
this description?

13 Computational Laboratories in Number Theory

3. Choose a prime number p = 1 (mod 4), and set z = (E1)!. Use FctrlTab to
find the value of x (mod p). Then use Mult to confirm that > = —1 (mod p). This
is computationally slow when p is large, because of the large number of multiplications
required to evaluate the factorial. A much faster method for finding solutions of this
congruence is found in Problem 2. of Laboratory 14 (and at the top of p. 111 of NZM).
Once the congruence has been solved, the representation of p as a sum of two squares can
be found quickly, either by using the theory of binary quadratic forms (see Example 3 in
§3.6 of NZM, and also the discussion prior to Problem 3. in Laboratory 16), or by using

continued fractions (as described in Problem 6. at the end of §7.3 of NZM).

4. Let f(r)=22+1. If p=1 (mod 4) then f has exactly one root z for which 0 < z <
p/2. Let p run over a collection of such primes. How are the numbers 2z /p distributed in
the interval (0,1)? It has long been conjectured that these quantities approach uniform
distribution as p runs over all primes =1 (mod 4), p < z, with z tending to infinity. One
could write a program to test how rapidly the distribution approaches uniformity. This
conjecture was finally proved in 1994 (see W. Duke, J. B. Friedlander, and H. Iwaniec,
Equidistribution of roots of a quadratic congruence to prime moduli, Annals of Math.
(2) 141 (1995), 423-441). The proof is quite sophisticated, as it depends on the spectral
theory of modular forms.

5. Let z = (21)!, as in 2. above. What is = (mod p), if p = 3 (mod 4)? Use
FctrlTab to investigate, and recall Problem 18 on p. 57 of NZM. Of the two possibilities
that occur here, it seems not to be known that both occur for infinitely many p = 3
(mod 4), although one might conjecture that each occurs asymptotically 1/2 the time.
One could write a program to generate statistical data. D. H. Lehmer showed that the
two possibilities are connected to whether A(—p) =1 (mod 4) or =3 (mod 4), where
h(—p) is a class number of binary quadratic forms, as defined in Problem 13 on p. 163 of
NZM.

In view of the definition of R(n), it is clear that the sum)" . R(n) is equal to the
number of lattice points (z,y) in the disk of radius /= centered at the origin. As the
number N of lattice points within a convex body C differs from the area A of that body

by an amount that is at most proportional to the perimeter P of that body. That is,
N = A+ O(P). Applying this to the disk, we deduce that

Y R(n) = mz+ O(Vz). (1)

n<z

Let B(z) denote the number of integers n < = that can be expressed as a sum of two
squares. One might think that the relation above suggests that B(z) ~ cz as x tends to
infinity (i.e., the sums of two squares form a set of positive asymptotic density). However,

Landau proved that
bx

Vliog x

14 Computational Laboratories in Number Theory

B(z) ~ (2)

as = tends to infinity. Here b is a certain positive constant. The apparent discrepancy
between these results is reconciled by recognizing that R(n) is usually 0, but if R(n) >0
then R(n) is likely to be large. The tools required to prove (2) are similar to those used in
the analytic proof of the Prime Number Theorem: Dirichlet series, Euler products, contour
integration, etc. For an exposition of this, see W. J. LeVeque, Topics in Number Theory,
vol. II, Addison-Wesley, Reading, 1956, pp. 257-263.

It is known that the limiting approximation in (2) is approached only slowly. A more
accurate approximation to B(z) could be constructed by introducing a second term on the
right hand side of (2), of the form byz/(logz)3/?. Here by is some appropriate constant.
Still greater accuracy would be achieved by introducing a term boz/(log)%/, and so on.
This is discussed by D. Shanks, The second-order term in the asymptotic expansion of
B(z), Math. Comp. 85 (1964), 75-86. It turns out that the constant b in (2) is

1\~ 1/2
b= (2 _H (1 — q_2>) — 0.764223654 . ..
q=3(4)

where the product is taken over all prime numbers ¢ =3 (mod 4).

15 Computational Laboratories in Number Theory

16

Computational Laboratories in Number Theory

LABORATORY 5

Solutions of Congruences & Binomial Coefficients
New Program: PascalsT

The program PolySolv allows you to specify a polynomial f with integral coefficients, and
a modulus m, and then it evaluates f(a) (mod m) for each a, 0 < a < m. On the screen
it displays the residue classes a for which f(a) =0 (mod m), up to the first 100 of them.
If there are more than 100 such a then only the first 100 are displayed, but the program
still reports the total number N¢(m) of roots. Since the running time of this program is
proportional to m, the program will restrict you to m < 10°.

1. Use PolySolv to find all roots of 7z =1 (mod 91); all solutions of 7z =35 (mod 91);
all solutions of 2z =1 (mod 101). Note conformity with Theorem 2.17 of NZM.

In the next three problems, you are asked to gather data concerning the number of
roots of a polynomial f(x) =0 (mod p), for various f and p, and then to formulate a
conjecture. Do not be disturbed if your numerical evidence is too meager to be compelling.
Each polynomial f has a discriminant, denoted D(f), and defined on p. 487 of NZM.
Prime factors of the discriminant are apt to be exceptional, and may not obey the general
pattern.

2. Let f(z) = 23 + z + 1, with discriminant D(f) = —31. Using PolySolv, for each
prime number p < 100 determine the value of Ny(p). What is the biggest value attained?
What values are attained, and with what frequencies? What is the average of the values
calculated? Formulate conjectures regarding the general situation.

3. Let g(z) = 23 + 2% — 22 — 1, with discriminant D(g) = 49. Using PolySolv, for each
prime number p < 100 determine the value of N;(p). What is the biggest value attained?
What values are attained, and with what frequencies? What is the average of the values
calculated? Formulate a conjecture regarding the general situation.

4. Let h(z) = 2? + z + 1, with discriminant D(h) = —3. Using PolySolv, for each
prime number p < 100 determine the value of N, (p). What is the biggest value attained?
What values are attained, and with what frequencies? What is the average of the values
calculated? Formulate a conjecture regarding the general situation.

The situation touched on in Problems 2—4 above is quite complicated. Suppose that
f(z) is a polynomial of degree d with integral coefficients. Then 0 < Nf(p) < d; see
Corollary 2.27 in NZM. The three polynomials considered above are irreducible (over the
field Q of rational numbers). For such polynomials, additional patterns emerge in the

17 Computational Laboratories in Number Theory

statistics of the N¢(p). For each k, 0 < k < d, the primes p for which N;(p) = k have a
certain relative density di. That is, the limit

1
dp = lim —— 1
T—300 w(x) pg;:
Ny (p)=k

exists. These densities are determined by the Chebotarev Density Theorem in terms of
the Galois group of f. Thus the densities depend on the particular polynomial, although
only finitely many configurations can arise. In the case of the polynomial of Problem 2,
the Galois group is S3, and the densities are dy = 1/3, dy = 1/2, da = 0, d3 = 1/6.
In Problem 3, the Galois group is Cj5, and the densities are dy = 2/3, di = dy = 0,
ds = 1/3. (For this polynomial, N;(p) =1 if and only if p = 7.) In Problem 4 the Galois
group is Cy, and the densities are dy = 1/2, d; =0, dy = 1/2, but the situation is more
elementary, since by quadratic reciprocity we find that N¢(p) =2 if p=1 (mod 3), and
Ni(p) =0if p=2 (mod 3). The densities then follow by the prime number theorem for
arithmetic progressions.

Concerning the densities dj, it is obvious that 2221 dr = 1, and it is easy to show

that dg_; = 0. Not so obviously, the d also satisfy the relation 2221 kdy = 1. That is,

1
Jim. (@) > Ni(p) =1 (1)
p<z

for any irreducible polynomial with integral coefficients. This is a consequence of the prime
ideal theorem (which is a natural extension of the prime number theorem to algebraic
number fields). For a more detailed account of how the densities dj, are calculated, see H.
Heilbronn, Zeta-functions and L-functions, Algebraic Number Theory (Brighton, 1965),
Thompson, Washington, 1967, pp. 204-230, especially pp. 227-229.

5. For any two polynomials f(x) and g(z), one can define their resultant, R(f, g). We skip
the definition and fundamental theorems concerning this quantity, and mention just three
useful properties: (i) If f and g have integral coefficients, then R(f,g) is an integer. (ii)
R(f,g) = 0 ifand only if f and g have a common factor (i.e., a common polynomial divisor
of degree > 0). (iii) There exist polynomials u(z) and v(z) with integral coefficients such
that

f(@)u(z) + g(z)v(z) = R(f, 9)-

Suppose that f and g have a common root (mod p). That is, there is an a (mod p) such
that both f(a) =0 (mod p) and g(a) =0 (mod p). On setting = = a in the identity
above, we see that the left hand side is divisible by p, and hence that p|R(f,g). Thus if
p/R(f,g) then f and g have no common root, and it follows that Ny4(p) = Nf(p)+Ng4(p).
Let f be asin Problem 2, and g as in Problem 3, so that f(z)g(z) = 25+2° —2*+23—22—
3z — 1. It can be shown that R(f,g) = 13 in this case. By applying PolySolv, confirm
that f and g have a common root when p = 13. Without performing any additional
calculation, list the roots of f(x)g(z) (mod 13). Apply PolySolv to fg, to confirm your
guess.

18 Computational Laboratories in Number Theory

6. Apply PolySolv with f(z) = ™2 — 1, m = 1733. Having determined the number of
roots of f, can you deduce that m is prime? Is this a time-effective method of proving
primality? Apply PolySolv with f(z) = 2™ — 1, m = 1739. After determining the
number of roots of f, can you deduce that m is composite? (Recall Euler’'s Congruence,
Theorem 2.8 of NZM.) Is this a time-effective method of proving compositeness?

7. Let p = 101, say, and consider f of the form f(z) = z3 + ax® + bz + c. For various
randomly-selected triples a, b, ¢ use PolySolv to determine the value of N;(101). For-
mulate a conjecture regarding the average number of solutions of a polynomial congruence
modulo a prime p, when p is fixed and the polynomial runs over all monic polynomials of
some given degree. (A polynomial is monic if its leading coefficient is 1.) Can you prove
your conjecture?

8. Let f be defined as in Problem 3 above. Suppose that p is a prime such that N;(p) = 2,
and that ¢ is a prime such that Ny(¢) = 3. Use PolySolv to determine the value of Ny(pq).
Try some further examples of this kind. Formulate a conjecture concerning the relationship
between N¢(m), N¢(n), and Ny(mn) when (m,n) =1. (This conjecture is established as
Theorem 2.20 in NZM, as an application of the Chinese Remainder Theorem.)

9. Suppose that pfz. Explain why z(P~1/2 = £1 (mod p). For how many z does
the + sign occur? Take f(z) = 2(®~1/2 — 1 in PolySolv. Try this for several values of
p. Formulate a conjecture. (This conjecture can be derived as an application of the more
general Theorem 2.37 of NZM.)

10. The program PascalsT displays the entries of Pascal’s Triangle (i.e., binomial coefhi-
cients), reduced (mod m). Start with m = 2. The pattern created by rows 0-3 is repeated
twice in rows 4-7, with an inverted triangle of 0’s between. Does this generalize? How
would you express this in terms of equations?

11. For 0 < n <15, count the number of odd entries in the nth row of Pascal’s triangle.
(Take m = 2 in PascalsT.) The totals that arise in this way form a special class of integers.
Describe.

12. When n is written in binary, the number of 1’s in the expansion is called the binary
weight of n, and is denoted w(n). That is, if n = 21 +2%2 4 ... + 2% with 0 <4y < iy <
-+ -i then w(n) = k. Compute w(n) for 0 < n < 15. Note the relation between these
values, and the totals computed in the preceding problem. Form a conjecture. (Problem
16 at the end of §2.2 of NZM is relevant here.)

13. Let p be a prime number. What is the least n such that p|(7,3) for all k& in the range
0 <k <n? (Take m = p in PascalsT, and look for 0’s.) What is the second such n? The
third? (Problem 14 at the end of §2.2 of NZM is relevant here.)

14. For what k£, 0 < k <15, is it true that 3,{/(1,95)? For what k£, 0 < k <15, is it true
that 5/ (1,95) ? Does this suggest something?

19 Computational Laboratories in Number Theory

15. Let p be a prime number. Describe all the patterns that you can find in the sequence
of residues (1) (mod p?).

20 Computational Laboratories in Number Theory

LABORATORY 6

Linear Congruences

& The Chinese Remainder Theorem

New Programs: LinCon, LnCnDem, IntAPTab,
CRT, CRTDem, Phi, ResComp

The program LinCon applies the extended Euclidean algorithm to find the complete solu-
tion set of the linear congruence axz =b (mod m). You can type lincon a b m [Enter],
or simply type lincon [Enter] and follow the prompts. Try it both ways, now. Note
that the conclusions reached are in conformity with Theorem 2.17 of NZM.

1. The computational procedure followed by LinCon is sketched at the end of §2.2 of
NZM, and is described in greater detail on the first three pages of Chapter 5. The steps
involved are displayed by the program LnCnDem. Type lncndem 17 1 101 [Enter],
and follow the explanations given. Alternatively, type 1ncndem [Enter], and provide the
input values as prompted. Apply LnCnDem with a = 7, b = 13, m = 91. Also with
a=>5, b=155, m = 345.

2. You now have two methods for finding solutions of linear congruences. You can
use either (i) LinCon or (ii) PolySolv. Try both methods on the congruence 7z = 1
(mod 1234). Which method takes longer to run? Estimate the running time for the two
methods as a function of m. Which method is asymptotically faster? (Ignore the time it
takes to supply the input information to the programs.)

3. Let m and n be given, and put g = (m,n). The intersection of an arithmetic progres-
sion a (mod m) with an arithmetic progression b (mod n) is an arithmetic progression
(mod [m,n]) if a=b (mod g), and is otherwise empty. (Recall Problem 20 at the end of
§2.3 of NZM.) The program Int APTab presents these intersections in a manner reminiscent
of the table on p. 68 of NZM. Rows are indexed by residues ¢ (mod m), and columns
by b (mod n). Type intaptab [Enter], and then take m = 5, n = 8. Note that in
the body of the table, each of the numbers 0,...,39 occurs exactly once. That is, the
simultaneous congruences * =a (mod 5), x =b (mod 8) are equivalent to the single
congruence £ = ¢ (mod 40), for some suitable value of ¢. The more general assertion
that this is true whenever (m,n) =1 is known as the Chinese Remainder Theorem (The-
orem 2.18 of NZM). Take m = 101, n = 103 in IntAPTab, and take a stroll around the
table. There are now so many entries that it is no easy to see, by inspection, that each
number 0,...,10402 occurs exactly once in the body of the table. Now take m = 102,
n = 104 in IntAPTab. What proportion of the entries are blank? Why? This phenomenon
becomes more pronounced when (m,n) is large. Try taking m = 25, n = 35.

The program CRT (meaning “Chinese Remainder Theorem”) determines the inter-
section of two given arithmetic progressions. For example, the numbers z such that

21 Computational Laboratories in Number Theory

both z =3 (mod4) and z = 2 (mod 5) are precisely the numbers for which x = 7
(mod 20). Type crt 3 4 2 5 [Enter], and watch the results. On the other hand, there
are no z for which both z =1 (mod 12) and z =19 (mod 28). To see why this is so,
type crt 1 12 19 28 [enter].

4. The program CRT uses LinCon to find the intersection of two arithmetic progressions,
in the manner of the Second Solution to Example 3, on p. 67 of NZM. The program
CRTDem demonstrates how this is done. Type crtdem 3 4 2 5 [Enter], and watch the
response. Try also crtdem 1 12 19 28 [Enter].

5. By repeated use of CRT, find a number z such that 0 < = < 10° and none of
x, x+1, ..., x+ 6 is squarefree. Thus we have a gap of length at least 8 between
consecutive squarefree numbers. (Hint: What if z = 0 (mod 4), x = —1 (mod 9),
z = -2 (mod25), x = -3 (mod49), x = —4 (mod 121), z = —5 (mod 169),
x = —6 (mod 289).) Apply the program Factor to each of the numbers z, z +1, ...,
x + 6 to verify your results. Are z — 1 and x + 7 both squarefree? (This construction can
be extended—recall Problem 18 at the end of §2.3 of NZM.)

6. Take m = 15, n = 13 in IntAPTab. Note that an entry in the body of the table is
printed in White if and only both the column and row labels of that entry are printed
in White. More generally, if (m,n) =1, =a (modm), and £ = b (mod n), then
(¢c,mn) = 1 if and only if (a,m) = 1 and (b,n) = 1. (This is argued in the proof of
Theorem 2.19, by using Theorems 1.8 and 2.4.) Hence the number of reduced residues
(mod mn) is the number of reduced residues (mod m) times the number of reduced
residues (mod n). That is, ¢(mn) = ¢p(m)p(n) whenever (m,n) = 1. Since it is easy to
see that ¢(p®) = p® — p*~! = p*(1 — 1/p), we deduce that

¢(n) =[] @ —p*") =nH(1—%)-

p|ln pln

Thus we can calculate ¢(n) easily, once the factorization of n has been determined. The
program Phi proceeds in this way: First the argument is factored, and then the above
formula is used. Try typing phi 42. You can confirm this answer by taking m = 42 in
CngArTab, and viewing the multiplication table with only the reduced residues displayed.

7. By using PolySolv, find two distinct residue classes z; and zo modulo 31 so that
22+2+1=0 (mod 31). Similarly, find three distinct residue classes ¥1, y2, y3 modulo
47 so that 23+ +1=0 (mod 47). By using CRT, find six residue classes u modulo
3147 = 1457 so that u = z; (mod 31) and v = y; (mod 47), i = 1,2, j = 1,2,3.
Apply PolySolv with f(z) = 23 + x + 1, m = 1457. Interpret your findings. Note the
conformity of this with Theorem 2.20 in NZM.

8. Recall that the only solutions of 22 =1 (mod p) are x = &1 (mod p). (See Lemma
2.10 of NZM.) Given that 4757 = 67 - 71, use the program CRT to find four roots of
the congruence z? = (mod 4757). Verify your results by using PolySolv. When m is

22 Computational Laboratories in Number Theory

composite you now have two methods for locating all the roots of a polynomial congruence
f(x)=0 (mod m). You can (i) apply PolySolv directly to the modulus m, or (ii) factor
m into primepowers, apply PolySolv to each of these primepowers, and then use CRT to
combine these solutions to construct the solutions modulo m. Estimate the running time
of these two approaches. Which one is faster for a typical large composite number? (Ignore
the time it would take to input the arguments.)

23 Computational Laboratories in Number Theory

24

Computational Laboratories in Number Theory

LABORATORY 7

Powering Algorithms & Primality Testing
New Programs: PwrDemla, DwrDemlb, PwrDem2, Power, SPsPDem, SPsP

The number a* (mod m) can be determined by k — 1 multiplications of residue classes,

but this is slow if k is large. There is a much faster way: The values of a, a2, a*, a8, ...,

a? ..., (mod m) can be determined, by repeated squaring, in only ¢ multiplications.
The binary expansion of k£ provides a representation of £ as a sum of powers of 2, and
hence aF is a product of an appropriate collection of the numbers a2 . For example,
13 = 23 + 22 4+ 20 and hence a!® = a2’ - a2’ - a2". The exact number of multiplications
required by this method varies irregularly with &k, but it never exceeds 2log, k. The binary
expansion of k£ can be built from the bottom up, as demonstrated in programs PwrDem1la,
PwrDem1b, or from the top down, as demonstrated in PwrDem2. The former of these two

methods is discussed on pages 76, 77 of §2.4 of NZM.

1. Apply the programs PwrDem1la, PwrDem1b, DwrDem?2 to several values of a, m until
the process is clear to you. Apply PwrDemlb and PwrDem2 to the same k. How do the
number of multiplications compare?

2. If k£ has binary expansion k = 2% + 2% 4 ... 4+ 2% with 41 < 49 < --- < i,, then
our powering algorithm requires 4, + 7 — 1 multiplications to calculate a*. In particular,
it takes 6 multiplications to calculate a'®. Show that a'® can be obtained with only 5
multiplications.

The program Power evaluates a* (mod m). You may type power a k m [Enter],
or else simply type power [Enter], and respond to the prompts. Try it both ways, now.

3. Use the program Power to evaluate 2™~! (mod m) where m = (1017 —1)/9 =
11111111111111111. Assuming Fermat’s congruence, (Theorem 2.7 of NZM), this provides
a quick (but indirect) proof that 11111111111111111 is composite. Apply the program
Factor to 11111111111111111, and note how long it runs. With large numbers m (of
hundreds of digits), it is often the case that a quick proof that m is composite can be
given, even though we know of no way to obtain the factors of m within a reasonable
amount of time.

