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Preface

Many of the programs listed in Appendix P were written first to support instruction in a
standard junior–senior level number theory lecture course. In 1993, Don Lewis suggested
that such programs could also be used in a Freshman Seminar in which the students would
discover the patterns and work out the theory for themselves. By developing their ability to
conjecture and prove, students learn to think like mathematicians. At the same time, they
acquire mathematical literacy, develop their problem-solving abilities, become comfortable
using a computer as an exploratory tool, and learn to participate in group efforts. By
having developed their skills of quantitative reasoning, such students are better able to
make the most of subsequent mathematical activities. After an initial investment from the
College of Literature, Science and the Arts, the course was offered first in 1993–1994, and
has run every year since. Although officially billed as a Freshman Seminar, students at
all levels have elected the course, and have reported positively on the experience. In the
intervening years, the concept has been refined, this manual and accompanying programs
have been expanded and improved, and finally the Instructor’s Manual added.

The accompanying programs run under DOS on a PC. This may be done by obtaining
a DOS prompt from within a windowing system, or by exiting the windowing system
altogether. Some programs (such as Factor accept parameters on the command line,
and of those, two of them (EuAlgDem and R2D) respond very differently depending
on whether acceptable parameters are provided, or not. Some of the programs offer an
opportunity to print some of the data being viewed. However, if printing is invoked and no
printer is operational, then the computer may hang as it waits endlessly for the printer to
respond. If printing fails when a program is run from within the DOS box of a windowing
system, try exiting the window system before running the program.

The author is grateful to many people for their useful suggestions valuable contributions
to this material, most especially to Harley Flanders, Sid Graham, Everett Howe, Don
Lewis, John Rickert, Andrew Sterrett, and Ulrike Vorhauer. The author will be pleased
to receive any comments or suggestions at the email address hlm@umich.edu.

Hugh L. Montgomery

6 September, 2004
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Warning

The accompanying programs are intended for educational use only. We make
no warranty, express or implied, that the programs are free of error, that they
meet any particular standard of merchantability, or that the values they yield
are accurate. Some of these programs have been put through strenuous tests,
but many others have been checked only in the most casual manner. In order
to extend the range of integers that may be dealt with, most of these programs
use floating-point real arithmetic in their execution. Thus the accuracy of the
results cannot be guaranteed, and consequently these programs should not
be used for serious mathematical research. Any such use would be entirely at
the user’s own risk. The author disclaims all liability for direct, incidental,
or consequential damages resulting from your use of these programs.
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Chapter I. Basics

Chapter I

Basics

The integers are the numbers . . . ,−2,−1, 0, 1, 2, . . . . The rational numbers are quotients
of one integer by another, a/q where q 6= 0. Number Theory is the branch of mathematics
devoted to the study and investigation of properties of integers and rational numbers. We
can add, subtract, and multiply integers just as we do real numbers, but for division we
encounter a major difference: We can divide any real number x by any other, y, provided
only that y 6= 0, and we obtain a quotient, called x/y. Life in the integers is different,
because x/y is not necessarily an integer. Before proceeding further, we review some of
basic properties of the integers that we take for granted.

Algebraic identities. Under this heading we include such fundamental identities as

a+ (b+ c) = (a+ b) + c (addition is associative)
a(bc) = (ab)c (multiplication is associative)
a+ b = b+ a (addition is commutative)
ab = ba (multiplication is commutative)

a(b+ c) = ab+ ac (the distributive law)
0 + a = a for all a (0 is the additive identity)
1 · a = a for all a (1 is the multiplicative identity)

For every a and b there is a (subtraction)
unique x such that a+ x = b (this number x is denoted b− a)

This is not a complete list, as there are many more identities that follow from these. Some
of these are still rather basic, such as (−1) · (−1) = 1, while others are more advanced,
such as a2− b2 = (a− b)(a+ b). Of course, these same algebraic identities also hold for all
real numbers, so it is not these identities that set the integers apart from the real numbers.

Ordering and inequalities. Some of these are fundamental,

1 > 0.
Exactly one of a < b, a = b, a > b is true. (antisymmetry)

If a < b and b < c then a < c. (transitivity)

while others are more advanced, such as the following:

If a > 0 and b > 0 then a+ b > 0 and ab > 0.
If a ≥ b and A ≥ B then a+ A ≥ b+ B.

If a ≥ b and m ≥ 0 then ma ≥ mb.

Exploring Number Theory 1



Chapter I. Basics

When talking about inequalities, we sometimes say, “a is positive,” which means the same
thing as “a > 0.” Similarly, “a is negative,” means the same as “a < 0.” Of course, these
inequalities also hold for all real numbers, so it is not these properties that set the integers
apart from the real numbers.