4. Ts 91 prime? Evaluate 2% (mod 91). Is 341 prime? Evaluate 2349 (mod 341). Now
evaluate 34° (mod 341). What do you conclude?

5. We have no quick method to find k! (mod m) akin to our quick method for calculating
powers. There are a few special cases (such as (p—1)! (mod p), but in general the fastest
method known involves simply performing the £ — 1 multiplications. If a quick method
could be found, then it would have important applications (to factoring, for example).
Suppose that you are in possession of a quick method for calculating (2kk) (mod m).

25 Computational Laboratories in Number Theory

Explain how this could be used to provide a quick method for calculating k! (mod m).
Suppose you have a quick method for calculating k! (mod m). Explain how this could be
used to provide a quick method for factoring m.

If 0 <a<mand a™ ! #1 (modm) then m is composite. Since it is easy to
calculate powers modulo m, this provides a quick proof that m is composite—when it
works. Unfortunately, the converse is false, but the counterexamples seem to be rare, so
we call m a probable prime base a if m is odd and a™ ! =1 (modm). If m is a
probable prime base a but is nevertheless composite, then we call m a pseudoprime base
a, or, briefly, m is a PSP(a). If m is found to be a probable prime base 2, then we
might try base 3, and so on, but there exist composite m that are probable primes to
every base a for which (a,m) = 1. To see how this might happen, suppose that m is a
composite squarefree number with the peculiar property that (p — 1)[(m — 1) for every
prime number p dividing m. (The least such m is 561.) Suppose that (a,m) = 1. If
p|lm then (a,p) =1, and hence a?~' =1 (mod p). Since (p—1)|(m —1), it follows that
a™ ! = (mod p). Since this congruence holds for every p dividing m, it holds modulo
the product of all the primes dividing m. But we have assumed that m is squarefree;
hence a™~! =1 (mod m). An odd composite number such that a™~! =1 (mod m)
whenever (a,m) =1 is called an absolute pseudoprime, or Carmichael number. The least
Carmichael number is 561; indeed, it can be shown that if m is a Carmichael number
then m is of the form we considered: m is squarefree and (p —1)|(m — 1) whenever p|m.
(This is called Korselt’s criterion; see Problems 25-27 at the end of §2.8 of NZM.) It is
not hard to show that there exist infinitely many pseudoprimes to any given base (see
Problem 19 at the end of §2.4 of NZM), and it is easy to construct numerical examples of
Carmichael numbers and to give arguments that suggest that Carmichael numbers form
a fairly rich subset of the integers (by methods akin to the construction of Problem 20 of
§2.8 of NZM). In particular, P. Erd6s (On pseudoprimes and Carmichael numbers, Publ.
Math. Debrecen 4 (1956), 201-206) formulated a heuristic argument that suggests that
the number C(z) of Carmichael numbers not exceeding z is larger than z'~¢ for all
sufficiently large z. Although Erdés’s conjecture is presumably true, it seems that the e
tends to 0 slowly, since numerical studies have revealed that C(10'°) = 1547, and that
C(10'5) = 105212. Nevertheless, it was finally proved that there do indeed exist infinitely
many Carmichael numbers. W. R. Alford, A. Granville, and C. Pomerance, (There are
infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994), 703-722) showed that
C(z) > z?/7 for all sufficiently large z.

Since the pseudoprime test fails to establish the compositeness of some composite
numbers, we consider a slightly more elaborate test, which, however, involves no more cal-
culation than before. If m is odd, we repeatedly divide 2 into m —1, until we obtain a rep-
resentation m —1 = 2" -d with d odd. Suppose that a #0 (mod m). Compute a? (mod
m). Next, repeatedly square, forming the sequence a??, a*¢, ..., (™ D/2 (mod m).
Let x denote this last residue class computed. If z2 # 1 (mod m) then a™~! # 1
(mod m), and hence m is composite, by Fermat’s congruence. Suppose now that z? =
(mod m). If z # £1 (mod m) then m is composite by virtue of Lemma 2.10 of NZM.
More generally, if in the sequence of powers computed we find an entry z Z £1 (mod m)
followed by an entry 1, then 2 =1 (mod m), and hence m is composite. This test is

26 Computational Laboratories in Number Theory

more stringent than the previous one; if it is inconclusive then we call m a strong probable
prime base a. If in addition m is composite then we call m a strong pseudoprime base
a, or m is an SPSP(a). In practice, we abandon the repeated squaring if a value = +1
(mod m) is encountered, since the conclusion is already clear. The exact sequence of steps
performed is exhibited on p. 78 of NZM. It is known that if m is composite then there are
at least m/4 bases a such that the compositeness of m is demonstrated by applying this
strong pseudoprime test base a. Thus if m survives this test for several values of a, we
can be reasonably confident that m is prime—such an m might be called an “industrial
grade prime”.

6. By means of lengthy calculation (see C. Pomerance, J. L. Selfridge, and S. S. Wagstaff
Jr., The pseudoprimes to 25-10°, Math. Comp. 35 (1980), 1003-1026), it has been found
that there are only 13 odd integers m < 25 -10° that are SPSP(a) for a = 2, a = 3,
and a = 5. Of these, only one, namely m = 3215031751 is also a SPSP(7). Apply the
strong pseudoprime test to this m with bases a = 2, 3, 5, 7, and 11. For example, try
typing spspdem 3215031751 2 [Enter], or simply type spspdem [Enter] and follow the
prompts.

7. By appropriate use of the program Power, show that 4369 and 4371 are both probable
primes base 2. Are either of these numbers strong probable primes base 27 Are either of
these numbers prime? (Use the program SPsP to answer this question, not Factor.) Are
either of these numbers Carmichael numbers?

8. Factor 561, verify that 561 is squarefree, and that (p—1)|560 for every prime p dividing
561. Hence deduce that 561 is a Carmichael number.

9. If m is a PSP(a) but not a SPSP(a) then the strong pseudoprime test locates a number
x such that £ # +1 (mod m), but z2=1 (mod m). In such a situation not only is it
established that m is composite, but also a proper divisor of m can be exhibited, namely
(x —1,m). Apply the program SPsPDem to m = 561 with a = 2.

10. What does the program SPsP do if you enter m on the command line, but omit a?
Type spsp 91 [Enter].

11. Numerical evidence suggests that most pseudoprimes are squarefree. To explain this,
show that if m is a PSP(a), and if p is a prime such that p?|m, then

a?”!' =1 (mod p?). (1)
(Hint: a™ = a (mod m), and hence a?~! = (a™)P~! = a™P=D (mod m). But $(p?)
divides m(p — 1).) Conversely, show that if p is a prime such that (1) holds then p? is
a PSP(a). Only a few primes have been found for which 2?~! =1 (mod p?), although
it is believed that infinitely many exist. The least such prime is 1093. Use the program

Factor to verify that 1093 is prime, and the program Power to verify that 21992 = 1
(mod 10932). Is 1093 a SPSP(2)?

For an extensive account of primality testing see H. C. Williams, Primality testing on
a computer, Ars Comb. 5 (1978), 127-185.

27 Computational Laboratories in Number Theory

28

Computational Laboratories in Number Theory

LABORATORY 8

Factoring Strategies
New Programs: RhoDem, Rho, P-1Dem, P-1

We know that trial division yields a rigorous proof of the factorization of n in at most
O(y/n) steps. This is slow when n is large, so we now consider methods that are faster
for large n. Our object here is not to present state-of-the-art factoring, but only to drive
home the point that it is possible to construct factoring strategies that are much faster
than trial division.

1. Trial division takes = +/n steps if n is prime or if n is the product of two primes,
n = p1p2 with p; = ps ~ /n. However these are the worst cases, and trial division
is much quicker for many numbers. To see why this is so, suppose that n is composite
and that p; < ps < ... < pr are the distinct primes dividing n. Explain why only
O(logn) + O(pr—1) + O(y/px) trial divisions are required to factor n. Trial division is
unlikely to yield the complete factorization of a large n in a reasonable amount of time,
but nevertheless one should always try divisors through 105 or so, when asked to factor a
number n of unknown multiplicative structure.

2. Although alternative factoring strategies can be traced as far back as Fermat and
Gauss, we begin with a simple method of comparatively recent origin, namely Pollard’s
Rho Method, proposed in 1975 by J. M. Pollard. (Why it should be called “Rho” is
explained on p. 81 of NZM.) Suppose that a prime number p has been chosen. Let
ug = 1, and for ¢ > 0 let the numbers u; be determined by the relations u; = uf_l +c
(mod p), 0 < u; < p. Here c is some constant. We usually start with ¢ = 1, but other
values of ¢ are sometimes handy, as will become clear later. The sequence wu; may have a
non-periodic initial segment, but once a value is repeated (as must eventually happen), the
sequence becomes periodic. The program RhoDem will assist you in determining when this
first repetition occurs. Type rhodem [Enter], and in response to the query “Use cycle-
detecting algorithm?” respond by typing n. In response to the prompts enter p = 89,
and set ¢ = 1. In the sequence of u; displayed, you will see that us = u1g = 2, but
that w; # ui5. Thus the first repeat is at w16, and the period of the repetitions is 14.
In general, let 7(p) be the least index 4 such that the value u; repeats a value found
previously, and let I(p) denote the least period of the repetitions. Thus r(89) = 16 and
1(89) = 14. Repeat this calculation for the prime p = 29, and thus determine the values
of 7(29) and 1(29).

By the pigeon-hole principle we see that r(p) < p+ 1, but the “Birthday Paradox”
leads us to expect that r(p) ~ ,/p for most primes, and for most choices of c. (See

Lemma 2.21 in NZM, and the discussion following.)

3. In the examples above it is easy to spot the first repetition visually, but this task
becomes rapidly more difficult when p is a little larger. Repeat the steps above with

29 Computational Laboratories in Number Theory

p = 3463. Touch a key to scroll down through the table, and as you go, note the following
four values:

130 2185
131 2212
147 1278
148 2212

Thus 7(3463) = 147 and [(3463) = 17. Since it is quite tedious (and time-consuming!) to
compare each value with all the previous ones, we need a quick way to spot repetitions.
This is provided by the following Cycle Detection Algorithm: Watch for an index ¢ at
which u; = ug;. Let s(p) denote the least such i. The advantages of this approach are
that only one comparison need be made, and that only the values u; and us;. Thus we
have no need to store the values of the u;. If u; # ug; then we use the recurrence once to
compute u;41, and twice more to compute ug;4+2. The old values u;, ug; are discarded,
and we continue with the two new values. The disadvantage of this approach is that it
is slightly inefficient, in the sense that the recurrence must be used 3s(p) times, which
is somewhat larger than r(p), which would be optimal. Using RhoDem, complete the
following table (the first row of which has been thoughtfully provided). Use RhoDem with
no cycle-detecting first, to determine the values of r(p) and I(p). By inspecting the values
u;, try to determine the value of s(p). Check your work by applying RhoDem a second
time with cycle-detecting.

P r S l
37 6 5 1
41
43
47

33

4. When we apply the Rho method to factor a number m, we compute the sequence u;
modulo m. Suppose that p|m. We can’t construct the sequence u; (mod p), because the
prime p is unknown. However, the u; computed are congruent (mod p) to those we would
have obtained if we had worked (mod p) (recall Theorem 2.1(5) of NZM). Hence u; = uy;
(mod p) when ¢ = s(p). Let so(m) denote the least index 7 such that (u; — ug;, m) > 1.
Then

so(m) = Ilﬂgl s(p)-

30 Computational Laboratories in Number Theory

Moreover, for this index i we have (u; —us;,m) < m unless s(p) = so(m) for all p|m. Take
m = p1p2 where the p; are selected from the above table in such a way that s(p1) # s(p2).-
Apply RhoDem to this m, with cycle-detecting, and note the point at which a divisor is
found. (To avoid all the prompts, you can enter m on the command line: Type rhodem
m [Enter].) Repeat this, with the p; selected so that s(p1) = s(p2). Note that the ged
jumps from 1 to m, but that RhoDem does not give up. What does RhoDem do, instead?
Finally, choose two p; so that p; < ps but r(p1) > r(p2), and note that the prime factor
found by RhoDem is not the least prime factor of m.

WARNING: The Pollard Rho Method should only be applied to numbers that are already
known to be composite (as the result of a strong pseudoprime test, for example). If it were
applied to a large prime number p, it would run endlessly, switching to ever larger values
of c.

5. Apply RhoDem to m = 11111111111111111 = (107 — 1)/9. What is the least s for
which (ugs — us, m) > 17 The program Rho will attempt to factor a given number m by
means of the Pollard rho algorithm. Type rho 11111111111111111 [Enter], or simply
rho [Enter], and answer the prompts. Is this much faster than using the program Factor?
What do you expect the running time of Rho to be, on average, as a function of the size
of the least prime factor of m?

6. What inequalities can be established between the three quantities r(p), s(p), I(p) 7
Explore.

7. In general you should avoid taking ¢ = 0 or ¢ = —2 in the rho method. Experiment
with these values of ¢, using RhoDem, and try to explain why these values of ¢ are bad.
(Hint: For ¢ = —2, note that if z-ZT =1 (modp) and v = z — T (mod p) then

u? —2=22-7% (mod p).)

8. For the programmer. Richard Brent has observed that the cycle-detecting algorithm
can be made about 24% more efficient, as follows: Suppose that you have calculated u,
and wug,, and that you have tried (u; — ug, m) for pairs (j, k) with the difference j — k
running from 1 to n. Starting from wus,, apply the iteration n + 1 times, to evaluate
Usn+1. Next compute (uszpi1 — Uap, M), (Uspi2 — Usp, M), ..., (Usn — Uzp, m). Here
the differences between the subscripts range from 2n 4+ 1 to 4n. If you start this with
n = 1, then n runs through powers of 2. To speed things up further, do not calculate the
gced separately for each term indicated above. Instead, form a product of these numbers,
keeping track of the number of factors in the product. When the number of factors reaches
8, compute the ged of the product with m. The product, like everything else, is computed
modulo m.

9. We now turn to a second method proposed by Pollard, the “p—1 Method.” Suppose that
m is a number to be factored, that p|m, and that (p — 1)|k!, so that a® =1 (mod p)
whenever (a,m) = 1, which is to say that p|(a*" — 1,m). Thus we use the powering

algorithm to calculate a number x, 0 < x < m, so that z = a¥ (mod m), and then we

31 Computational Laboratories in Number Theory

use the Euclidean algorithm to evaluate (z — 1,m) in the hope that this will disclose a
proper factor of m. If this ged is still 1 then we try a larger k; if it is m then we switch to a
different value of a. This method is rather erratic: It is remarkably fast for some numbers,
but for other numbers it is no faster than trial division. Apply the program P—1Dem to
several numbers, and note how the calculation proceeds. The program P-1 is ridiculously
fast when applied to m = 99999997425160993. Use P—1 to break m into factors, use Factor
to verify that the factors are indeed prime, say m = p-p’. Apply Factor to p — 1 and to
p'—1, and thus demonstrate why P—1 is so quick for this number. At the opposite extreme,
the program P-1 will take an uncomfortably long time to factor the comparatively small
number m = 9904156957. Find the prime factors p of this m, and also the factorization
of p—1 for each such p, to explain why the method is so slow in this case. Finally, apply
the program P-1 to our old favorite, m = 11111111111111111 = (1017 — 1)/9.

10. For the programmer. The Pollard p — 1 method, as explained above, is slightly
inefficient because the power of 2 dividing k! is much larger than is likely to be needed.
Try using dj instead of k!, where di denotes the least common multiple of the integers
1,2, ..., k. Show that dx, = a1 -as-...-ag where a, = p if n is a power of p, a, =1
otherwise. Note that di = di_1 unless k is a primepower. Thus it is necessary to compute
(a® —1,m) only when k is a primepower. Does this lead to a more efficient method?

It is notable that we have no proof that the Pollard Rho Method is efficient, although
we believe that on average it will yield a proper divisor of n in O(,/p) steps, where
p is the smallest prime factor of n. Although the p — 1 method is erratic, the idea
behind the method is used in other methods, notably the Elliptic Curve Method (ECM),
devised by Lenstra in 1987. (see §5.8 of NZM.) In 1982, Carl Pomerance invented the
Quadratic Sieve method (QS) of factoring, which has been further developed to become
the Multiple Polynomial Quadratic Sieve (MPQS). These methods have largely usurped
an older method, CFRAC, based on properties of continued fractions. A new method, the
Number Field Sieve, (NFS) is currently being developed, and has already achieved some
notable successes.

For more information concerning factoring, consult the following sources.

D. M. Bressoud, Factorization and primality testing, Springer-Verlag, New York, 1989.

D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by addition
in formal groups and new primality and factorization tests, Adv. Appl. Math. 7 (1986),
385—-434.

D. Coppersmith, Modifications to the number field sieve, J. Cryptology 6 (1993), 169-180.i
J. D. Dixon, Factorization and primality tests, Amer. Math. Monthly. 91 (1984), 333-352.

R. K. Guy, How to factor a number, Proc. Fifth Conf. Numerical Math., Utilitas, Winnipeg,
1975, pp- 49-89.

32 Computational Laboratories in Number Theory

P. L. Montgomery, Speeding the Pollard and elliptic methods of factorization, Math. Comp.
48 (1987), 243-264.

C. Pomerance, Lecture Notes on Primality Testing and Factoring, MAA Notes 4, Math.
Assoc. of America, Washington, 1984.

H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhauser, Boston,
1985, 464 pp.

H. C. Williams, Factoring on a computer, Math. Intell. 6 (1984), 29-36.

M. C. Wunderlich, Computational methods for factoring large integers, Abacus 5 (1988),
19-33.

33 Computational Laboratories in Number Theory

34

Computational Laboratories in Number Theory

LABORATORY 9
RSA Public Key Cryptography
New Programs: RSA, RSAPars

For centuries, one of the hazards of cryptography was that a copy of your code book might
fall into enemy hands, so that all your encrypted transmissions could then be intercepted
and decoded. Worse yet, you might have no way of knowing whether one of your commu-
nications stations had been taken over by the enemy: The enemy might be masquerading
as one of your own troops. All this changed in 1976 when Whitfield Diffie and Martin
Hellman proposed a form of encryption that should be easy to perform but would be dif-
ficult to break, even if the encryption procedure were made public. The scheme works
like this: Suppose that Bob wants to receive a message from Alice without observers be-
ing able to read the message. Bob chooses a very large integer m, say m ~ 102°°, and
defines a permutation 7 of the numbers 1,2,...,m. The algorithm for computing 7 is
made public, and in particular is given to Alice. The characters of Alice’s message can
be associated with digits in a standard way, and the digits can be broken into blocks of
length not exceeding 200, so that Alice’s message is equivalent to one or more integers ¢,
each one in the interval [1,m]|. Thus ¢ is the plaintexrt. Alice computes ¢ = m(t); this is
the cryptotext; it is also an integer in the interval [1,m]. Alice sends ¢ to Bob. Since an
observer may also gain access to c, for the security of the communication it is essential that
there be no quick algorithm for computing the inverse permutation 7=, since t = 7~ !(c).
However, Bob possesses some secret information concerning 7 that allows him to compute
71 quickly, and hence read Alice’s message. A permutation with the peculiar property
that 7 is easy to compute while 7! is difficult (i.e., would take centuries on the fastest
computers) is called a trap door function.

The success of the Diffie-Hellman scheme depends on being able to find trap door
functions. This was achieved in 1977 by Ron Rivest, Adi Shamir, and Len Adleman.
Their RSA method depends on the number theory that we have been investigating: Bob
secretly chooses two 100-digit primes pi,p2, and sets m = p;p2. Bob also chooses a large
positive integer k with the property that (k,¢(m)) = 1. Among the reduced residue
classes (mod m), the map 7(z) = ¥ (mod m) is a permutation. Bob makes m and k
public, and Alice sends him ¢ =t* (mod m). (Recall that we have a powering algorithm
that makes this easy.) Since Bob knows how to factor m, Bob knows the value of ¢(m).
Hence Bob can find a positive integer k' such that k' =1 (mod ¢(m)). (We use the
extended Euclidean algorithm to solve linear congruences, so this is also fast.) We now
show that the map z — z¥ (mod m) is the inverse permutation that we need. To this
end, choose ¢ so that kk’ =1+ qé(m), and recall Euler’s congruence, which asserts that
if (z,m) =1 then %™ =1 (mod m). Hence

(2F)* = P = g1 Had(m) = (9™ = (1) =z (mod m).

’

Thus the decryption process for Bob is similar to Alice’s encryption, but with the parameter
k replaced by k’. Note that only Bob can calculate k. Even Alice can’t read her own
message, once she’s encoded it!