Discreteness. The least positive integer is the number 1. That is, there is no integer x
such that 0 < x < 1. More generally, the least integer larger than n is n+ 1; there are no
integers in the open interval (n, n+ 1). Because the integers are spaced apart from each
other in this way, we say that the integers are discrete. This is in sharp contrast with the
real numbers, which run continuously with no gaps.

Mathematical Induction. This principle asserts that if S is a set of positive integers
such that 1 is in S and also n+ 1 is in S whenever n is in S, then every positive integer is
in S. In symbols, we say that if 1 ∈ S and n ∈ S =⇒ n+1 ∈ S, then S contains all positive
integers.

To appreciate the significance of this, suppose that we are trying to prove that a certain
proposition concerning n is true for all positive integers n. Let P (n) denote this assertion.
Let S be the set of those n for which P (n) is true. We verify that P (1) is true—this is called
the basis of the induction. Next we show that if P (n) is true then P (n+ 1) is true—this
is the inductive step. This approach is often useful, particularly when the assertions P (n),
P (n+ 1) are very similar. We now give two examples of assertions that can be proved by
mathematical induction.

Theorem I.1. For every positive integer n,

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

This identity might have been surmised on the basis of numerical evidence. In general,
we use numerical patterns to suggest properties of the integers. A proposed property is
called a conjecture. When we are able to prove a conjecture, it becomes a theorem. When
constructing a proof we can employ properties of the integers that were familiar to us
when we began, but we can also appeal to any of the other theorems that we have already
proved. In this way we enlarge our collection of known properties of the integers, one
theorem at a time.

Proof. First we note that if n = 1 then the left hand side is = 1, and that the right hand
side is

=
1(1 + 1)

2
=

2

2
= 1.

Thus the formula holds when n = 1. Now suppose that the formula holds for the integer n.

2 Exploring Number Theory



Chapter I. Basics

By adding n+ 1 to both sides of the identity we deduce that

1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
n2 + n

2
+

2n+ 2

2

=
n2 + 3n+ 2

2

=
(n+ 1)(n+ 2)

2
.

This is the correct formula for the integer n + 1. Thus by the principle of mathematical
induction we conclude that the formula holds for all positive integers n.

Theorem I.2. Suppose that x is a real number, x 6= 1. Then for every positive integer n,

1 + x+ x2 + · · ·+ xn =
xn+1 − 1

x− 1
.

This identity can be interpreted as an assertion concerning the factorization of polyno-
mials, since we may write it as

xn+1 − 1 = (x− 1)(xn + xn−1 + · · ·+ x+ 1).

In this latter form, the identity holds also when x = 1.

Proof. When n = 1, the right hand side is

x2 − 1

x− 1
=

(x+ 1)(x− 1)

x− 1
= x+ 1,

so the identity holds. Now suppose that the identity holds for n. Then

1 + x+ · · ·+ xn + xn+1 =
(

1 + x+ · · ·+ xn
)

+ xn+1

=
xn+1 − 1

x− 1
+ xn+1

by the inductive hypothesis. Here the right hand side is

=
xn+1 − 1

x− 1
+
xn+1(x− 1)

x− 1

=
xn+1 − 1

x− 1
+
xn+2 − xn+1

x− 1

=
xn+1 − 1 + xn+2 − xn+1

x− 1

=
xn+2 − 1

x− 1
,
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Chapter I. Basics

which is the proposed identity for n + 1. Hence by mathematical induction, the proof is
complete.

On several occasions above we have used ‘· · · ’ to indicate terms of a series whose form
is to be inferred by the reader. This practice becomes unsatisfactory in more complicated
situations, since it may not be clear from the first few terms how the sequence is intended
to continue. For greater precision, we write

n
∑

k=1

xk

to denote the sum of the numbers xk for k from 1 to n. Here Σ is a capital sigma,
which is the Greek letter corresponding to the Roman letter S. (The lower case Greek
sigma is written σ. When convenient Roman letters are not available in mathematics, for
further symbols we frequently turn to the Greek alphabet, a copy of which is provided in

Appendix G.) More generally, we may write
∑b

k=a xk to denote the sum of xk for a ≤ k ≤ b.
If b < a then there is no integer k satisfying a ≤ k ≤ b, and then we call the sum ‘empty’,
and its value is 0. The symbol k is called the ‘dummy variable’; its purpose is only to
index the members of the sum. We can use any symbol we like for the dummy variable,
as long as it is not currently in use for some other purpose. Thus there is no difference

between writing
∑b

k=a xk and
∑b

i=a xi.
For products of terms we have a similar device, so that instead of writing x1x2 · · ·xn

we write
n

∏

k=1

xk.

Here Π is the capital Greek pi, which corresponds to the Roman letter P. For example,
n!, called ‘n factorial’, is the product of the first n positive integers, n! = 1 · 2 · 3 · · ·n. In

the pi notation, we would write n! =
∏n

k=1 k. If b < a then the product
∏b

k=a xk is empty,
and its value is 1.