35 Computational Laboratories in Number Theory

In the RSA method, the permutation being employed constitutes a trap door function
only to the extent that large composite integers are difficult to factor. In the present state
of knowledge one can factor a number of size 10'°, but there is no guarantee that there
does not exist some factoring method yet to be discovered by which even much larger
numbers could be factored quickly. One could imagine that such a method might be taken
as a State Secret. Indeed, when Rivest, Shamir, and Adleman published their work in 1978,
the Director of the National Security Agency (General Odum) gave serious consideration
to going to Congress asking for legislation that would make all research in number theory
“born classified” as is the case with atomic research. He was dissuaded from this, but in
any case any lingering impression that number theory is the purest of the pure, totally
devoid of practical application, has been forever dispelled.

Rivest, Shamir and Adleman patented their method, and formed the company RSA
Data Systems to market RSA—based products. To emphasize the security of their system,
they offered a prize of $100 for the first decryption of the message

¢ = 968696137546220614771409222543558829057599911245743198746951209308162
98225145708356931476622883989628013391990551829945157815154,

which was encrypted using the 129-digit modulus

m = 1143816257578888676692357799761466120102182967212423625625618429357
06935245733897830597123563958705058989075147599290026879543541

and the public exponent
k = 9007.

The estimate at that time was that it would take 40 trillion years to factor this m. How-
ever, on 29 April, 1994, Derek Atkins, Michael Graff, Arjen Lenstra, and Paul Leyland
announced that m = pips; where

p1 = 3490529510847650949147849619903898133417764638493387843990820577,
P2 = 32769132993266709549961988190834461413177642967992942539798288533.

This enabled them to determine the secret exponent,

k' = 106698614368578024442868771328920154780709906633937862801226224496631
063125911774470873340168597462306553968544513277109053606095,

and consequently the plaintext

t = 20080500130107090300231518041900011805001917210501130919080015191909
0618010705.

After conversion back to alphabetic characters, this reads
THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE

36 Computational Laboratories in Number Theory

Lenstra (at Bellcore) and his team used the double large prime variation of the multiple
polynomial quadratic sieve factoring method. The calculation took more than 5000 mips
years, and was executed over a period of 8 months on over 600 different computers that were
made available for the purpose by volunteers in more than 20 countries, on all continents
except Antarctica. The final stage of the computation took 45 hours on a 16K MasPar
MP-1 massively parallel computer. The relatively short time that it took to factor RSA-
129 is partly due to increased speed and power of computer hardware, but it is mainly due
to progress that has been made in developing faster factoring algorithms.

The RSA-129 modulus was factored by combining the latest factoring algorithms with
enormous computing resources. With larger moduli, the RSA method is considered to be
secure, and is widely used. In the spring of 1996, Rivest (a mathematician at MIT) sold his
interest in the company to a venture capital firm for $50,000,000. So being a mathematician
is not only fun, but occasionally also profitable!

The program RSA automates the arithmetic operations that arise when executing the
RSA algorithm. To use this program you will need a public modulus, a public exponent,
and a secret exponent. Since typing such data from the keyboard is tedious and prone to
error, it is best to keep the public parameters in a computer file. The program RSAPars
will assist you in this. It is best to choose your private exponent k' first, since then you
can take it to be something memorable, such as your parents’ home phone number. Do not
use your Social Security Number or something really sensitive, since you will be using a
modulus m < 108, and hence any energetic person could use m and k to reconstruct k’.
Since (k',¢(m)) =1, and since ¢(m) is even when m > 2, your private exponent k' must
be odd. Once you have chosen k', the program assists you in choosing a public modulus
m, by selecting the prime factors of m. There is no need to enter a prime exactly. Simply
enter an approximate size x, and the computer will find the least prime p > x such that
(p— 1,k') = 1. The program will not allow you to use the same prime twice, since it is
advantageous for m to be squarefree (see question 4. below). Once you have entered two
or more primes, and you are satisfied with the value attained, you can indicate that you
are done, and the computer will find the complementary public exponent k. You may
now save m and k to a file, so that others can use these values to send you a message.
Choose a filename that identifies you, and add a tag number (Alice might take alicel),
so that if you ever want to establish a second set of RSA parameters you will have a
way of distinguishing them. The program takes ‘.pub’ as the default extension of the file.
After exiting, Alice can view the file that has been created by typing type alicel.pub
<Return> at the DOS prompt.

Once Bob has the file alicel.pub, he can send her an encrypted message by using
the RSA program. This program has no word-processing capabilities, so Bob must first
compose a text file. This he can do by typing edit bob2alic.txt at the DOS prompt.
After saving his message to disk, he invokes RSA, where he can Load the Plain text file,
and set the Variables by Reading them from alicel.pub. Each letter of the text needs
to be converted to a two-digit Code; the codes are then concatenated to form a sequence
of Residues. Each residue is taken to the power k£ modulo m to form a new sequence
of residues. This is the Encryption. This new sequence of residues can be Saved to a
file, whose name by default is bob2alice.rsa. In turn, Alice can Load the Cipher text

37 Computational Laboratories in Number Theory

and her Variables, including her secret Decrypting exponent k’. She can then Decrypt to
recover the original plaintext sequence of residues. These can be separated to form Codes,
and finally Text, which can be Saved. When dealing with encrypted files it is sometimes
handy to have some indication as to what is in the file. When the RSA program reads a file,

CODE CHAR ASCII CODE CHAR ASCII CODE CHAR ASCII CODE CHAR ASCII

00 32 25 9 57 50 R 82 75 k 107
01 ! 33 26 : 58 51 S 83 76 1 108
02 " 34 27 ; 59 52 T 84 77 m 109
03 # 35 28 < 60 53 U 85 78 n 110
04 $ 36 29 = 61 54 v 86 79 0 111
05 yA 37 30 > 62 55 W 87 80 P 112
06 & 38 31 ? 63 56 X 88 81 q 113
07 ? 39 32 e 64 57 Y 89 82 T 114
08 (40 33 A 65 58 Z 90 83 s 115
09) 41 34 B 66 59 [91 84 t 116
10 * 42 35 C 67 60 \ 92 85 u 117
11 + 43 36 D 68 61] 93 86 v 118
12 s 44 37 E 69 62 - 94 87 W 119
13 - 45 38 F 70 63 - 95 88 X 120
14 . 46 39 G 71 64 96 89 y 121
15 / 47 40 H 72 65 a 97 90 z 122
16 0 48 41 I 73 66 b 98 91 { 123
17 1 49 42 J 74 67 c 99 92 | 124
18 2 50 43 K 75 68 d 100 93 } 125
19 3 51 44 L 76 69 e 101 94 - 126
20 4 52 45 M 77 70 f 102 95 EoL 13
21 5 53 46 N 78 71 g 103 96 —

22 6 54 47 0 79 72 h 104 97 —

23 7 55 48 P 80 73 i 105 98 —

24 8 56 49 Q 81 74 J 106 99 —

TABLE 1. Character to Code Correspondence

it looks for lines that begin with the symbol ‘%’. Such lines are passed to the destination
without change. Hence Bob might put at the top of his message the line

% This is a message from Bob to Alice.

The RSA program also places the encryption history in such comment lines, so that the
recipient will know what parameters have been used.

38 Computational Laboratories in Number Theory

Before proceeding further we consider how to convert characters into numbers. This
can be done in many ways. For example, we could let A correspond to 1, B to 2, ..., and
7 to 26. Alternatively, computers store alphanumeric characters by their ASCII codes.
(ASCII is an abbreviation for American Standard Code for Information Interchange.) The
first of these methods makes no provision for punctuation, numerals, or lower case letters.
The second provides all printable characters, but is inefficient because each character
requires three digits (in base 10). The characters that can be typed in the standard
keyboard have ASCII codes between 32 (to denote a space ‘ ’) and 126 (for ‘*’). As a
compromise between the two systems described above, we subtract 32 from each ASCII
code to obtain a 2-digit number. These numbers run from 00 to 94. In order to preserve
the line breaks in a file we need an end of line marker; we assign the code 95 for this
purpose. Thus we have the codes opposite.

1. Suppose that Bob took the (ridiculously small) modulus m = 91, and proposed the
public exponent & = 17. Suppose that Alice sent him the encrypted message ¢ = 51. Use
the programs Factor, Phi, LinCon, and Power appropriately to recover her plaintext ¢.

2. The proof above that zF¥' = z (mod m) assumed that (z,m) = 1. If m = pip,
where p; and p, are distinct primes, what is the probability that (z,m) > 1 when z is
randomly chosen?

3. Show that if m is squarefree then the restriction to (z,m) = 1 is unnecessary. That is,

if m is squarefree and kk’ =1 (mod ¢(m)), then z*¥ =z (mod m) for all integers z.

4. The encrypted message
355456249 475197422 636832086 601788838

was created using the modulus m = 670726081 and the public exponent k = 663599161.
The program RSA will assist in decrypting this, but first you must determine the value
of ¢(m), and then solve the congruence kk’ =1 (mod ¢(m)). (Use Factor and/or Phi,
and then LinCon.) Next use a text editor to create a file, say prob4.rsa, that consists
of the line displayed above. Then type rsa [Return], Load the Cipher text prob4.rsa,
and enter the Variables. Type Esc to return to the main menu, and then Decrypt. The
resulting residues can be separated into 2-digit Codes, which may be read as Text. What
was the message?

5. Although Bob is the only person who can decrypt a message encrypted with his pa-
rameters, he has no way of knowing that the message actually came from Alice, since
anyone can use his parameters. To overcome this defect, suppose that Bob has a trap door
function wp and that Alice also has a trap door function m4. Suppose that Alice sends
c=Tg (7' (t)) to Bob. What should Bob do, to decrypt this? Can anyone else decrypt
it? Can Bob now be sure that the message came from Alice?

39 Computational Laboratories in Number Theory

6. In the preceding problem there was a tacit assumption that the trap door functions 74
and mp act on the same set of numbers. Suppose now that 74 permutes the residue classes
modulo m 4, and that wp permutes the residue classes modulo mpg. If my < mp then we
may still proceed as above, since we may consider 7, '(¢) as lying in the interval [0,m.4),
which defines a unique residue class mp. How would you modify the above procedure if
my >mp?

7. In formulating their challenge, Rivest, Shamir and Adleman did not use the system
in Table 1 to convert from alphanumeric characters to a residue class t. By comparing ¢
with the stated text can you infer the system that they used instead?

8. Let m = 854937209155735099, and suppose that you are given the information that m
has at most two prime factors, and that ¢(m) = 854937207303842520. Can you find the
primes?

9. Suppose that m = 1247 = 29 - 43, so that ¢(m) = 1176. In order that L (mod
m) for all z, it is sufficient that kk’ =1 (mod ¢(m)), but is it necessary? Suppose that
k = 5. How many k' are there, 0 < k' < ¢(m), such that ¥ = z (mod m) for all
x? What if you take instead k¥ = 117 Why is the number of admissible k' so large? To
achieve security, the acceptable k' should be very rare. How should the prime factors of
m be chosen, to achieve this?

An RSA code can be broken if the value of ¢(m) is known. One way to determine
¢(m) is to factor m, but one could conceive that possibly ¢(m) might be found more
quickly, without having to factor m. However, we argue now that this is not the case: If
the value of ¢(m) is known then the factorization of m can be recovered with little work.
Hence any quick method of evaluating ¢(m) would yield a quick method of factorization.

If ¢(m) =m —1 then m is prime, and we are done. (Of course such an m would not
be used for RSA encryption.) Hence we may suppose that ¢(m) < m — 1, i.e. that m is
composite.

If m is a product of two distinct primes, say m = pq, and if ¢(m) is known, then the
primes can easily be found. To see this, note that p + ¢ = m — ¢(m) + 1. Since the sum
p+ g and the product pg are both known, the values of (p — q)? = (p+ ¢)? — 4pgq can be
determined. By taking square roots one obtains |p—gq|, and the primes are (p+q=+|p—q|)/2.
(This is, after all, how one solves for the roots of a quadratic polynomial.) This procedure
may be attempted whenever m and ¢(m) are both known. If it fails then we know that
m is not the product of two distinct primes. To eliminate the (unlikely) possibility that
m = p?, we may compute /m.

Now we come to the heart of the matter: m is the product of 3 or more primes.
Suppose that a number ¢ is known with the property that a¢ = (mod m) whenever
(a,m) = 1. For example, ¢(m) is such a number c. It is enough to find a proper divisor of
m, since the method may then be applied to the divisors, repeatedly, until all the factors
are prime. The number ¢ may be hard to factor, but at least we can determine the power
of 2 in it, say ¢ = 27 - k with k£ odd. Choose a number a at random, 0 < a < m. If 1 ;
(a,m) < m then we have found a proper divisor of m. If (a,m) = 1 then put b = a*. The

40 Computational Laboratories in Number Theory

value of b (mod m) is quickly found by the powering algorithm. By repeated squaring,
compute b2, b%, ..., b? (mod m). Actually, there is no need to compute the last term,
since this number is =1 (mod m). In the sequence of powers of b computed, suppose
that the first 1 is preceded by a number other than —1. Then we have an x such that
r # +1 (mod m), but z? = (mod m), and hence (z — 1,m) is a proper divisor of
m. This procedure is not guaranteed to work for every a, but should work for a large
proportion of a’s modulo m, provided that m is divisible by two or more odd primes.
(We may assume that m is odd.) In the one remaining case, m = p* with k > 1, the
prime p can be found quickly, since p = m/(m, p(m)).

10. Let m = 308557669718497477. This number is the product of two distinct primes,
and ¢(m) = 308557668607386336. Find the primes.

10. Let m = 144145168546451. Given that ¢(m) = 144136398922632, show that m is
not a prime, and is not a product of two primes. (Le. verify that ¢(m) < m — 1, that m
is not a perfect square, and that (m — ¢(m) + 1)2 — 4m is not a perfect square.) Use the
procedure described above to find the prime factorization of m. How many different bases
a do you need to consider?

For more information on public key cryptography, consult the following sources.
W. Diffie, The first ten years of public-key cryptography, Proc. IEEE 76 (1988), 560-577.

W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Informat.
Theory, IT 22 (1976), 644-654.

M. Gardner, A new kind of cipher that would take millions of years to break, Scientific
American (1977), 120-124.

K. S. McCurley, A key distribution system equivalent to factoring, J. Cryptology 1 (1988),
95-105.

M. Rabin, Digitized signatures and public key functions as intractable as factorization,
Laboratory for Computer Science, Massachusetts Institute of Technology, MIT/LCS/TR-
212, 1979.

R. L. Rivest, RSA chips (past/present/future), Eurocrypt '84, 159-165.

R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and
public key cryptosystems, Commun. ACM 21 (1978), 120-126.

H. C. Williams, A modification on the RSA public-key encryption, IEEE Trans. Informat.
Theory IT 26 (1980), 726-729.

H. C. Williams, Some public-key crypto-functions as intractable as factorization, Cryp-
tologia 9 (1985), 223-237.

H. C. Williams, An M3 public-key encryption scheme, Advances in Cryptology—CRYPTO
85, Springer-Verlag, 1986, pp. 358-368.

41 Computational Laboratories in Number Theory

Number theorists are never past their prime:

3, 5, 7, 11, 13, 17, 19, 23,
31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 173, 79, 83, 89, 97, 101, 103,
107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, . . .

2,
29,

42 Computational Laboratories in Number Theory

LABORATORY 10

Hensel’s Lemma
New Program: Hensel

Hensel’'s Lemma (as discussed in §2.6 of NZM), can be formulated as follows: Let f(z)
be a polynomial with integral coefficients, let p be a prime, and suppose that f(a) =0
(mod p?) for some j > 1.

Case 1. f'(a) Z#0 (mod p). (The “non-singular” case.) There is a unique ¢ (mod p)
such that f(a+cp’) =0 (mod p/*1). This ¢ is the oot of the linear congruence

f'(a)e=~f(a)/P’ (mod p).

Case 2. f’(a) = 0 (mod p). (The “singular” case.) If f(a) = 0 (mod p’*') then
fla+cp’) =0 (mod p’*!) forall¢ (mod p). If f(a) Z0 (mod p’*!) then f(a+cp’) #
0 (mod p’*1) for all ¢ (mod p).

1. Let f(xz) = 22 + 1. Note that f(9) = 0 (mod 41), and that f'(9) = 18 % 0
(mod 41). Since f(9)/41 = 2, it follows that to lift this root we must take c¢ so that
18¢ = —2 (mod 41). Type lincon 18 -2 41 [Enter] to determine this ¢, and thus
find a root of f(x) =0 (mod 412). Confirm your work by applying PolySolv to f(z),
first with m = 41, and then with m = 412 = 1681.

2. Let f(z) = z® 4+ z + 1, as in Problem 2 of Laboratory 5. From Theorem A.5 on p.
488 of NZM we know that all roots of f(x) (mod p) are non-singular, unless p divides
the discriminant of f, denoted D(f). In the present case, D(f) = —31. Apply PolySolv
to f(z), and take m = 31. Note the two roots. Now apply PolySolv to f'(z) = 3z% + 1.
Thus discover that one of the roots of f (mod 31) is singular, and that the other one is
non-singular. From Case 2 of Hensel’s Lemma we know that the singular root either lifts
to 31 roots (mod 31%), or else does not lift. Apply PolySolv to f(z) with m = 312 = 961,
to determine which.

3. The mundane chore of applying LinCon to lift roots to higher powers of p is automated
by the program Hensel. Type hensel [Enter], and then take f(z) = 2% + 1 by typing
1 [Enter] 2 [Enter] 1 [Enter] O [Enter]. Take p = 5. Us the uparrow (1) key to
view solutions (mod 57) that lie above the oot =2 (mod 5). Use the rightarrow (—)
key to view the other solution (mod 5), and those that lie above it. Note that in both
cases, the sequence c(j) of coefficients seems to exhibit no simple pattern.

4. The polynomial f(z) = z? + 1, when considered (mod 2), has a singular root z = 1
(mod 2). Does this lift to a solution (mod 4)? By invoking the program Hensel, one may
see that the answer is “No,” because the uparrow key (1) is inactive. Now apply Hensel
to g(z) = 2% + 3. (That is, type d 1 [Enter] 2 [Enter] 3 [Enter] O [Enter].) Note
that f(x) and g(z) are the same (mod 2), but different (mod 4). The uparrow key can

43 Computational Laboratories in Number Theory

now be used to lift the solution £ =1 (mod 2) to x =1 (mod 4). The rightarrow key
can be used to give its companion, z =3 (mod 4). Note that the two roots 1, 3 (mod
4) both lie above the single root 1 (mod 2). You may use the left- and rightarrow keys
to switch between the two roots (mod 4), but in both cases the uparrow key is inactive,
so neither of these roots lifts to give a root (mod 8). Finally, take h(z) = z? + 7. Note
that g(z) and h(x) are the same (mod 4), but different (mod 8). Apply Hensel to h(z),
and note that the root 1 (mod 4) lifts to two roots, 1, 5 (mod 8). Also, note that the
root 3 (mod 4) lifts to two roots, 3, 7 (mod 8). Use the arrow keys to explore the tree
of solutions (mod 27), and sketch it through (mod 27), say. Note that two long strands
are forming. How far must these strands be extended before one can be sure that they
continue indefinitely? (Hint: Apply Theorem 2.24 of NZM. Theorem A.5 on p. 488 is also
relevant.)

5. Use Hensel to explore the tree of solutions of z% + x + 223 (mod 37), through j = 7.
Sketch your findings. Thus verify and extend Table 1 on p. 90 of NZM.

6. Apply Hensel to f(z) = 5z + 3. Note that the sequence of ¢(j) seems to be periodic.
For each prime p < 20, note the apparent period. We know that the base 10 expansion of
a real number z is periodic if and only if x is rational, and that the least period of the
base 10 expansion of a/q is the order of 10 (mod ¢), provided that (10a,q) = 1. (This is
Problem 30 at the end of §2.8 of NZM.) Is there an analogue at work here? Explore.

7. Apply Hensel to f(z) = z* — 1023 + 3522 — 50z + 24 (mod 37), and report your
findings. Note that you can switch between viewing singular and non-singular roots.

8. Apply Hensel to f(z) = 2° — 152* + 8523 — 22522 + 2742 — 120 (mod 37), and report
your findings.

9. Use Hensel to study f(z) =2F—1 (mod p’) for various combinations of k and p. For

what combinations do you encounter singular roots? (Note: The number of roots (mod
p)is (k,p— 1), according to Theorem 2.37 of NZM.)

44 Computational Laboratories in Number Theory

LABORATORY 11

Power Residues & Primitive Roots
New Programs: OrderDem, Order, PrimRoot

The least positive integer A such that a” =1 (mod m) is called the order of a modulo
m. (This is Definition 2.6 on p. 97 of NZM.) The order of a modulo m exists and is finite
if (a,m) = 1; otherwise it is undefined.

1. Use PowerTab to determine the order of a for each reduced residue class a (mod 11).
What orders occur? How many times do they occur? What is the least common multiple
of these orders? Repeat this with 11 replaced by some other prime number. Formulate
conjectures regarding the situation for a general prime modulus. Compare your findings
with Lemma 2.35 and Theorem 2.36 of NZM.

2. Suppose that a has order h modulo m. How is h related to other numbers £ such that
af = (mod m)? Use PowerTab to investigate, for both prime and composite moduli,
and then formulate a conjecture. Compare your conjecture with Lemma 2.31 of NZM.
Euler’s congruence asserts that a®?™ =1 (mod m) if (a,m) = 1. What does this imply
concerning the relation between the order of a and ¢(m)? (See Corollary 2.32 of NZM.)

3. Suppose that a has order h modulo m. What is the order of ¥ modulo m? Experi-
ment with several configurations, and formulate a conjecture. Compare with Lemma 2.33
of NZM.

4. Suppose that a has order h modulo m, and that b has order £ modulo m. How large
can the order of ab be? How small? Use pairs taken from your work on Problem 1 above.
If (h,k) = 1, what is the order of ab modulo m? Study some cases, and formulate a
conjecture. Compare your findings with Lemma 2.34 of NZM.

5. Suppose that a has order A modulo m, that a has order £ modulo n, and that
(m,n) = 1. What is the order of ¢ modulo mn? Try a=2, m =7, n=11. Try a = 2,
m=>5,n=17. Try a =17, m =7, n = 11. Formulate a conjecture (after considering
additional examples, if necessary).

6. Use PowerTab to determine the order of 7 (mod 101), and of 29 (mod 101), and use
Mult to determine the value of 7-29 (mod 101). Repeat this with 17-75 (mod 91), and
with 233-313 (mod 424). Suppose that a-@=1 (mod m). Do you suspect a connection

between the order of ¢ (mod m), and of @ (mod m)? Can you prove your conjecture?
(This is found as Problem 14 at the end of §2.8 of NZM.)

The order of a modulo m can be determined by calculating a, a2, ... until the least A is
found such that a” =1 (mod m). However, since this » may well be of size comparable

to m, it is usually much faster to use the fact that h|¢(m). After factoring ¢(m), we

45 Computational Laboratories in Number Theory

search for a minimal divisor h of ¢(m) with the property that a* =1 (mod m). Note
that if a® =1 (mod m), and if ¢ is a prime divisor of d, then either a%/? =1 (mod m),
in which case we replace d by d/q, or else a®/4 #1 (mod m), in which case the power
of ¢ dividing d is the same as the power of ¢ dividing the order of a. This technique is
discussed on p. 100 of NZM,

7. To see how the order of 2 modulo 101 would be determined, type orderdem 2 101
[Enter]. To obtain the result without witnessing the calculation, type order 2 101
[Enter]. Since the first step is to factor m in order to calculate ¢(m), some time may be
saved by providing the value of ¢(m), if this is known. Type order 2 101 100 [Enter].
The economy here can be quite noticeable: if the modulus is a 17-digit prime p, then it
will be much faster to tell the machine that ¢(p) = p — 1, rather than let the machine try
to factor p by trial division. When the values a, m, c are given to the program Order, it
is not necessary that ¢ actually be the value of ¢(m). All that is required is that a¢ =
(mod m). What happens if ¢ does not meet this condition? Try typing order 2 101 35
[Enter].

8. The program PrimRoot finds the least positive primitive root of a prime number p, by
calculating the order of a for a = 2,3,... until an a is found of order p — 1. Usually this
does not take very many trials. Find the least positive primitive root of several primes
in this way. For example, type primroot 1093 [Enter]. If you wish to find the least
primitive root larger than a certain number a, type primroot p a [Enter]. (If you omit
the a then by default a is set equal to 0.) By using the program PrimRoot repeatedly,
find all the primitive roots of the prime p = 101. How many primitive roots do you
find? (Recall Theorem 2.36 of NZM.) What is the biggest gap found between consecutive
primitive roots?

9. The program PrimRoot is not equipped to find primitive roots modulo p* when k > 1,
but the program Order is useful in this connection. Suppose that ¢ is a primitive root
modulo p. Then g is a primitive root modulo p? if and only if the order of g modulo p?
is p(p — 1). The only other possibility is that the order of g modulo p? is p — 1, in which
case g + tp is a primitive root modulo p?> whenever t # 0 (mod p). (See the proof of
Theorem 2.39 of NZM.) Is 2 a primitive root modulo 1012? Show that 14 is a primitive
root of 29. Is it a primitive root of 292? Find the least positive primitive root g of the
prime 40487. Show that g is not a primitive root modulo 404872. (This is the least prime
p whose least positive primitive root fails to be a primitive root modulo p?.)

10. To determine the order of a residue class a modulo m, we need first a number ¢ such
that a® =1 (mod m). We could take ¢ = ¢(m), but usually a smaller number will do.
Let c¢(m) denote the least positive integer ¢ such that a© =1 (mod m) for all reduced
residue classes a. This is the Carmichael function. Its values are determined by the
following relations. ¢(1) = ¢(2) = 1. ¢(4) = 2. If k > 2 then ¢(2%) = 2872 If p is an odd
prime then c(p¥) = p*~1(p — 1). If (my1,m3) = 1, then c(mims) = [c(m1),c(ms)]. Use
the program Car to determine the value of ¢(100). Find a reduced residue class modulo
100 that has this maximal order.

46 Computational Laboratories in Number Theory

11. For the programmer. Write a program that counts the number N(z) of those primes
p not exceeding x for which 2 is a primitive root of p. Would you conjecture that there are
infinitely many such primes? Does it seem that this set of primes has positive asymptotic
density among the set of all primes? That is, do you guess that N(z) ~ cm(x) as £ — oo
for some positive constant c¢? Gauss conjectured that there exist infinitely many such
primes, and E. Artin suggested a particular asymptotic density. However, D. H. Lehmer,
A note on primitive roots, Scripta Math. 26 (1963), 117-119 found that numerical evidence
does not fit with Artin’s conjecture. This led Artin to the realization that one aspect of
the situation had been overlooked (see pp. viii, ix of Artin’s Collected Works). A modified
form of Artin’s conjecture is now widely accepted as very likely to be true, especially since
C. Hooley, On Artin’s conjecture, J. Reine Angew. Math. 225 1967, 209-210, showed that
the modified conjecture is a consequence of the Generalized Riemann Hypothesis. The

conjectured constant is
1
e=11(1-)
1 p(p—1)

p

where the product is taken over all primes. The number 2 can be replaced by any integer a,
and the general conjecture is that there is a positive constant ¢, such that N,(x) ~ c,m(z)
as r — oo, provided that a # —1, a # 0, and that a is not a perfect square.

47 Computational Laboratories in Number Theory

48

Computational Laboratories in Number Theory

LABORATORY 12

Indices — The Discrete Logarithm
New Programs: IndTab, Ind, IndDem, HSortDem

Suppose that ¢ is a primitive root of the prime number p. If (a,p) = 1 then there is a
number v such that ¢ = a (mod p); moreover, the value of v is uniquely determined
modulo p — 1. This v is called the inder of a with respect to the primitive root g. In
symbols we write v = ind;a when the value of p has already been specified. By way
of analogy, any positive real number x can be written uniquely in the form e¥ where
y =Inz. Thus indga is a discrete analogue of Inzx.

For a given prime p < 10%, the program IndTab displays a table of the indices of
the reduced residue classes modulo p. If there are more values than can be displayed
on a single screen, then you may use PgUp and PgDn or j to move around in the table.
Initially, g is the least positive primitive root of p, but you are free to switch to a different
primitive root. The program will prevent you from choosing a base that is not a primitive
root. The program also provides a table of the powers of g, which is obtained by typing e.
To return to the table of indices from the table of exponentials, type i. These tables may
be used in the manner of tables of logarithms and exponentials, to find the solutions of
multiplicative congruences. For example, to find the solutions of the congruence z3 = 12
(mod 97), we take ¢ = 5, and write z = 5* (mod 97). From IndTab we discover that
inds 12 = 42. That is, 12 = 5%? (mod 97). Hence the initial congruence may be rewritten
as 53 = 5% (mod 97). This is equivalent to asserting that 3y = 42 (mod 96). From
LinCon we discover that this is equivalent to u =14 (mod 32). That is, u = 14, 46, or
78 modulo 96. Returning to the IndTab program, we enter p = 97 again, and then press
e to switch to the table of exponentials, i.e. powers of the primitive root 5. From this
table we deduce that 5'* = 48 (mod 97), that 5% = 31 (mod 97), and that 57 = 18
(mod 97). Hence the desired solutions are x = 48, 31, and 18 modulo 97. As a check,
one may use the program Power to verify that 483 = 313 = 183 = 12 (mod 97). If the
actual roots of the congruence z3 = 12 (mod 97) are not needed, but only the number
of roots, then one may proceed more simply, using Euler’s criterion (Corollary 2.38 on p.
101 of NZM) and the program Power: Since 1296/(3:96) = 1232 =1 (mod 97), it follows
that the given congruence has exactly (3,96) = 3 solutions.

1. Use the program IndTab to find the solutions of the congruence z* = 693 (mod 1093).
2. Use IndTab to find all solutions of the congruence z° = 693 (mod 1093).

3. Use IndTab in the manner above to show that the congruence =7 = 693 (mod 1093)
has no solution. At what point in the argument does it become apparent that there is no
solution? Use Theorem 2.37 of NZM to provide a simpler proof that this congruence has
no solution.

4. Use IndTab to find all solutions of the congruence z'° =475 (mod 9973).

49 Computational Laboratories in Number Theory

5. Use IndTab to find all z such that 2 =133 (mod 9973).
6. With p = 9973, use IndTab to determine the value of ind;g3 877.

The program IndTab is restricted to p < 10* because the entire table is computed
at the outset, and held in active memory (RAM). We have efficient means to compute
powers, and efficient means to located the least positive primitive root g, and thus we can
easily compute values of g# (mod p) as p runs over any given interval. What seems to
be hard is to calculate values of ind;a for a general a. Indeed, methods of encryption
have been proposed whose security depends on the supposition that evaluating indices is
computationally difficult. This computational snag is often referred to in the literature as
the problem of the discrete logarithm.

The program IndTab first constructs a list of the values g”, (i.e., exponentials), and
then uses it to form a table of the indices. Thus inda is found for each a (mod p), but
the amount of work is proportional to p. A first step toward improving on this has been
suggested by Shanks: Suppose that you wish to calculate indgz (mod p). Let s be a
base to be described later; we want to find ¢ and j so that ¢***7 =z (mod p). To this
end, use the extended Euclidean algorithm (i.e., the program LinCon) to find § so that
gg=1 (mod p). Construct a table of the values g’ (mod p) for 0 < j < s. Then, for
i=0,1,..., compute ¢* (mod p), and look to see if the number computed is found in the
table. When it is found, we have the desired values of ¢ and j, and indg z = is+j. When
searching for a particular value of g* in the table, it would be very slow to inspect all s
values. Instead, we sort the table of values g’ (mod p) by size, into increasing order. (A
useful algorithm for sorting, called HeapSort, is discussed later in this laboratory.) Then
one can search for a specified value in the table by binary subdivisions. To motivate the
choice of s, we consider the amount of work is required. The time required to construct the
table is O(s), but the time required to sort it is a little greater, O(slogs). Searching by
binary subdivision takes O(logs) steps, and we expect that it will be necessary to conduct
~ p/s such searches. Thus the total amount of work is proportional to

(Z—) + s) log s.
S

This is minimized by taking s ~ ,/p, and then the time involved is O(p'/*logp), a little
slower than proving that p is prime by trial division. Thus we see that Shanks’ algorithm
is not very fast for big p, although it represents a big improvement over O(p).

In practice, the parameter s above is constrained also by the amount of available
memory. For example, the program Ind calculates indgz (mod p) by Shanks’ method
for p < 10%; for p < 10® it takes s to be the integer nearest \/P, but for larger p it
takes s = 10000 so that the data fits into one 64K segment of memory. (Each entry of the
table occupies 4 bytes, and a companion table 2 bytes each, so the tables require 60K of
memory.) To witness Shanks’ algorithm in action, type inddem 2 45 101 [Enter]. Also,
try inddem 2 3 1093 [Enter].

1/2

For more information concerning algorithms used to calculate indices see the following
papers.

50 Computational Laboratories in Number Theory

D. Coppersmith, A. M. Odlyzko, R. Schroeppel, Discrete logarithms in GF(p), Algorith-
mica 1 (1986), 1-15.

D. M. Gordon, Discrete logarithms in GF(p) using the number field sieve, SIAM J. Discrete
Math. 6 (1993), 124-138.

B. A. LaMacchia, A. M. Odlyzko, Computation of discrete logarithms in prime fields, Des.
Codes Cryptogr. 1 (1991), 47-62.

K. S. McCurley, The discrete logarithm problem, Cryptology and computational number
theory (Boulder, 1989), Amer. Math. Soc., Providence, 1990, pp. 49-74.

A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance,
Advances in Cryptography (Proc. 1984 EUROCRYPT Workshop), Springer-Verlag, New
York, 1985, pp. 224-314.

7. Use PrimRoot to find a primitive root g modulo p = 123456791. Use the pro-
gram Ind to determine ind, 57085185 (mod p). For example, type ind 17 57085185
123456791 [Enter]. Use this information to find all roots of the congruence z° =
57085185 (mod 123456791).

8. The program Ind searches for a specified value z among the powers of g (mod p).
It is essential that (g,p) = 1, but it is not necessary that p be prime or that g be
a primitive root. Is 3 a power of 2 modulo 1234567917 That is, does the congruence
2V =3 (mod 123456791) have a solution? Type ind 2 3 123456791 [Enter]. Here
the modulus is prime, but the base is not a primitive root. Note that the program returns
only the least non-negative solution. The period of the solutions is p—1 if g is a primitive
root (mod p), but it is smaller in other cases. Find all v (mod 123456790) such that
2V =3 (mod 123456791). (Hint: Use the program Order to determine the order of 2
(mod 123456791).) Confirm that Ind still works when p is composite, by typing ind 2 23
91 [Enter]. Type 2 17 123456791 [Enter]. What happens?

9. Assume that p = 1234567897531 is prime. Use the programs GCD and Power to de-
termine the number of roots of the congruence z”" = 13 (mod 1234567897531). (Theorem
2.37 of NZM is relevant here.) Note that you do not have any tool available to find these
roots, since p is so large. Such tools do exist; for example one might elaborate on the
technique developed in the next laboratory. Alternatively, the polynomial 2’7 — 13 can
be factored quickly (mod p), for example by the method of D. G. Cantor and H. Zassen-
haus, A new algorithm for factoring polynomials over finite fields, Math. Comp. 36 (1981),
587-592.

We now consider the problem of sorting numbers by size. While not a number-theoretic
problem, we find it useful (as above) to be able to sort numbers with reasonable efficiency.
Suppose that ai,as,...,a, are n distinct numbers that we want to sort into increasing
order. First, in Bubble Sort, one passes repeatedly through the list, transposing pairs

o1 Computational Laboratories in Number Theory

that are found to be out of order, until a pass discloses no transpositions. This takes time
O(n?), which is terrible! Never use Bubble Sort! So how much faster can we hope for? We
derive a lower bound. When two elements a; and a; are compared, the set of all possible
orderings is divided into two classes, those with a; > a; and those with a; < a;. After k
such comparisons have been made, the set of all possible orderings has been divided into
at most 2% classes. If 2 < n! then there is a class containing two different orderings.
Consequently, if the original ordering of our a; is one of these orderings, then we have not
yet distinguished it from all other possible orderings, and at least one more comparison is
necessary. Thus for any sorting algorithm there is an ordering of the a; that gives rise to
more than (logn!)/log2 comparisons. Since n! > (n/e)™, the worst-case running time of
any sorting algorithm is > nlogmn. This lower bound is of the correct order of magnitude,
since we have algorithms that run in O(nlogn) time.

Among the possible methods that one might consider, we confine our attention to
HeapSort, invented by J. W. J. Williams. This method runs in O(nlogn) time, with the
worst case only about 20% longer than the average. It is very easy to understand and to
program, and requires little memory. In HeapSort, we think of the a; as forming a binary
tree, in which a; has subordinates as; and ag;11, as long as these indices do not exceed
n. Conversely, if 7 > 1 then a; reports to its superior, a;/2). The situation for n = 28 is
depicted below:

a1
az as
a4 as ae ar
as ag aio aii a12 ai3 ai4 ais
aig ai7 aig Gi19 A0 Aa21 Q22 G23 A24 QA25 Q26 Q27 (28

If a; is smaller than one of its underlings then we exchange a; with the larger of ag;
and ag;4+1. We repeatedly demote a particular entry until it majorizes its subordinates.
(Executives above their level of competence are demoted.) We begin at the bottom of the
table (high indices), and work up. Thus in the example above, we would compare a4 with
asg, and exchange them if a14 is the smaller. Then we compare asg with as7 to determine
which is the larger, and then compare that one with a;3. We demote a3 if one of the
numbers under it is larger. We continue with this, until a; > a9; and a; > ag;41 whenever
the indices lie between 1 and n. Such a configuration we call a heap. Once the heap has
been formed, it is clear that a; is the largest number in the entire collection. We swap a
with a, . This destroys the heap property, so we demote the new a; until it is restored.
At the point we have a heap of n — 1 numbers, and a,, is ignored at the bottom. The
new entry a; is the largest member in the heap (second largest, overall), so we exchange
a1 and a,_;. At this point both a,_; and a, have reached their final resting places.
We demote the new a; until we again have a heap, and then again the top of the heap
is retired. Continuing in this manner, with successively smaller heaps, we eventually have

52 Computational Laboratories in Number Theory

no heap left, and a1 < ay <---<ay,.

For extremely large collections (such as the Manhattan telephone directory), it is
important to sort as quickly as possible. In such cases it may be worth using the more
complicated QuickSort algorithm. For a detailed discussion of sorting, see D. E. Knuth,
The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Read-
ing, 1973. In particular, HeapSort is described on pp. 145-149, 153-158.

10. The program HSortDem demonstrates the HeapSort algorithm. Type hsortdem [En-

ter], choose the number n of integers to be sorted, and witness the process. How does
the number of comparisons compare with the lower bound derived above?

53 Computational Laboratories in Number Theory

o4

Computational Laboratories in Number Theory

LABORATORY 13

Proving Primality
New Program: ProveP

We have seen that a composite number can be proved to be composite very quickly by
means of the strong pseudoprime test. Finding the complete factorization of a composite
number takes longer, but for large n we have methods that are much faster than trial
division. To complete the picture we need a fast method for proving the primality of a
large prime number p. In this direction, we show that proving the primality of p is no
harder than factoring p — 1. Suppose that gP~! = (mod p), and that g(P=1/q £ 1
(mod p) for every prime factor ¢ of p — 1. Then g has order p — 1 modulo p, and hence
p must be prime. In general, if p is prime then such a g is not hard to find; thus we have
a means of proving that p is prime provided that we can factor p — 1.

1. Type primroot 8675309 [Enter]. The machine quickly responds with a primitive
root, because 8675308 is easily factored. Thus the primality of 8675309 has been rigorously
established. (David Farmer proposes that this is the largest prime number ever mentioned
in a popular song.)

The simple idea used above can be strengthened in several ways. First, suppose that
q is a prime factor of p — 1, say ¢*||(p —1). Let p’ denote an arbitrary prime factor of p.
Presumably the only such p’ is p’ = p, but this remains to be proved. Suppose that we can
find a number a such that a?~! =1 (mod p) but such that (a?~1/¢ —1,p) = 1. Then
a?~' =1 (mod p') but a® /4 #£1 (mod p'). (Note that we can deduce this without
knowing the value of p’.) Hence ¢* divides the order of a modulo p’, and consequently
¢*|(p’ —1). That is, every prime factor p’ of pis =1 (mod ¢¥). Suppose we repeat this
for several different prime factors ¢ of p — 1. (The value of a that works is allowed to
depend on ¢.) Let s denote the product of the primepowers ¢ for which this calculation
has succeeded. Then we can assert that every prime factor p’ of pis =1 (mod s). Since
the product of two or more such primes must be > s2, we see that if s > /P then p
must be prime. Hence we can establish the primality of p, based only on an incomplete
factorization of p—1, provided that we can factor s, s[(p—1), and s > ,/p. (This analysis
is related to Problems 38, 39 at the end of §2.8 of NZM.)

2. It is easy to confirm that 716 + 5'¢ = 2.16692759230113. Use the program ProveP
to demonstrate that this second factor is prime. That is, type provep 16692759230113
[Enter], and note the results.

3. If, as the factorization of p — 1 proceeds, a point is reached at which the factored
portion s of p—1 is so large that testing p for divisors d =1 (mod s), d < ,/p will take
less time than the time already spent trying to factor p — 1, then the program ProveP
automatically switches to the latter approach. To witness an instance of this, apply ProveP
to the number 5 - 10'7 4+ 21 = 500000000000000021 .

55 Computational Laboratories in Number Theory

The method of proving primality being employed here can be made still more efficient.
Suppose that as prime factors ¢ of p — 1 are being found, we reach a point at which
pl/3 < s < p'/2. Then either p is prime or p is the product of two primes, p = p'p”, say.
Write p’ = a/s+ 1 and p" = a”s + 1, so that p = a’a’s? + (a’ + a”)s + 1. With a little
care with inequalities, it can be shown that 0 < a’a” < s and that 0 < @’ +a” < s. Thus
the representation of p that we have given here in terms of powers of s coincides with the
expansion of p in base s. That is, by the division algorithm we may write p = cos2+c15+1
with 0 < ¢; < s, and ¢; = @’ +a”, co = d’a”. To determine whether such a’ and a”
exist, we have only to test whether ¢ —4c, is a perfect square. This embellishment is due
to H. C. Williams.

4. Apply the program ProveP to demonstrate that the number 1234567897531 is prime.
Also that 975312468097531 is prime. If the program GetNextP is given an argument x
for which 10° < z < 10'®, then the number p returned is the least integer > x that is a
strong pseudoprime to bases 2, 3, 5, 7 and 11. It is incredibly likely that p is prime, but
to obtain a rigorous proof one should use the program ProveP. In this manner, find the
least prime greater than 12345678987654321.

5. In most cases the method used by ProveP is reasonably quick. However, it can happen
that p — 1 = 2¢ where ¢ is prime. In such a case, attention is focused on ¢g. After a brief
attempt to factor it by trial division fails, one should apply a strong pseudoprime test. If
q passes the test, then a rigorous proof that ¢ is prime may be obtained by applying the
program ProveP to ¢q. In attempting to factor g—1 one may encounter the same problem as
with p—1. Nevertheless, by systematically employing the programs ProveP, SPsP, Factor
and Rho, the needed factorizations can be rigorously established. For example, suppose
that we apply the program ProveP to show that the number p = 987292984329259 is
prime. The machine quickly finds that p — 1 is divisible by 2 and by 3, but then there
is a pause. Touch any key to interrupt the program, and you find that it is trying to
factor 164548830721543. Type q to quit, and then apply the program SPsP to this factor.
In this way we discover that we are dealing with a composite number, so we apply the
program Rho, which discloses that the factor may be written as 5378033 - 30596471. We
apply the program Factor to the first of these numbers, to confirm that it is prime. Then
we again apply ProveP to the original number p. Again the machine finds 2 and 3,
but when it pauses, we interrupt it, type s to indicate that we wish to supply a prime
factor, and enter 5378033. This time the program reaches a successful resolution without
further intervention, and it is proved that p is indeed prime. Show that 10'® — 11 =
999999999999999989 is prime. What intermediate numbers need to be factored? Give an
account of the programs used, and the findings. (By applying GetNextP to this number
you may confirm that this is the largest prime not exceeding 10'®. Similarly, show that
(10'® — 7)/3 = 333333333333333331 is prime. Indicate what numbers are encountered,
and how they are dealt with.

6. Show that 107 + 19 and 10'7 4 21 are both prime.

7. What is the first composite number in the sequence 31, 331, 3331, 33331, ... 7 Apply
ProveP until the first composite element is encountered. Here the k-th term is ux =

56 Computational Laboratories in Number Theory

(10 — 7)/3. Show that for every k, the least prime factor dividing uy is > 17. Show
that 17|ug precisely when k lies in a certain residue class (mod 16). (Suggestion: Use the
program PowerTab to display 10¥ (mod m) for appropriate m.)

8. For the programmer. When attempting to prove that p is prime, we factor p—1. After
removing the factor 2, this leaves p; = (p — 1)/2 to be factored—but this may be prime.
In such a case we would confirm that p; is prime by applying ProveP. However, it may
happen that p; = 2py + 1 with py prime. Perhaps also p; = 2p3 + 1 with p3 prime. It
is in such a case that our procedure for establishing primality will require the most work.
How long can a chain of primes be, with p; = 2p;;1 + 17 Construct a program to explore
this. Apply the SPSP test to odd integers until a probable prime p is found. Then apply
SPSP to 2p + 1, and so on, until a chain of k& probable primes has been constructed. If
this chain is of record-breaking length, print out p and k, so that the program ProveP
can be applied to the members of the chain. The first chain you will find is 3, 7; the next
one is 5, 11, 23, 47. Show that if p begins a chain of length at least 4, with p > 5, then
necessarily p = 29 (mod 30). For more on such chains, see D. H. Lehmer, On certain
chains of primes, Proc. London Math. Soc. (3) 14a (1965), 183-186.

By the method of primality proof employed here, we see that proving that p is prime
is no harder than factoring p—1. Other methods of proving primality have been proposed,
and some of these are significantly more efficient than our best factoring algorithms. Thus a
prime of 1000 digits can be proved to be prime, but the record for factoring hard composite
numbers stands below 200 digits. One of the methods currently in wide use is that of
Adleman, Pomerance and Rumely (the APR method); it depends on Gauss sums. A
method depending on elliptic curves, devised by Atkin and Morain, has achieved some
striking successes lately. For more information concerning proofs of primality, consult the
following papers.

L. M. Adleman, C. Pomerance, and R. S. Rumely, On distinguishing prime numbers from
composite numbers, Ann. of Math. (2) 117 (1983), 173-206.

A. O. L. Atkin and F. Morain, Elliptic curves and primality proving, Math. Comp. 61
(1993), 29-68.

J. D. Dixon, Factorization and primality tests, Amer. Math. Monthly. 91 (1984), 333-352.

o7 Computational Laboratories in Number Theory

o8

Computational Laboratories in Number Theory

LABORATORY 14

Square Roots Modulo p
New Programs: SqrtModP, SqrtDem

In discussing pseudoprime tests and primitive roots we have generated a circle of ideas that
we now harness to give a quick method for finding the roots of the quadratic congruence
72 = a (mod p). The algorithm involved is described in detail in §2.9 of NZM. Before
confronting the full algorithm, we consider two instructive examples.

1. If p =3 (mod 4) then the solutions of the congruence z?> = a (mod p) are given
by z = +aPt)/4 (mod p). For example, suppose we wish to find solutions of the
congruence 2 = 2 (mod 103). By using the program Power we find that 22¢ = 38
(mod 103). Hence the desired solutions are +38, as we may confirm by verifying that
382 = 2 (mod 103). Use the program Power in this way to find the solutions of the
congruence 2> = 7 (mod 103). What happens to this procedure if a is a quadratic
nonresidue of p? For example, what happens if you try to use this method to solve the
congruence z2 =3 (mod 103)? Explain why it is always the case that exactly one of a
and —a is a quadratic residue, if p is a prime, p =3 (mod 4), and a #0 (mod p).

2. Suppose that z is a quadratic nonresidue of p, so that by Euler’s criterion z(—1/2 = —1
(mod p). If p =1 (mod 4) then it follows that solutions of the congruence z%? = —1
(mod p) are given by = = +2(P~1/%* (mod p). However, to make use of this observation,
we need to find the quadratic nonresidue z. Rather than give a deterministic algorithm
for this, we simply try z at random, until a quadratic nonresidue is found. When z is
selected, we compute z = zP~1/4 (mod p). Then either 22 = —1 (mod p), in which
case we are done, or else 2 = 1 (mod p) (i.e., x = £1 (mod p)), in which case we
start over with a new value of z. Since exactly half of the nonzero residue classes are
quadratic nonresidues, the expected number of such trials is 2. An algorithm of this
kind is referred to as a Monte Carlo algorithm, or as a probabilistic algorithm. Since the
quadratic nonresidues seem to be randomly distributed between 0 and p, we do not take
the trouble to use a random-number generator in selecting the values of z: It is enough to
try consecutive integers (skipping the perfect squares). For example, 22 = —1 (mod 97),
and 324 = —1 (mod 97), but 52 =22 (mod 97), and hence the solutions of z2 = —
(mod 97) are given by z = £22 (mod 97).

3. We now proceed to the general case. To see how one would find the solutions of the
congruence 2 = 2 (mod 97), type sqrtdem 2 97 [Enter], and follow the prompts.
What happens if you type sqrtdem 5 97 [Enter]? To get the same result without all
the discussion, type sqrtmodp 2 97 [Enter].

4. Apply the program SqrtDem to various values of a with p = 223497217. What is the
power of 2 dividing p — 17

59 Computational Laboratories in Number Theory

5. Suppose that p is prime and that p =2 (mod 3). Explain why a(??=1/3 is the sole
solution of the congruence z3> = a (mod p). Use this principle and the program Power

to determine the unique root of the congruence z3 =2 (mod 101).

6. Suppose that p is prime and that p =1 (mod 3). Explain how a probabilistic algo-
rithm might be constructed to locate the roots of the congruence 23 =1 (mod p). (Hint:
One might try 2z = 2P=1/3 (mod p), where z is chosen randomly.) The congruence in
question has exactly 3 roots, say xg,x1,22. Since 1 is one of these roots, we may suppose
that o = 1. Explain why zo = 27 (mod p), and z; = 2 (mod p). Thus if one of
these roots can be found then so can the other. Use your method to find the solutions
of the congruence > =1 (mod 97). What is the probability that a given trial will be
successful?

7. For the programmer. Write a program that finds the roots of the congruence z3

(mod p). (Hint: Recall Problems 6 and 8 on p. 115 of the text.)

=a

The algorithm we have used to take squareroots modulo p was invented by Dan Shanks
in 1972; he called it RESSOL, because it SOLves for RESidues. This algorithm is very
similar to one described much earlier by Tonelli. Other methods for taking squareroots
modulo p have been given by Lehmer (related to earlier work of Cipolla), by Peralta,
and by Adleman, Manders, and Miller. In addition, more general algorithms have been
devised for factoring a polynomial modulo p; such an algorithm could be applied to the
polynomial z2 — a in order to find the squareroots of @ modulo p. One such algorithm
has been proposed by Berlekamp, but the more recent method of Cantor and Zassenhaus
seems to be the method of choice. Among the various methods, it is interesting to note
that while Shanks’ method is somewhat slower if p — 1 is divisible by a high power of p,
Peralta’ method, which depends on the arithmetic of polynomials (mod p), is faster in
this case. For more details one may consult the following papers.

L. Adleman, K. Manders, and G. Miller, On taking roots in finite fields, 18th IEEE Annual
Sympos. Foundations of Computer Science, Providence, RI, 1977.

E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970),
713-735.

D. G. Cantor and H. Zassenhaus, A new algorithm for factoring polynomials over finite
fields, Math. Comp. 36 (1981), 587-592.

D. H. Lehmer, Computer technology applied to the theory of numbers, Studies in Number
Theory (W. J. LeVeque, ed.), Math. Assoc. Amer., 1969.

R. Peralta, A simple and fast probabilistic algorithm for computing square roots modulo
a prime number, IEEE Trans. Info. Thy. IT-32 (1986), 846-848.

M. Rabin, Probabilistic algorithms in finite fields, SIAM J. Comp. 9 (1980), 273-280.

D. Shanks, Five number-theoretic algorithms, Proceedings of the Second Manitoba Con-
ference on Numerical Mathematics, 1972, pp. 51-70.

60 Computational Laboratories in Number Theory

LABORATORY 15

Quadratic Residues
New Programs: JacobDem, JacobTab, Jacobi

As is discussed at the end of §3.3 of NZM, quadratic reciprocity provides a quick method of
calculating the Jacobi symbol. The program JacobDem demonstrates the process. In ad-
dition, values of the Jacobi symbol exhibit a number of interesting and important patterns.
These we can explore with the aid of the program JacobTab.

1. Use the program JacobDem to witness the calculation of the Jacobi symbol. Try
typing jacobdem [Enter] and follow the prompts, or type jacobdem 1234567 7654321
[Enter]. To evaluate the Jacobi symbol without witnessing the calculation, type jacobi
1234567 7654321 [Enterl].

2. Use the program JacobTab to view a table of the values of the Jacobi symbol. For
p = 23, what are the quadratic residues?

3. For 1 < a < p-—2, the pair (%), (anl) takes on the values (1,1), (1,-1), (—1,1),
(—1,—1). Using JacobTab with p = 29, classify the a according to which pair is generated.
How many times does each configuration occur? Repeat this with p = 37, p = 41.
Formulate a conjecture concerning the general situation when p =1 (mod 4). Now try
some primes =3 (mod 4), say p =23, p = 31, p = 43. Again, formulate a conjecture.

Problem 18 at the end of §3.3 of NZM is relevant here.
4. Using JacobTab, evaluate the sum

i(a(a—}—l)

a=1

for several primes, say p = 11, p =13, p= 17, p = 19. Formulate a conjecture concerning
the value of this sum. Note Problem 17 at the end of §3.3 of NZM.

5. Let 0 = £1, e = 1. The a for which () d, (“"’1) = ¢ are counted by the expression

o) (25

Explain why this is

(3 e 1R (1) (+(%5)

61 Computational Laboratories in Number Theory

and why this in turn is
P

(i) S ().

This identity establishes a relationship between the conjectures you made in the two pre-
ceding problems. Are your conjectures equivalent?

6. Using JacobTab, evaluate the sum
(p—1)/2

2

a=1

)

for several odd prime numbers p, say p =11, p =13, p=17, p = 19. Explain why this
a
2

—
e

sum must vanish if p =1 (mod 4). (Hint: (3) = (5*).) Explain why this sum never

vanishes if p =3 (mod 4). (Hint: What is this sum (mod 2)?) When p =3 (mod 4),
is there anything notable about the sign of this sum? Examine some further cases, and
formulate a conjecture.

In 1839, Dirichlet proved an important class number formula, a special case of which
asserts that if p=3 (mod 4) and p > 3 then

(p—1)/2

3 (0)= (2 ()

Here H(—p) is the number of inequivalent classes of quadratic forms of discriminant —p,
as defined in §3.5 of NZM. From this (deep) result we see that the sum on the left hand
side above is always positive when p = 3 (mod 4). For an exposition of Dirichlet’s
class number formula, see §1 and §9 of H. Davenport, Multiplicative Number Theory, 2nd
Edition, Springer-Verlag, New York, 1980, especially (8) on p. 9 and (15) on p. 49.

7. Using JacobTab as an aid, test the following assertion: For every prime number p > 11,
the interval [1,10] contains two consecutive quadratic residues. Is the same true of the
interval [1,9]7 Is there a similarly uniform upper bound for the first occurrence of three
consecutive quadratic residues? Explore. The answer, which will come as a surprise, is
given by D. H. Lehmer and E. Lehmer, On runs of residues, Proc. Amer. Math. Soc. 13
(1962), 102-106.

8. Let ny(p) denote the least positive quadratic nonresidue of p. Using JacobTab, de-
termine the value of na(p) for 25 odd primes chosen at random. What values does na(p)
take on, and how many times? Is there any reason why the number ns(p) should always
be prime?

Erd6s combined quadratic reciprocity and the prime number theorem for arithmetic
progressions to show that ny(p) = 2 for asymptotically 1/2 of the primes, that nq(p) =3

62 Computational Laboratories in Number Theory

for asymptotically 1/4 of the primes, that ns(p) = 5 for asymptotically 1/8 of the primes,
that nq(p) =7 for asymptotically 1/16 of the primes, and so on.

9. Let pa(p) denote the least prime quadratic residue of p. Using JacobTab, determine

the value of py(p) for 25 randomly chosen odd primes p. What values are taken on, and
how frequently? What is p2(163)?

63 Computational Laboratories in Number Theory

64

Computational Laboratories in Number Theory

LABORATORY 16

Binary Quadratic Forms
New Programs: ClaNoTab, QFormTab, Reduce

Whether a number n can be expressed as a sum of two squares can be elegantly char-
acterized in terms of the canonic factorization of n into prime powers (recall Theorem
2.15 of NZM). It is therefore natural to ask whether something similar happens with other
binary quadratic forms. The answer, as discussed in §3.4-3.7 of NZM, is generally less
satisfactory.

1. What is the discriminant of the form f(z,y) = 350822 + 11259xy + 9034y%? Is this
form definite or indefinite? (Recall Theorem 3.11 of NZM.) Type reduce 3508 11259
9034 [Enter] to find a reduced form that is equivalent to f(z,y). Use the program
QFormTab to view a list of all the reduced quadratic forms of this discriminant. Describe,

in terms of the arithmetic progressions that they fall in, the primes represented by this
form. (Suggestion: Use Corollary 3.14 and Theorem 3.17 of NZM.)

2. What is the discriminant of the form f(z,y) = 103922 + 11223zy + 30307y2? Is this
form definite or indefinite? Using the program QFormTab,construct a list of all the re-
duced quadratic forms of this discriminant. Describe, in terms of arithmetic progressions
that they fall in, the primes represented by this form. Type reduce 1039 11223 30307
[Enter] to find a reduced form g(z,y) that is equivalent to the given form. From the
information displayed, find values of z and y such that g(z,y) = 1039. Now type reduce
[Enter], without entering the coefficients on the command line. Then enter the coefhi-
cients in response to the prompts. This gives you an environment in which forms may be
manipulated. If you type r then the bottom form in the table is reduced, the steps of the
reduction are displayed, with the matrix that takes f to g. To view the inverse matrix,
that takes g to f,say M : g — f, type m. To express the original first coefficient 1039
properly by g, one takes x = mi1, y = mg1 where M = [m,;;] (recall the formulae (3.7)
in the text). In this environment, enter

a =123456789876543401,
b =31971493083730684,
¢ =2069907153395965,

and type r to reduce this form. In this way, discover a representation of the prime a as a
sum of two squares.

The prime p = 123456757 is = 1 (mod 4), and hence can be written as a sum of
two squares. In order to find such a representation, we first construct a quadratic form
f(z,y) = ax® + by + cy? with a = p and discriminant d = —4. That is, we must find
b and ¢ so that b?> — 4pc = —4. By using SqrtModP, we find that 2 = —4 (mod p)

65 Computational Laboratories in Number Theory

where z = 51035038. We need b to satisfy b2 = —4 (mod 4p). Thus we may take b =z
(mod p). We also need b to be even, so that b> = —4 (mod 4). Since z is even, it
suffices to take b = . Then ¢ = (b? +4)/(4p) = 5274266. (If such a calculation is beyond
the capabilities of your pocket calculator, you may perform the arithmetic in the UBASIC
environment. From the UBASIC prompt, type print (510350382 + 4)\ (4%x123456757)
[Enter]. Here the \ is the UBASIC command for integer division.) Next we use the
(Turbo Pascal) program Reduce to reduce this quadratic form. The only reduced form of
discriminant —4 is x? + y?, and hence not only is f(z,y) equivalent to this form, but we
find the value of z and y that we should take to give a proper representation of a. From

the values displayed, we find that 123456757 = 102812 + 42142.

3. Use the programs SqrtModP and Reduce, as described above, to find a proper repre-
sentation of the prime 987654337 as a sum of two squares. (This is similar to Example 3
in §3.6 of NZM.)

4. The number 20193797 is a product of two primes = 1 (mod 4). Hence 20193797
can be expressed as a sum of two squares. Use the program Factor to find these prime
factors, say 20193797 = p1ps. Use SqrtModP to find x; such that z7 = —4 (mod p;),
for i = 1,2. Then use CRT to find numbers b such that b = +z; (mod p;1), b = x4
(mod p3), and b =0 (mod 2). Note that because of the various possible choices of the
signs, there are 4 such numbers b. For each such b, put ¢ = (b* + 4)/(4a). Reduce the 4
quadratic forms to obtain representations of 20193797 as a sum of two squares. How many
distinct ordered pairs (z,y) of positive integers do you obtain? Compare your findings
with Theorem 3.22 of NZM.

5. Use the program QFormTab to view the reduced quadratic forms of discriminant —20.
How many such forms are there? The prime number 666666667 is properly represented by
the form 66666666722 + 200000y + 15y2, whose discriminant is —20. Reduce this form,
to determine a representation of 666666667 by one of the reduced forms. (Problems 5 and
10 at the end of §3.6 of NZM are relevant here.)

6. The program ClaNoTab generates a table of the class numbers of binary quadratic
forms of negative discriminant. This program operates by the straightforward approach
of noting the value of b2 — 4ac whenever —a < b < a < cor 0 < b < a = ¢, for each
a, a =1,2,...,57. This gives a complete count of the reduced quadratic forms for each
discriminant d in the interval —10000 < d < 0. Since the computer must consider a large
number of triples (roughly 10° of them), the program takes some time to generate the
table. Scroll down through the table, looking for d for which the class number h(d) is
1. How many such d do you find? Gauss found these d, and conjectured that there are
no more. In 1934 it was proved that there could be at most one more such d. Finally
in 1952, Heegner solved the Gauss class number problem by showing that there are no
further d < 0 for which the class number is 1. (There are lots of d > 0 for which the class
number is 1, and it is conjectured that there are infinitely many, though this has not yet
been proved.) When d < 0, the numbers h(d) grow irregularly with |d|. How does h(d)
compare with /—d ?

66 Computational Laboratories in Number Theory

It is known that if d < 0 then h(d) = O(v/—dlog—d), and also that if ¢ > 0 then
there is a Dy(€) < 0 such that if d < Dg(¢) then h(d) > d*/2—¢. Moreover, it is known that
if the Generalized Riemann Hypothesis is true then h(d)/v/—d lies between c/loglog —d
and cloglog —d.

7. If a, b, and c are large (in absolute value), how likely is it that d = b? — 4ac is
small? Try some triples in the environment of the program Reduce. Suppose that a =
111111222222333333 and that ¢ = 333333222222111111. How many b’s are there for
which |d| < 10187

Each form of negative discriminant is equivalent to a unique reduced form. (Recall
Theorem 3.25 of NZM.) In particular, the reduced forms of given negative discriminant
d are mutually inequivalent. Hence the number H(d) of equivalence classes of positive
definite binary quadratic forms of discriminant d, d < 0, is equal to the number of reduced
positive definite forms of discriminant d. For d > 0 our reduction process is incomplete,
and reduced forms may be equivalent. Thus for d > 0 the number of reduced forms is
only an upper bound for the number H(d) of equivalence classes.

8. Using the program QFormTab, construct a list of the reduced quadratic forms of
discriminant 5. In the environment of Reduce, take a = 1, b = 1, ¢ = —1. Type s,
and then type i. Deduce that the two reduced forms are equivalent, H(5) = 1, and give
the matrix that takes one to the other. Complete the following statement: “A prime p is
represented by the form z? + xy — y? if and only if” (This is similar to Example 2
in §3.5 of NZM.)

9. Use the program QFormTab to construct a list of reduced forms of discriminant 12.
Show that 22—3y2 = —1 has no solution because it has no solution as a congruence modulo
3. Deduce that the two reduced forms are inequivalent, and hence that H(12) = 2.

10. The form f(x,y) = 17x% + 8zy + y? has discriminant —4, and hence is equivalent to
g(z,y) = 22 + y2. In the environment of Reduce, enter a = 1, b =0, ¢ = 1. By typing
a sequence of g’s, t’s, and i’s, try to get to f. If you are unsuccessful, and need a hint,
enter a =17, b=8, ¢ =1, and type r. This gives the sequence that takes f to g. Now
go backwards.

11. In the environment of Reduce, enter a =1, b=1, ¢ = 1. Type s twice. Note that
you are back at the original form, but that the matrix is —I, not I. Thus —I takes the
form to itself. This is called an automorph of the form. Type several characters, each one
being one of s t i, and then type r. What matrix M now takes the form to itself? By
experimenting in this way, find all the automorphs of this form. (There are 6 of them
altogether, including 7.) Can you prove that your list is complete? (The relevant matrices
are found in the proof of Theorem 3.26 of NZM.)

12. Consider a matrix M, written as a product in which each factor is one of the matrices
S, T, or T—!. If there are many factors, then the elements of M are likely to be large.
In the environment of Reduce, type several characters, each one being one of s t i. How
large an element m;; can you obtain in at most 20 keystrokes?

67 Computational Laboratories in Number Theory

68

Computational Laboratories in Number Theory

LABORATORY 17
Arithmetic Functions
New Programs: ArFcnTab, Pi

A function is called an arithmetic function if its domain is the set of positive integers
(or perhaps the set Z of all integers). Among the most important and useful arithmetic
functions are the following: The number w(n) of distinct primes dividing n, w(n) =
> pjn 1- The number Q(n) of primes dividing n, counting multiplicity, Q(n) = >_ ., a-
The Mobius p-function, which is defined to be (—1)9(") if n is squarefree, and 0 otherwise.
The divisor function d(n), which is the number of positive divisors of n, d(n) = 3_,,, 1.
By the Chinese Remainder Theorem, we may show that d(n) =[], (k +1). The Euler
¢-function, which counts the number of reduced residues modulo n. By using the Chinese
Remainder Theorem we know that ¢(n) = n[],,(1 —1/p). The o-function is the sum of

the positive divisors of n, o(n) =>_ djn @- By using the Chinese Remainder Theorem we
may show that o(n) = n][.,(1 - 1/p**")/(1 -1/p).

1. The program ArFcnTab provides a table of the six arithmetic functions defined above,
for 1 <n < 10%. Type arfcntab [Enter]. You may use the PgUp and PgDn keys to page
up or page down through the table. By typing j and then entering a number, you may
jump to a different part of the table. When you are done using the table, type Esc to exit.
By scrolling down through the table, make a list of those n < 200 for which d(n) is odd.
Formulate a conjecture. Can you prove it? (Theorem 4.3 of NZM is useful here.)

2. For 1 <n <10, compute a table of values of the function }_; p(d). Choose an n

at random, 1 < n < 10°. Use the program Factor to factor n, and then list the divisors
of n. For each d dividing n, use the factorization of d to determine the value of u(d),
and confirm that ArFcnTab provides the same values. For this n, evaluate 3, u(d).
Formulate a conjecture concerning the values of this sum. (See Theorem 4.7 of NZM.)

3. For 1 < n < 10, construct a table of the values of } ;. ¢(d). Choose a large n at

random, 1 < n < 10%. Use Factor to factor n, and construct a list of the divisors of n.
Use ArFcnTab to provide the values of ¢(d) for these divisors, and hence evaluate the sum
> djn #(d) . Formulate a conjecture regarding the values of this sum. (See Theorem 4.6 of
NZM.)

4. Make a list of those n, 1 < n < 50, for which w(n) = Q(n). What do you notice about
the prime factorizations of these n? Describe these n in some other way.

5. Using ArFcnTab, look for small values of w(n). Other than w(1l) = 0, what is the
smallest value you find? When does it take this small value? Does it take this value
infinitely many times? Why? Now look for large values of w(n). Make a list of those n,

69 Computational Laboratories in Number Theory

1 < n <500, for which w(n) is larger than any previous values. That is, if 1 < m < n then
w(m) < w(n). Give the prime factorization of each of these n. Formulate a conjecture
regarding these n. Can you prove your conjecture? (See Theorem 8.30 in NZM.)

6. Proceed as in the preceding problem, but with w(n) replaced by Q(n). (Problem 10
at the end of §8.3 is relevant here.)

7. Construct a list of those n, 1 < n < 100 for which ¢(n) is larger than any preceding
value. That is, if 1 < m < n then ¢(m) < ¢(n). Formulate a conjecture regarding these
n. What information would you need concerning the distribution of prime numbers in
order to prove your conjecture?

8. Construct a table of those n, 1 < n < 50, for which ¢(n)/n is smaller than any
preceding value. That is, if 1 < m < n then ¢(m)/m > ¢(n)/n. Formulate a conjecture

concerning this set of integers n. Can you prove your conjecture? (Problem 15 at the end
of §8.3 of NZM is relevant here.)

9. Construct a table of the values of }° .\, u(d), for 1 <n < 20. Formulate a conjecture

concerning the values taken by this sum. Can you prove your conjecture? (See the proof
of Theorem 8.25 in NZM.)

10. Construct a table of the values of 29" of d(n), and of 2%, for 1 < n < 20.
Formulate a conjecture concerning the relative sizes of these three functions. Can you
prove your conjecture? (See the discussion in the middle of p. 395 of NZM.)

11. A number n is called perfect if o(n) = 2n. That is, n is the sum of its proper divisors.
What perfect numbers do you find in the interval 1 < n < 507 It has long been conjectured
that there are no odd perfect numbers—indeed, this is very probably the oldest unsolved
problem in all of mathematics. By examining the values provided by ArFcnTab, confirm
that the numbers 496, 8128, and 33550336 are also perfect. Factor these numbers, and
note that their prime decompositions exhibit a common pattern. Can you show that all
even perfect numbers are of this shape?

12. The values of some of our six arithmetic functions tend to be correlated. For example,
w(n) tends to be large (but is not always large) when (n) is large. In the case of ¢(n)
and o(n), the correlation is negative: o(n) tends to be large when ¢(n) is small. To
investigate this principle in a quantitative form, tabulate the values of ¢(n)o(n)/n? for
1 < n <10, and also for several large values of n. Do all the values observed lie in the
interval [6/m2,1]? If so, why should they?

13. Although d(n) takes on some large values for large n, these values are small compared
with fractional powers of n. More precisely, for any § > 0 there is a constant Cg such that
d(n) < Csn® for all positive integers n. Tabulate the values of d(n)/y/n for 1 <n < 15.
What is the largest value observed? This is the unique maximum of this function. The
unique maximum of d(n)/n'/3 is attained at n = 2520. What is this maximum value?

70 Computational Laboratories in Number Theory

The maximum of d(n)/n'/* is attained at n = 21621600. What is this maximum? The
maximum of d(n)/n'/® occurs at n = 6064949221531200. What is this maximum? Here
n > 10%, so you are now beyond the range of ArFcnTab. To calculate d(n) you must factor
n and use the formula. The maximum of d(n)/n'/ occurs at n = 26.3%.5%.72.112.13-17-
19.23-29-31-37-41-43-47-53-59-61. What is this maximum? To understand how these n
are found, see the discussion leading to (8.54) on pp. 395-396 of NZM. This analysis goes
back to S. Ramanujan, Highly Composite Numbers, Proc. London Math. Soc. 2 1915, 347
409; Collected Papers pp. 78-128. The set of n for which d(n) assumes a record-breaking
value is not so easy to describe completely, although Ramanujan determined many of its
properties.

14. One might expect that the Mobius function takes the values +1 and —1 with roughly
equal frequency. To test this hypothesis, put M(z) =, ., ., #(n), and tabulate M (x)
for integral values of x < 100. Here only squarefree numbers are being counted, so
it is natural to consider also L(z) = 3 ., <, (—=1)®™ . Form a similar table of this
function. How do the values of these functions compare with \/z ? Here the numerical
evidence may lead you to formulate false conjectures. It was conjectured by Mertens that
|M(z)| < y/z for all z > 1. Although it is now believed that limsup M(z)//z = +o0, the
first disprove of Mertens’ conjecture was found only recently (A. M. Odlyzko and H. J. J. te
Riele, Disproof of the Mertens Conjecture, J. Reine Angew. Math. 357 (1985), 138-160).
The argument disproves Mertens’ conjecture by showing that limsup M (z)/\/z > 1.06.
Concerning L(z), Pélya conjectured that L(z) < 0 for all z > 2. This was disproved
by C. B. Haselgrove, A disproof of a conjecture of Pélya, Mathematika 5 (1958), 141—
145, and later R. Sherman Lehman, On Liouville’s function, Math. Comp. 14 (1960),
311-320 showed more explicitly that L(906180359) = 1. This is not necessarily the least
counterexample, but it is known that Pélya’s conjecture is true for all < 6 - 10°.

15. The program Pi calculates the number m(z) of primes not exceeding x. The program
operates by first sieving to construct a table of primes not exceeding 31607. Since the
next prime after this, namely 31621, is larger than /109, it follows that primes up to 10°
can be determined by using these small primes for sieving. To limit the use of memory,
the primes are constructed in intervals of length 10%, one interval at a time, until the limit
x is reached. The program is restricted to x < 10%, because the running time (which is
roughly comparable to x) is too great for larger . For z = 10¥, 1 < k < 6, how does
m(z) compare with z/logx ? A better approximation is given by

) /aj du
lizx = ,
9 logu

but numerical values of this integral are not so easy to compute.

Faster methods of computing 7(z) are discussed in the following papers.

J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing w(z): The Meissel-Lehmer
method, Math. Comp. 44 (1985), 537-560.

71 Computational Laboratories in Number Theory

J. C. Lagarias and A. M. Odlyzko, New algorithms for computing 7(x), Number Theory:
New York 1982, (D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn and M. B. Nathanson,
eds.), pp. 176-193; Lecture Notes in Mathematics 1052, Springer-Verlag (Berlin), 1984.

J. C. Lagarias and A. M. Odlyzko, Computing w(z): an analytic method, J. Algorithms
8 (1987), 173-191.

16. G. H. Hardy and S. Ramanujan proved that for most integers n, both w(n) and Q(n)
are approximately loglogn. Their proof was complicated; the more elegant method used
in proving Theorem 8.32 and Corollary 8.33 of NZM was found later by P. Turan. This
has an interesting consequence: Since 2@ < d(n) < 2™ for all n, it follows that for
most n, (logn)®~¢ < d(n) < (logn)°t¢ where ¢ = log2 = 0.693.... Using ArFcnTab,
compute the averages of w(n) and ©(n) in the intervals (10¥ —50,10%] for 1 < k < 9, and
compare these averages with loglog 10*. (Remember, as always to use natural logarithms,
i.e., logs to the base e.)

17. By borrowing code from the program Pi, construct a program to count the number
ma(z) of twin primes not exceeding x. Does this function increase at a regular rate? For
interesting information regarding the distribution of prime numbers, see Don Zagier, The
First 50 Million Prime Numbers, Math. Intell. 1 (1978), 7-19.

72 Computational Laboratories in Number Theory

Reference Guide to
Turbo Pascal Programs

ArFcnTab

Function Constructs a TABle of values of the six ARithmetic FunCtioNs w(n) =
Yopin s Q) = > a0, pn), dn) = >2,,1, ¢(n), and o(n) =
Zd|n d.

Syntax arfcntab
Commands PgUp Display the preceding 20 values
PgDn Display the next 20 values
J Jump to a new point in the table
P Print 500 values, starting at the top of the displayed screen
Esc Escape from the environment

Restrictions 1<n<10°

Algorithm When the program begins execution, it first constructs a list of the primes
not exceeding 10%/2, by sieving. These primes are used for trial division.
The factorizations are determined simultaneously for all 20 numbers (or
all 500 numbers, in the case of printing).

See also Pi

BasesTab

Function Constructs a TABle of the expansions of integers n in various BASES
b.
Syntax basestab
Commands PgUp Display the preceding 20 values
PgDn Display the next 20 values
— Shift to smaller bases
— Shift to larger bases
J Jump to a new point in the table
Esc Escape from the environment

Reference Guide to Turbo Pascal Programs 73

Restrictions

Algorithm

2<b<16,1<n <108

The division algorithm is used to calculate base b digits, trailing digits
first.

Car

Function

Syntax
Restrictions

Algorithm

See also

Computes the CARmichael function ¢(m), which is defined to be the
least positive integer ¢ such that a® =1 (mod m) whenever (a,m) =
1.

car [m]
1<m<10'8

First the canonical factorization of m is determined by trial division. If
p is an odd prime then c(p?) = p?~*(p — 1). Also, c¢(2) =1, c(4) = 2,
and ¢(27) = 2772 for j > 3. Finally, ¢(m) is the least common multiple
of the numbers c¢(p®) for p*||m.

Phi

ClaNoTab

Function

Syntax

Commands

Restrictions

Algorithm

See also

74

Constructs a TABle of CLAss Numbers of positive definite binary quad-
ratic forms. The number H(d) is the total number of equivalence classes
of such forms of discriminant d, while h(d) counts only those equivalence
classes consisting of primitive forms.

clanotab
PgUp Display the preceding 40 values
PgDn Display the next 40 values
J Jump to a new point in the table
P Print h(d) and H(d) for —2400 < d < 0
Esc Escape from the environment
—10*<d <0

All reduced triples (a,b,c) are found, with 0 < a < 4/10%/3. When
a reduced triple is located, the value d = b? — 4ac is calculated, and
the count of H(d) is increased by 1. If ged (a,b,c) = 1 then the count
of h(d) is also increased by 1. The entire table is calculated before the
first screen of values appears. This may take several minutes on a slow
machine.

QFormTab, Reduce

Reference Guide to Turbo Pascal Programs

Comments

The time required to calculate class numbers in this manner in the range
—D < d < 0 is roughly proportional to D3/2, and roughly D numbers
must be stored. By adopting a more sophisticated algorithm, one could
calculate only those values that are to appear on a given screenful, and
the time required for the calculation would be much smaller, making it
feasible to construct a program of this sort that would accommodate d in
the range —10% < d < 0, say. For faster algorithms, see D. Shanks, Class
number, a theory of factorization, and genera, Proc. Sympos. Pure Math.
20, Amer. Math. Soc., Providence, 1970, 415-440. For a method that is
theoretically still faster, but that may be challenging to implement, see
J. L. Hafner and K. S. McCurley, A rigorous subexponential algorithm
for computation of class groups, J. Amer. Math. Soc. 2 (1989), 837-850.

CngArTab

Function

Syntax

Commands

Restrictions

See also

Displays the addition and multiplication TABles for CoNGruence ARith-
metic (mod m).

cngartab

Move up

Move down

Move left

Move right

Start at column a

Start at row b

Set modulus m

Switch between addition and multiplication
Display only reduced residues (in multiplication table)
Print the table (if m < 24)

Escape from the environment

Lte—

n'o KR n B oe

[xa]
O

1<m< 10°

PowerTab

CoDivTab

Function

Syntax
Restrictions

Algorithm

Constructs a TABIle of the COmmon DIVisors of two given numbers b
and c.

codivtab
1<b<10°, 1<c<10°

Tests every d in the range 1 < d < min(b,c).

Reference Guide to Turbo Pascal Programs 75

See also

CoMulTab, DivTab

CoMulTab

Function

Syntax
Restrictions

Algorithm

See also

Constructs a TABle of the COmmon MULtiples of two given numbers b
and c.

comultab
b| < 10%, |c| < 10°

The Euclidean Algorithm is used the calculate (b,c), and hence [b,¢].
Then multiples of this latter number are listed.

CoDivTab

CRT

Function

Syntax
Restrictions

Algorithm

See also

Determines the intersection of two arithmetic progressions. Let g =
(my, ma). The set of x such that x =a; (mod my), z =ay (mod my)
is empty if a; # as (mod g). Otherwise the intersection is an arith-
metic progression a (mod m). In the Chinese Remainder Theorem it
is required that g = 1, and then m = mymsy. In general, m = myms/g.

crt [ag mq ag mo]
la;| <108, 1 < m; < 108

First the linear congruence miy = aa—a1 (mod my) is solved. If ay #
as (mod g), then this congruence has no solution, and the intersection
of the two given arithmetic progressions is empty. Otherwise, let y
denote the unique solution of this congruence in the interval 0 < y <
may/g. Then the intersection of the two given arithmetic progressions
is the set of integers £ = a (mod m) where a = ym; + a; and m =

mlmg/g.

CRTDem, IntAPTab, LinCon, LnCnDem

CRTDem

Function

Syntax
Restrictions

Algorithm

76

Demonstrates the method employed to determine the intersection of two
given arithmetic progressions.

crtdem [al my ag m2]
|(17;| < 1018, 1<m; < 1018

See the description given for the program CRT.

Reference Guide to Turbo Pascal Programs

See also

CRT, IntAPTab, LnCnDem

D2R

Function Converts a Decimal TO Rational. That is, the program returns the
rational number a/q with least ¢ such that the initial decimal digits of
a/q coincide with the decimal digits given.

Syntax d2r [x]

Restrictions |a| < 108, 1 < ¢ <108

Algorithm Suppose that k£ decimal digits of x are given after the decimal point.
Put 6§ = 0.5-107%. We want to find a/q with ¢ minimal such that
|z —a/q| < §. By the continued fraction algorithm the least i is found
such that |z — h;/k;| < §. Then the desired rational number is given by
a=chi_1+ h;j_s, g =ck;—1+ k;—_o where c is the least positive integer
such that a/q lies in the specified interval. Since this inequality holds
when ¢ = a;, it suffices to search the interval [1,a].

See also R2D

DetDem

Function Demonstrates the method used to evaluate det(A4) (mod m).

Syntax detdem

Restrictions 0<m <10°, A=a;;] is n x n with 1 <n <9, |a;;| < 10°

Algorithm See description for the program DetModM.

See also DetModM, SimLinDE

DetModM

Function
Syntax

Commands

Restrictions

Determines det(A4) (mod m).

detmodm

Assign dimension of matrix
Build matrix

Choose modulus
Determine value of det(A)
Exit

F Form altered matrix

(mod m)

Mmoo QW=

0<m<10% A=/lay] is nxn with 1 <n <9, |a;] < 10°

Reference Guide to Turbo Pascal Programs 7

Algorithm

See also

Row operations are performed until the matrix is upper-
triangular. After each row operation, the elements of the new matrix
are reduced modulo m. The row operations used are of the following
two types: (i7) Exchange two rows (which multiplies the determinant by
—1); (i) Add an integral multiple of one row to a different row (which
leaves the determinant unchanged).

DetDem, SimLinDE

EuAlgDem

Function DEMonstrates the EUclidean ALGorithm. If the parameters b and c
are specified on the command line, then (b, ¢) is calculated by using the
identities (b,c) = (¢,b), (b,c) = (b+ mc,c), (b,0) = |b|, and then the
program terminates. Otherwise an environment is provided in which
each remainder is expressed as a linear combination of b and c. In this
case one can also toggle between rounding down and rounding to the
nearest integer quotient.

Syntax eualgdem [b c]

Commands PgUp Display the top portion of the table

PgDn Display the bottom portion of the table
b Enter a new value of b
c Enter a new value of ¢
d Round down
n Round to the nearest quotient
P Print the table
Esc Escape from the environment

Restrictions b| < 1018, || < 1018

Algorithm The Euclidean Algorithm or Extended Euclidean Algorithm.

See also FastGCD, GCD, SlowGCD

FacTab

Function Constructs a TABle of the least prime FACtor of odd integers from
10N +1 to 10N + 199.

Syntax factab

Commands

PgUp Display the preceding 100 values
PgDn Display the next 100 values
N New N; view table starting at 10N + 1
78 Reference Guide to Turbo Pascal Programs

Esc Escape from the environment
Restrictions Integers not exceeding 10° + 189 (i.e. 0 < N < 99999999).
Algorithm When the program begins execution, it first constructs a list of the odd
primes not exceeding /109 + 200, by sieving. We call these the “small
primes.” There are 15803 such primes, the last one being 31607. The
next prime after this is 31621. When N is specified, the odd integers
in the interval [10N,10N + 200] are sieved by those small primes not
exceeding /10N + 200; least prime factors are noted as they are found.
See also Factor, GetNextP
Factor
Function FACTORs a given integer n.
Syntax factor [n]
Restrictions |n| < 1018
Algorithm Trial division. After powers of 2, 3, and 5 are removed, the trial divisors
are reduced residues modulo 30.
See also P-1, P-1Dem, Rho, RhoDem
Comments Factors are reported as they are found. The program can be interrupted
by touching a key.
FareyTab
Function Constructs a TABle of FAREY fractions of order). Fractions are dis-
played in both rational and decimal form, up to 20 of them at a time.
Syntax fareytab
Commands PgUp View the next 19 smaller entries
PgDn View the next 19 larger entries
D Center the display at a decimal x
R Center the display at a rational number a/q
P Print the table (allowed for @ < 46)
Esc Escape from the environment
Restrictions 1< Q < 10°
Algorithm If a/q and a'/q' are neighboring Farey fractions of some order @, say

a/q < a'/q", then a'q — ¢'a = 1. By the extended Euclidean algorithm,
for given relatively prime a and g we find = and y such that rg—ya = 1.
Then ¢’ =y + kq, a’ = x + ka where k is the largest integer such that

Reference Guide to Turbo Pascal Programs 79

y+ kg < Q. With a/q given, the next smaller Farey fraction a”/q" is
found similarly. The Farey fractions surrounding a given decimal number
x are found by the continued fraction algorithm. Fractions are computed
only as needed by the screen or the printer.

FastGCD

Function

Syntax
Restrictions
Algorithm

See also

Times the execution of the Euclidean algorithm in calculating the Great-
est Common Divisor of two given integers.

fastged
b| < 108, || < 108
Euclidean algorithm, rounding down.

GCD, SlowGCD

FctrlTab

Function Provides a table of n! (mod m). Each screen displays 100 values.
Syntax fctrltab
Commands PgUp View the preceding 100 entries
PgDn View the next 100 entries
J Jump to a new position in the table
M Enter a new modulus
P Print the first 60 lines of the table
Esc Escape from the environment
Restrictions 0<n<10089, 0 <m < 10°
Algorithm All 10089 values are calculated as soon as m is specified, unless m <
10089, in which case only m values are calculated.
FracTab
Function Lists FRACtions (za + ya’)/(zq + yq') in a TABle with entries sorted
according to the value of arctany/x, for |z| < @, |y| < Q.
Syntax fractab
Remarks The data generated reflects some of the properties of Farey fractions.
Restrictions 1<a<¢<10%,1<a' <¢ <103, Q<103/q, Q <103/¢
See also FareyTab
80 Reference Guide to Turbo Pascal Programs

GCD

Function
Syntax
Restrictions
Algorithm

See also

Calculates the Greatest Common Divisors of two given integers.
ged [b c]

b| < 108 |c| < 108

Fuclidean algorithm with rounding to the nearest integer.

EuAlgDem, FastGCD, GCDTab, LnComTab, SlowGCD

GCDTab

Function
Syntax

Commands

Restrictions
Algorithm

See also

Displays (b, c) for pairs of integers.
gcdtab

Move up

Move down

Move left

Move right

Center table on column b
Center table on row c
Escape from the environment

|b] < 108, |c| < 10'8

oo | T+ —>

Esc

Euclidean algorithm.

GCD, EuAlgDem, LnComTab

GetNextP

Function

Syntax
Restrictions

Algorithm

See also

Finds the least Prime larger than a given integer z, if < 10°. If
10° < z < 108, it finds an integer n, n > =z, such that the interval
(z,m) contains no prime but n is a strong probable prime to bases 2,
3,5, 7,and 11. A rigorous proof of the primality of n can be obtained
by using the program ProveP.

getnextp [x]
0<z<10'®

If 0 < z < 10° then the least prime larger than z is found by sieving.
If 10° < < 10'® then strong probable primality tests are performed.

FacTab, ProveP

Reference Guide to Turbo Pascal Programs 81

Hensel

Function Provides a table of solutions of f(z) = 0 (mod p’), in the manner of
HENSEL’s lemma. All roots (mod p) are found, by trying every residue
class. If f(a) = 0 (modp) and f'(a) # 0 (mod p), then a tower
of roots lying above a is displayed. If f/(a) =0 (mod p) then roots
lying above a are exhibited only one at a time. Roots (mod p?) are
displayed both in decimal notation and in base p, a =) .+, cptt.
The user must choose between viewing singular or non-singular roots.
The display starts with a non-singular root, if there are any.

Syntax hensel
Commands T Lift to larger values of j
d Drop to smaller values of j
— Shift left in the table
— Shift right in the table
S Switch to singular roots
N Switch to non-singular roots
D Define the polynomial
p Choose the prime modulus
Esc Escape from the environment
Restrictions 2 < p < 2000, p’ < 10'®, f(x) must be the sum of at most 20 mono-
mials
Algorithm The polynomial f(z) is evaluated at every residue class, and an array

is formed of the roots. For each root found, the quantity f’(x) is calcu-
lated, in order to determine whether the root is singular or not.

See also PolySolv

HSortDem

Function DEMonstrates the HeapSORT algorithm of J. W. J. Williams, by apply-
ing the algorithm to n randomly chosen integers taken from the interval
[0,99]. This algorithm is employed in the programs Ind and IndDem.

Syntax hsortdem
Restrictions 1<n<31

Ind

Function Given g, a, and p, finds the least non-negative v such that ¢¥ = a
(mod p), if such a v exists. Thus, if g is a primitive root of p, then
v =indga.

82 Reference Guide to Turbo Pascal Programs

Syntax ind [g a pl
Restrictions lg| <107, |a| <107, 1 <p <10, (g,p) =1

Algorithm First LinCon is used to find § (mod p) so that gg =1 (mod p). The
number s is taken to be either the integer nearest /p or else 10000,
which ever is smaller. A table is made of the residue classes ag? (mod
p) for 0 < j < s. This table is sorted by the HeapSort algorithm into
increasing order. For j = 0,1,..., a search is conducted (by binary
subdivisions) to see whether the residue class g’* (mod p) is in the
table. If a match is found, then v = is 4+ j. If j reaches p/s without
finding a match, then a is not a power of g (mod p). Thus the index is
found in time O(pl/ 2logp). This method was suggested by D. Shanks.

See also IndDem, IndTab, Power, PowerTab

IndDem

Function DEMonstrates procedure used to compute indga (mod p).

Syntax inddem [g a pl

Restrictions [g| < 10%, |a| <10, 1 <p < 10°
Algorithm See the description of the program Ind.
See also Ind, IndTab, Power, PowerTab

IndTab

Function Generates a TABIle of INDices of reduced residue classes modulo a prime
number p, with respect to a specified primitive root. Also generates a
table of powers of the primitive root, modulo p. Up to 200 values are
displayed a one time.

Syntax indtab
Commands PgUp View the preceding 200 entries
PgDn View the next 200 entries
J Jump to a new position in the table
E Switch from indices to exponentials
I Switch from exponentials to indices
M Enter a new prime modulus
B Choose a new primitive root to use as the base
P Print table(s)

Esc Escape from the environment

Restrictions p < 10*

Reference Guide to Turbo Pascal Programs 83

Algorithm The least positive primitive root g of p is found using the program
PrimRoot. The powers of ¢ modulo p and the indices with respect to
g are generated in two arrays.

See also PowerTab, PrimRoot

Int APTab

Function Creates a TABle with rows indexed by a (mod m) and columns indexed
by b (mod n). The INTersection of these two Arithmetic Progressions
is displayed (if it is nonempty) as a residue class (mod [m,n]).

Syntax intaptab

Move up

Move down

Move left

Move right

Start at row a

Sart at column b

Set modulus m

Set modulus n

Print (when table is small enough)
Escape from the environment

Commands

wo BB o | T

[xa]
(¢]

Restrictions m < 10%, n < 10*

Algorithm Chinese Remainder Theorem

See also CRT, CRTDem

Comments Reduced residues are written in white, the others in yellow.

JacobDem

Function DEMonstrates the use of quadratic reciprocity to calculate the JACOBI
symbol (%)

Syntax jacobdem [P Q]

Restrictions |[P| <10 0< @ < 10'®

Algorithm Modified Euclidean algorithm, using quadratic reciprocity.

See also Jacobi, JacobTab

Jacobi

Function Evaluates the JACOBI symbol (g) .

84 Reference Guide to Turbo Pascal Programs

Syntax
Restrictions
Algorithm

See also

jacobi [P Q]
Pl <108, 0 <@ <108
Modified Euclidean algorithm, using quadra- tic reciprocity.

JacobDem, JacobTab

JacobTab

Function

Syntax

Commands

Restrictions
Algorithm

See also

Generates a TABIle of values of the JACOBI function, with 200 values
displayed at one time.

jacobtab
PgUp View the preceding 200 entries
PgDn View the next 200 entries
J Jump to a new position in the table
Q Enter a new denominator Q
P Print 500 lines, starting with the top line displayed
Esc Escape from the environment

P <108, 0<Q < 10'8
Values are calculated as needed, using the function Jacobi.

Jacobi, JacobDem

LinCon

Function
Syntax
Restrictions

Algorithm

See also

Finds all solutions of the LINear CONgruence axz =b (mod m).

lincon [a b m]
la] < 108 |b| < 108, 0 < m < 108

The extended Euclidean algorithm is used to find both the number g =
(a,m) and a number u such that au =g (mod m). If g /b then there
is no solution. Otherwise, the solutions are precisely those = such that
z=c (mod m/g) where c =ub/g.

LnCnDem

LnCnDem

Function

Syntax

DEMonstrates the method used to find all solutions to the LiNear CoN-
gruence az =b (mod m).

lncndem [a b m]

Reference Guide to Turbo Pascal Programs 85

Restrictions
Algorithm

See also

la] < 108 |b| < 108, 0 < m < 108
See the description given for LinCon.

LinCon

LnComTab

Function Creates a TABIle of the LiNear COMbinations bx + cy of b and ¢, with
columns indexed by z and rows indexed by y.
Syntax Incomtab
Commands 0 Move up
i Move down
— Move left
— Move right
X Left column is =
y Bottom row is y
b Set value of b
c Set value of ¢
Esc Escape from the environment
Restrictions [b| < 10%, |¢| < 10?2, |z| < 10°, |y| < 10°
See also GCD, GCDTab, EuAlgDem,
Lucas
Function Calculates the LUCAS functions U,,,V,, (mod m). Here the U, are
generated by the linear recurrence U, 41 = aU,, 4+ bU,_; with the initial
conditions Uy = 0, U; = 1. The V,, satisfy the same linear recurrence,
but with the initial conditions Vj =2, V; = a.
Syntax lucas [n [a b] m] If n,m are specified on the command line, but not
a,b, then by default a =b=1.
Restrictions 0<n <108, |a| <1018, |b] <108, 0 <m < 108
Algorithm To calculate U,, (mod m), the pair of residue classes Ui_1, Uy (mod m)
is determined for a sequence of values of k, starting with £ = 1. If this
pair is known for a certain value of k, then it can be found with k
replaced by 2k, by means of the duplication formulae
Usk—1 = Ug +bU;_,,
Us, = 20Uy _1Ui, + aU,?.
86 Reference Guide to Turbo Pascal Programs

This is called “doubling.” Alternatively, the value of k£ can be increased
by 1 by using the defining recurrence. This is called “sidestepping.” By
repeatedly doubling, with sidesteps interspersed as appropriate, eventu-
ally k£ =n.

To calculate V,, (mod m), the pair Vi, Vii1 of residue classes (mod m) is determined
for a sequence of values of k, starting with £ = 0. The duplication formulae are now

Vor, = Vk2 - 2(_b)k’
Var+1 = ViVir1 — a(=b)".

Instead of sidestepping separately, an arithmetic economy is obtained by doubling with
sidestep included by means of the formulae

Vakt1 = ViVia1 — a(—b)F,
Vakss = Vi — 2.

By employing these transformations we eventually reach k = n.

The k that arise have binary expansions that form initial segments of the binary
expansion of n, in the same manner as in the alternative powering algorithm discussed in
the program PwrDem?2.

The system of calculation here is superior to that found in the Fifth Edition of NZM,
where the sidestep formula involves division by 2 and is therefore appropriate only for odd
moduli.

See also LucasDem, LucasTab, PwrDem?2

Comments If a=b=1 then U,,V, are the familiar Fibonacci and Lucas sequences
F,, L, , respectively.

LucasDem

Function DEMonstrates the method used to calculate the LUCAS functions U,,,
Vo (mod m).

Syntax lucasden |n [a b] m]

Restrictions 0<n <108, |a| <1018, |b] < 108, 0 <m < 108

Algorithm See the description given for the program Lucas.

See also Lucas, LucasDem, PwrDem?2

LucasTab

Function Generates a TABIle of values of the LUCAS functions U,,V,, (mod m).

Reference Guide to Turbo Pascal Programs 87

Syntax

Commands

Restrictions

See also

lucastab

PgUp Display the preceding 100 values
PgDn Display the next 100 values
U Switch from V to U
Switch from U to V
Move to a screen with n on the top line
Choose a new value for the parameter a
Choose a new value for the parameter b
Choose a new modulus m
Print the initial 60 rows of the table (0 < n < 599)
Esc Escape from the environment

0<n<10°% |a] <108, |b| <10%, 0 <m < 10°

Lucas, LucasDem

RO B <

Mult

Function

Syntax
Restrictions

Algorithm

See also

MULTiplies residue classes. If a,b, and m are given with m > 0, then
¢ is found so that ¢ =ab (mod m) and 0 < c¢ < m.

mult [a b m
la] < 108, |p| < 108, 0 < m < 108

If m < 10° then ab is reduced modulo m. If 10° < m < 10'2 then
we write @ = a110% + ay, and compute a,610% + agb modulo m, with
reductions modulo m after each multiplication. Thus all numbers en-
countered have absolute value at most 10'®. If 10'2 < m < 10'® then
we write a = a;10° +ag, b = b110° + bg; we compute ab/m in floating-
point real arithmetic and let ¢ be the integer nearest this quantity; we
write ¢ = ¢110% 4 go; m = m110% + mg. Then

ab—qm = ((a1b1—q1m1)10%+a1bo+agb; —g1mo—qom1)10°+agho—gomy.

The right hand side can be reliably evaluated, and this quantity has
absolute value less than m. If it is negative we add m to it to obtain
the final result. The assumption is that the machine will perform integer
arithmetic accurately for integers up to 4 - 10'® in size. The object is
to perform congruence arithmetic with a modulus up to 108 without
introducing a full multiprecision package.

MultDem1, MultDem2, MultDem3

MultDem1

Function

88

DEMonstrates the method employed by the program MULT when 10° <
m < 1012,

Reference Guide to Turbo Pascal Programs

Syntax

multdeml

Restrictions la| < 1018, || < 1018, 0 <m < 108

Algorithm See Problem *21, Section 2.4, p. 83, of the Fifth Edition of NZM.

See also Mult, MultDem2, MultDem3

MultDem?2

Function DEMonstrates the method used by the program MULT when 10'? <
m < 1018,

Syntax multdem?2

Restrictions |a| < 108, [b| < 10'®, 0 < m < 10'8

Algorithm See the description given for the program Mult.

See also Mult, MultDem1, MultDem3

MultDem3

Function

Syntax
Restrictions
Algorithm

See also

DEMonstrates the method used by the program MULT, in which the
methods of MultDem1 and MultDem?2 are merged.

multdem3

la| < 108, || < 1018, 0 <m < 108

See the description given for the program Mult.
Mult, MultDem1, MultDem2

Order

Function

Syntax
Restrictions

Algorithm

Calculates the ORDER of a reduced residue class @ (mod m). That
is, it finds the least positive integer h such that a® =1 (mod m).

order [a m [c]]
la| <10, 0 <m < 10", 0 <c< 108

The parameter ¢ should be any known positive number such that a¢ =

(mod m). For example, if m is prime then one may take ¢ = m — 1.
If a value of ¢ is not provided by the user, or if the value provided is
incorrect, then the program assigns ¢ = Carmichael (m). (This involves
factoring m by trial division.) Once ¢ is determined, then ¢ is factored
by trial division. Prime divisors of ¢ are removed, one at a time, to

Reference Guide to Turbo Pascal Programs 89

See also

locate the smallest divisor d of ¢ for which a% = 1
number is the order of ¢ modulo m.

OrderDem

(mod m). This

OrderDem

Function

Syntax
Restrictions
Algorithm

See also

DEMonstrates the method used to calculate the order of a reduced
residue class ¢ (mod m).

order [a m [c]]
la| <1018, 0 <m < 108, 0 < c < 108
See the description given for the program Order.

Order, OrderTab

OrderTab

Function
Syntax

Commands

Restrictions

See also

Constructs a TABle of the ORDER of ¢ modulo m.
ordertab

Display the next columns
Display the next 20 rows
Display the preceding columns
Display the preceding 20 rows
Display column a

Display row m

Print a portion of the table
Esc Escape from the environment

oe e =T+ |

—9999 < a <9985, 1 <m <9999
Order, OrderDem

P-1

Function

Syntax

Restrictions

Algorithm

90

Factors a number n using the Pollard p — 1 method.

p-1 [n [a]] If n is specified on the command line, but not a, then by
default a = 2.

l1<n<10®, 1<a< 10

The powering algorithm is used to calculate a® (mod n) for increas-
ingly large k, in the hope that a k will be found such that 1 < (a*' —

Reference Guide to Turbo Pascal Programs

See also

1, n) < n. This method is generally fast for those n with a prime factor
p such that p — 1 is composed only of small primes.

P-1Dem, Rho, RhoDem, Factor

P-1Dem

Function Demonstrates the method used by the Pollard p — 1 factoring scheme.
Syntax p-ldem
Restrictions 1<n<10®, 1<a<10'®
Algorithm See the description given for the program P-1.
See also P-1
PascalsT
Function Constructs a table of PASCAL’S Triangle (};) (mod m). Rows are
indexed by n, columns by k. Up to 20 rows and 18 columns are displayed
at one time.
Syntax pascalst
Commands 0 Display the preceding 20 rows
d Display the next 20 rows
— Display the preceding 20 columns
— Display the next 20 columns
T Move to the top of the triangle
M Choose a new modulus
Esc Escape from the environment
Restrictions 0<k<n<10%* 0<m< 103
Algorithm The rows are calculated inductively by the recurrence (kfl) + (2) =

(";CH). The entire nth row is calculated, where n is the top row on the

current screen. Other entries in the screen are calculated from the top
row.

Phi

Function
Syntax

Restrictions

Calculates the Euler PHI function of n.
phi [n]

1<n<10'®

Reference Guide to Turbo Pascal Programs 91

Algorithm

The canonical factorization of n is found by trial division, and then ¢(n)
is found by means of the formula ¢(n) = Hpa”np"‘_l(p -1).

Pi

Function
Syntax
Restrictions

Algorithm

Comments

Determines the number 7(z) of primes not exceeding an integer z.

pi [x]
2 < z108

Primes up to 31607 are constructed, by sieving. These primes are used
as trial divisors, to sieve intervals of length 10* until z is reached.

This program would run perfectly well up to 10°, but as the the running
time is roughly linear in x, the smaller limit is imposed to avoid excessive
running times. For faster methods of computing 7 (z), see the following
papers.

J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing m(z): The
Meissel-Lehmer method, Math. Comp. 44 (1985), 537-560.

J. C. Lagarias and A. M. Odlyzko, New algorithms for computing 7 (x),
Number Theory: New York 1982, D. V. Chudnovsky, G. V. Chudnovsky,
H. Cohn and M. B. Nathanson, eds., Lecture Notes in Mathematics 1052,
Springer-Verlag, Berlin, 1984, pp. 176-193.

J. C. Lagarias and A. M. Odlyzko, Computing 7(x): an analytic method,
J. Algorithms 8 (1987), 173-191.

PolySolv

Function
Syntax

Commands

Restrictions

Algorithm
See also

Comments

92

Finds all solutions of a given polynomial congruence P(z)=0 (mod m).
polysolv
C Count the zeros
D Define the polynomial
M Choose the modulus
Esc Escape from the environment

1 < m < 10%, P(z) must be the sum of at most 20 monomials, only
the first 100 zeros found are displayed on the screen

The polynomial is evaluated at every residue class modulo m.

SqrtModP

The running time here is roughly linear in m. When m is large there is
a much faster way. By the Chinese Remainder Theorem it is enough to
consider primepower values of m. By Hensel’s lemma, this in turn can

Reference Guide to Turbo Pascal Programs

be reduced to the consideration of prime moduli. In the case of a prime
modulus p, the roots of P(xz) modulo p can be found by calculating
(P(z), (x —a)®=1/2 _1) for various values of a. Here the gcd being cal-
culated is that of two polynomials defined mod p. In the first step of the
Euclidian algorithm, the remainder when (z —a)®~1/2 1 is divided by
P(x) should be calculated by applying the powering algorithm to deter-
mine (z —a)®~1/2 (moddp, P(x)). This approach extends to provide
an efficient method of determining the factorization of P(z) (mod p).
For more information, see David G. Cantor and Hans Zassenhaus, A new
algorithm for factoring polynomials over finite fields, Math. Comp. 36
(1981), 587-592.

Power
Function Computes a® (mod m) in the sense that it returns a number ¢ such
that 0 < c<m and c=a* (mod m).
Syntax power [a k m]
Restrictions la| <1018, 0 <k <108, 0 <m <108
Algorithm Write k in binary, say k =3, ; 2/, The numbers a® (mod m) are
constructed by repeated squaring; whenever a j € J is encountered, the
existing product is multiplied by the factor a?’ .
See also PowerTab, PwrDemla, PwrDem1b, PwrDem?2
PowerTab
Function Constructs a TABle of POWERs a* (mod m).
Syntax powertab
Commands T Display the preceding 20 rows
4 Display the next 20 rows
— Display the preceding rows
— Display the next rows
B Change the base
E Move to a new exponent
M Change the modulus
P Print the first 54 lines of the table
Esc Escape from the environment
Restrictions la] <102, 1<k <10°, 1 <m < 10°
Algorithm The first entry in each row is computed by the powering algorithm. Then

the remaining entries on the screen are determined inductively.

Reference Guide to Turbo Pascal Programs 93

See also

Power, PowerDem

PrimRoot

Function

Syntax

Restrictions

Algorithm

See also

Comments

Finds the least primitive root g of a prime number p, such that g > a.

primroot [p [a]] If p is specified on the command line but not a, then
by default a = 0.

2<p< 108 |a| < 10'8

The prime factors q1,qs,...,q- of p—1 are found by trial division. Then
g is a primitive root of p if and only if both g?”! =1 (mod p) and
gP~/% £ 1 (mod p) for all i, 1 < i < r. When a g is found that
satisfies these conditions, not only is ¢g a primitive root of p, but also the
primality of p is rigorously established. The algorithm employed by the
program ProveP proceeds along these lines, but with some short cuts.

Order, OrderDem, ProveP

This program provides a user interface for a function of the same name
in the unit NoThy. To see how the algorithm is implemented, inspect
the file nothy. pas.

ProveP

Function
Syntax
Restrictions

Algorithm

94

PROVEs that a given number p is Prime.

provep [p]
2<p< 108

Trial division is applied to p — 1. Whenever a prime factor ¢ of p—1 is
found, say ¢*||(p—1), attempts are made to find an a such that a?~! =1
(mod p) but (a®~1/9—1, p) = 1. Suppose that such an a is found, and
that p/|p. Let d denote the order of @ modulo p’. Then d|(p — 1) but
df(p — 1)/q, and hence ¢*||d. But by Fermat’s congruence d|(p’ — 1),
and hence it can be asserted that ¢*|(p’ —1) for every prime factor p’ of
p. In other words, all prime factors p’ of p are =1 (mod ¢*). If, for
a given ¢, 200 unsuccessful attempts are made to find an admissible a,
then presumably p is composite, and the program quits. Otherwise, the
numbers ¢* found are multiplied together to form a product s. Every
prime factor p’ of pis =1 (mod s). If s > ,/p then there can be at
most one such prime, and the proof is complete. If p*/3 < s < p'/2 then
there can be at most two such primes, say p = pip2. Write p; in base
s, pi =r;8+ 1. Then p = riros? + (ry +r2)s + 1, and the coefficients
of this polynomial in s can be found by expanding p in base s, say

Reference Guide to Turbo Pascal Programs

p=cys?+c15+ 1. Then r; and 7y are roots of the quadratic equation
(x —r1)(z —r3) = 22 — c17 + ca, and hence the discriminant ¢? — 4c,
must be a perfect square. In the unlikely event that this quantity is a
perfect square, we are led to a factorization of p; otherwise we have a
proof that p is prime.

If a point is reached at which it would take less time to test p for
divisibility by numbers d =1 (mod s), d < ,/p than has already been
spent trying to factor p— 1, then the program automatically switches to
this latter approach.

The trial division of p—1 can be interrupted by touching a key, and
the user can then supply a prime factor ¢ of the remaining unfactored
portion. The user is responsible for verifying that ¢ is prime.

By this method we see that proving the primality of p is no harder
than factoring p — 1, and that for many p it is easier. Further methods
of proving primality have been developed that are faster than the best
known factoring methods. The mathematics exploited by these methods
is much more sophisticated. For more precise information, consult the
following papers.

A. O. L. Atkin and F. Morain, Elliptic curves and primality proving,
Math. Comp. 61 (1993), 29-68 .

A. K. Lenstra and H. W. Lenstra, Jr., Algorithms in number theory,
Handbook of Theoretical Computer Science, Vol. A, J. van Leeuwen,
ed., Elsevier, Amsterdam, pp. 673-715.

PwrDemla

Function

DEMonstrates the powering algorithm.

Syntax pwrdemla [a k m]

Restrictions |a| < 10'®, 0 <k <10, 0 <m < 108

Algorithm See the description given for the program Power.

See also Power, PwrDem1b, PwrDem?2

PwrDemlb

Function An alternative DEMonstration of the powering algorithm.
Syntax pwrdemib [a k m]

Restrictions |a| <10, 0 <k <108 0 <m < 10'8

Algorithm See the description given for the program Power.

See also Power, PwrDemla, PwrDem?2

Reference Guide to Turbo Pascal Programs 95

PwrDem?2

Function DEMonstrates an alternative powering algorithm.

Syntax pwrdem2 [a k m]
Restrictions |a| <1018, 0 <k < 10, 0 <m < 108

Algorithm A sequence of powers of a is generated, in which the binary expansions
of the exponents form initial segments of the binary expansion of k. For
example, if k¥ = 10111 in binary, then (with all exponents written in bi-
nary) we start with a!, square to form al%, square again to form %9
multiply by a to form a'%!, square this to form a'°'?, multiply by a to
form a'°'!, square this to form a'°11? and finally multiply by a to form
a0l Of course all multiplications are carried out modulo m. In the

original method used by the program Power, the binary expansions of

the exponents form terminal segments of the binary expansion of k. The
number of multiplications is exactly the same in the two methods, but
this alternative method has an advantage in situations in which multipli-
cation by a is fast for some reason. For example, in powering a matrix

A, multiplication by A is fast if A is sparse. Similarly, in computing

P(x)*, multiplication by P(z) is fast if P(x) has few monomial terms.

The repeated doubling from the top down seen here is also appropriate

to the calculation of solutions of linear recurrences.

See also Power, PwrDem1la, PwrDem1b, LucasDem

QFormTab

Function Generates a TABle of all reduced binary Quadratic FORMs f(z,y) =
ax?, bxy + cy? of given discriminant. These forms are reduced only in
the sense defined in §3.5 of NZM. Hence if d > 0 then the reduced forms
are not necessarily inequivalent. For each form, the content (a,b,c) is

calculated.
Syntax gformtab
Commands PgUp Display the preceding 20 rows
PgDn Display the next 20 rows
d Choose a new discriminant
P Print the first 600 lines of the table
Esc Escape from the environment

Restrictions |d| < 108, at most 5000 forms are displayed

Algorithm Detailed search for all triples satisfying the definition. Thus the running
time is essentially linear in |d|. This program could run for |d| up to

96 Reference Guide to Turbo Pascal Programs

See also

10, but the stricter limit is imposed to avoid excessive running times.
For faster methods, see the discussion of the program ClaNoTab.

ClaNoTab, Reduce

R2D

Function

Commands

Syntax
Restrictions

Algorithm

See also

Converts a Rational number a/q TO Decimal form, or in base b. If a
and ¢ (and optionally b) are entered on the command line then a screen-
ful of digits is given and the program terminates. Otherwise the first 10°
digits may be viewed, 1000 at a time. The base b can be changed; the
default is b = 10. When b > 10 the ‘digit’ 10 is represented by A, ...,
15 by F. (When b = 16 this is the standard hexadecimal convention.)
The digits are initially displayed in yellow, but the periodicity of the ex-
pansion can be highlighted, in which case alternate cycles are displayed
in green and red. In this latter mode the length T'(a/q) of the aperiodic
‘tail’ and the length C(a/q) of the ‘cycle’ are also displayed. (These
values also depend on b.)

PgUp Move the window up one screenful

PgDn Move the window down one screenful
J Jump to a new position in the table of digits
a enter a numerator a
q enter a denominator ¢
B enter a base b
C highlight or Conceal the Cycles
P Print the first 2997 digits (1 page)

Esc Escape from the environment

r2d [a q [b]]

1<a<qg<10%,2<b<16

Remainders r; are uniquely determined by the relations 0 < r; < ¢q, r; =
ab® (mod q). Digits d; are found from the identity br; = d;q + 7;41.
Assume that (a,q) = 1. If there is an integer k such that g | b* then
let k be the least such integer; the expansion terminates after exactly
k digits. Otherwise, the length T'(a/q) of the aperiodic tail is the least
non-negative integer ¢ such that the denominator ¢’ of ab®/q is relatively
prime to b. The length C(a/q) of the cycle is the order of b modulo ¢'.

D2R, Order

Reduce

Function

REDUCEsS a binary quadratic form f(z,y) = ax?+bxy-+cy?. If the three
coefficients are given on the command line, then a reduced form g(z,y)

Reference Guide to Turbo Pascal Programs 97

is found, with ¢ equivalent to f. The discriminant d of these forms is
also reported. A proper representation of a by g is also noted, and then
the program terminates. If the coefficients are not given on the command
line, then an environment for manipulating forms is entered. When a
form is being reduced in this environment, a chain of equivalences is
displayed, along with the matrix M that gives the equivalence, and the
operation S or T™ that was applied to derive the new form from that
0 1 1 1

-1 0} and T'= [0 1]'
The user also has the option of applying the operations S, T', and T~ !,
one at a time. The table will hold up to 500 forms.

In the case that d > 0, the form is reduced only to the extent that
la| < b <la| < |a] or 0 < b < |a|] = |c|, and consequently two reduced
forms may be equivalent.

in the preceding row of the table. Here § = [

Syntax reduce [a b ¢]
Restrictions la| < 108 |p| < 1018, |c|] < 1018
Commands PgUp Display the preceding 6 rows
PgDn Display the next 6 rows
a Enter a new coefficient a
b Enter a new coefficient b
c Enter a new coefficient c
R Reduce the form at the bottom of the table
S Apply the transformation S
T Apply the transformation T
I Apply the transformation 7!
M Toggle between displaying M:g — f and M:f — g
P Print the table
Esc Escape from the environment
See also ClaNoTab, QFormTab
ResComp
Function Compares residues z (mod m) with z (mod n).
Syntax rescomp
Restrictions |z| <10, 1 <m < 10%, 1 <n < 10°
Algorithm Division algorithm to find remainders.
See also CRT, CRTDem, IntAPTab
98 Reference Guide to Turbo Pascal Programs

Rho

Function

Syntax

Restrictions

Algorithm

See also

Factors a given composite integer n by using Pollard’s RHO method.
This program should only be applied to numbers that are already known
to be composite; if it is applied to a prime number then it will run end-
lessly without reaching any conclusion. The program can be interrupted
by touching any key on the keyboard.

rho [n [c]] If n is specified on the command line but not ¢, then ¢ =1
by default.

1<n<108, |c| < 1018

Let ug = 0, and for 4 > 0 let u;41 = uf + ¢. The wu; are calculated
modulo n, and for each ¢ the quantity (ug; —u;, n) is determined, in the
hope of finding a proper divisor of n. The numbers u; are not stored:
At any one time only u; and ug; are known. If a proper divisor is found,
it is not necessarily prime, and if it is prime it is not necessarily the least
prime divisor of n. Various values of ¢ may be used, but ¢ = 0 and
¢ = —2 should be avoided.

RhoDem, P-1, P-1Dem, Factor

RhoDem

Function
Syntax
Restrictions
Algorithm

See also

DEMonstrates the Pollard RHO factoring scheme.
rhodem [n]

1<n<10, |¢| <108

See description given for the program Rho.

Rho, P-1, P-1Dem, Fac

RSA

Function

Demonstrates RSA encryption. Plaintext is taken from an ASCII file
with the default extension .txt. The ASCII code of a printable keyboard
character lies between 32 and 126. By subtracting 32 we obtain a num-
ber between 0 and 94. In this way each character is associated with a
2-digit code. The code 95 is used as an end-of-line marker. The codes
are concatenated k at a time to represent residues modulo m where
10%* < m < 10%¢+2, Ciphertext can be saved as a sequence of residues
to a file with the default extension .rsa. Public RSA parameters can be

Reference Guide to Turbo Pascal Programs 99

Syntax

Commands

Restrictions

Algorithm

See also

entered from the keyboard or read from a file with the default exten-
sion .pub. A line in the source file that begins with the symbol ‘%’ is
treated as a comment, and is passed to the destination file without al-
teration. When saving, the encryption history is included as a comment.
This implementation is not secure because numbers m < 10® are easily
factored.

rsa

Move the window up one screenful
Move the window down one screenful
set the Variables

Load plain or cipher text

Encipher

Decipher

convert from text or residues to Codes
convert from codes to Text

convert from codes to Residues

Save

Print

Esc Escape from the environment

T NI HQUOHEP<<——

100<m <10, 0< k<10 0< k' <108

Each residue class a (mod m) is replaced by b = a* (mod m). To
decipher, replace b by b¥ (mod m) where kk’ =1 (mod #(m)).

RSAPars

RSAPars

Function

Syntax
Restrictions

Algorithm

See also

100

Aids in forming RSA PARameterS. The private exponent £’ is chosen
first, and then m is constructed by choosing primes p such that (p —
1,k") = 1. When m has been determined, the public exponent is derived.
The public parameters m and k can be saved to a file, with the default
extension .pub.

rsapars
1< k' <108, k' odd, 100 < m < 10'®, m squarefree.

Primes p < 10% are found (rigorously) by sieving. Primes 10° < p < 108
are found (unrigorously) by applying strong pseudoprime tests to bases 2,
3, 5,7, and 11. Once k' and the prime factors of m have been chosen,
the public exponent k is determined by solving the linear congruence

kk' =1 (mod ¢(m)).
RSA, LinCon

Reference Guide to Turbo Pascal Programs

SimLinDE

Function Gives a complete parametric representation of the solutions to a system
of SIMultaneous LINear Diophantine Equations Ax = b. The user may
request that the calculations be displayed.

Syntax simlinde

Restrictions A is mxn where 1 <m <10, 1 <n < 10, all numbers occurring must
have absolute value not exceeding 108

Algorithm Row operations and changes of variable are performed until the system
is in diagonal form. The full Smith normal form is not reached. This
method is prone to overflow. The program as written makes no special
effort to avoid overflow, but reports when it has occurred.

SlowGCD

Function Times the calculation of the greatest common divisor of two numbers b
and ¢, when only the definition is used. The only purpose in this is to
provide a comparison with FastGCD.

Syntax slowgcd
Restrictions 1<b<10° 1<c<10°

Algorithm For each d, 1 < d < min(|bl, |c|), trial divisions are made to determine
whether d|b and d|c. A record is kept of the largest such d found.
Since the running time is essentially linear in min(|b|, |¢|), only small
arguments should be used.

See also FastGCD, GCD

SPsP

Function Executes the Strong PseudoPrime test base a to the number m. This
provides a rigorous proof of compositeness. If m survives such a test then
it is not necessarily prime, but it is called a “probable prime” because
pseudoprimes (i.e., composite probable primes) seem to form a sparse

set.
Syntax spsp [[a] m] If m is specified on the command line, but not a, then by
default a = 2.

Restrictions |a| < 10'®, 2 <m < 10'8

Algorithm The strong pseudoprime test, as invented by John Selfridge and others.
For a full description see NZM, p. 78.

Reference Guide to Turbo Pascal Programs 101

See also SPsPDem, ProveP

SPsPDem

Function DEMonstrates the Strong PSeudoPrime test.

Syntax spsp [[a] m] If m is specified on the command line, but not a, then by
default a = 2.

Restrictions |a| < 108, 2 <m < 108

See also SPsP, ProveP

SqrtDem

Function DEMonstrates the calculation executed by the program SqrtModP.

Syntax sqrtdem [a p]

Restrictions |a| <10, 2 <p < 108

Algorithm See the description given for the program SqrtModP

See also SqrtModP

SqrtModP

Function Calculates the SQuareRooT Modulo a given Prime number p. If the
congruence z2 =a (mod p) has a solution, then the unique solution z
such that 0 < z < p/2 is returned.

Syntax sqrtmodp [a p]

Restrictions la] < 1018, 2 < p <1018

Algorithm Uses the RESSOL algorithm of Dan Shanks. This is described in §2.9 of
NZM. A different method, which depends on properties of the Lucas se-
quences, has been given by D. H. Lehmer, Computer technology applied
to the theory of numbers, Studies in Number Theory, W. J. LeVeque,
ed., Math. Assoc. Amer., Washington, 1969, pp. 117-151.

See also SqrtDem

SumsPwrs

Function Finds all representations of n as a sum of s k-th powers, and counts
them in various ways.

102 Reference Guide to Turbo Pascal Programs

Syntax
Restrictions

Algorithm

See also

sumspwrs [n s k]
1<n<10M,2<s5<75 2<k<10

After s — 1 summands have been chosen, a test is made as to whether
the remainder is a k-th power. Summands are kept in monotonic order;
the multiplicity is recovered by computing the appropriate multinomial
coefficient. In some cases, such as sums of two squares, much faster
methods exist for finding all representations.

WrngTab

WrngTab

Function

Syntax

Commands

Restrictions

Algorithm

See also

Reference Guide to Turbo Pascal Programs

Creates a TABIe of the number r(n) of representations of n =Y, ?

as a sum of s k-th powers, as in WaRiNG’s problem. If £ > 2 then the
x; are non-negative, but for £ = 2 the z; are arbitrary integers.

wrngtab

PgUp Move up

PgDn Move down
S Set s, the number of summands
k Set k, the exponent
N Start the table at 10n
P Print the table

Esc Escape from the environment

1<s5<75,2<k<10,1<n<10%

Search for representations, with summands in monotonic order. The
multiplicity of a representation is recovered by multiplying by the ap-
propriate multinomial coefficient.

SumsPwrs

103

104 Reference Guide to Turbo Pascal Programs