The reader is urged to start using the sigma and pi notations, so that in time it becomes
comfortable and convenient.

Explorations

1. An arithmetic progression is a sequence of integers or real numbers in which each
term un differs from the preceding term by a constant amount. (Note that the
integers form an arithmetic progression with common difference 1.) Show by in-
duction that if the sequence un forms an arithmetic progression then there exist
numbers q and a such that un = qn+ a for all n.

2. Let un be defined by the formula un = qn+ a. Show that these numbers form an
arithmetic progression.

3. Use Theorem 1 to show that the sum of n consecutive members of an arithmetic
progression is n times the average of the first and last terms taken.

4 Exploring Number Theory



Chapter I. Basics

4. A geometric progression is a sequence in which the ratio of un by the preceding
term is constant. Show by induction that if the sequence un forms a geometric
progression then there exist numbers a and r such that un = arn for all n.

5. Show that if un = arn for all n then the un form a geometric progression.

6. Use Theorem 2 to derive a formula for the sum of n consecutive members of a
geometric progression. What if r = 1?

7. Express the identities of Theorems I.1 and I.2 using the sigma notation.

8. Show by induction that

1 · 3 · 5 · · · (2n− 1) =
(2n)!

n!2n
.

Express this identity using the pi notation.

9. Use induction to show that

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Express this identity using the sigma notation.

10. Use induction to show that

13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4
.

Express this using the sigma notation.

11. Show by induction that

1 · 2 + 2 · 3 + · · ·+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
.

Express this using the sigma notation.

12. Show by induction that

1

1 · 2 +
1

2 · 3 + · · ·+ 1

n(n+ 1)
=

n

n+ 1
.

Express this using the sigma notation.

13. Note that

(u1 − u2) + (u2 − u3) + · · ·+ (un − un+1) = u1 − un+1.
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Chapter I. Basics

Such a series is called ‘telescoping’. Express the above using the sigma notation.
Find a formula for uk so that uk − uk+1 = 1

k(k+1)
. Thus show that the sum in the

preceding exercise can be interpreted as a telescoping sum.

14. Explain why
n

∏

i=1

i

i+ 1
=

1

n+ 1
.

15. Find a formula for

1 · n+ 2 · (n− 1) + 3 · (n− 2) + · · ·+ n · 1,

and prove it.

16. The following is a proposed proof by induction that all horses have the same color.
Can you find anything wrong with the proof?

Let S be a set of n horses. We show by induction on n that all horses in S have
the same color. The basis of the induction, n = 1, is clear. Now suppose that the
assertion holds for n. Let S be a set of n + 1 horses. Suppose that one of these
horses is called ‘Silver’. Remove Silver from the set, so that a set S′ of n horses
remains. By the inductive hypothesis, all horses in S′ have the same color. To see
that Silver also has this same color, replace it and remove a different horse, say
‘Trigger’, so that we have a set S

′′ of n horses. By the inductive hypothesis again
all horses in S′′ have the same color. Since Silver is in this set, Silver also is the
same color as the other horses.

17. Show that
N

∑

n=1

(axn + byn) = a
(

N
∑

n=1

xn

)

+ b
(

N
∑

n=1

yn

)

.

18. Suppose that S is a nonempty set of positive integers. Show that S must contain a
least element.

WILD PROBLEM

In an infinite checkerboard, each square has a positive integer written in it. The number
in any square is the average of the four numbers in the adjacent squares. Prove that
all squares have the same number written in them. (Two squares are considered to be
adjacent if they share a common side.)

6 Exploring Number Theory
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Chapter II

The Division Algorithm

Programs Used: Div, BasesTab, R2D, FacTab, GetNextP

When we divide one integer d (the divisor) into another, say D (the dividend), the quotient
D/d is not necessarily an integer, but we can nevertheless obtain an integral quotient q
and remainder r. We now formulate this precisely.

Theorem II.1. (The Division Algorithm) Suppose that d is a positive integer, and that D
is an integer. Then there exist unique integers q and r with 0 ≤ r < d such that D = qd+r.

On dividing this last identity by d, we see that

D

d
= q +

r

d
,

which is to say that the rational number D/d can be written an an integer q plus a rational
number lying between 0 (inclusive) and 1 (exclusive).

Proof. We partition the real line into intervals of length d,

. . . , [−2d,−d), [−d, 0), [0, d), [d, 2d), . . .

Thus each real number is a member of exactly one of these intervals. In particular, the
integer D is a member of precisely one of these intervals, say qd ≤ D < (q + 1)d. Thus if
we set r = D − qd then D = qd+ r and 0 ≤ r < d. This completes the proof.

Suppose that d and D are integers with d > 0. We say that d divides D, and write
d | D, if there is an integer q such that dq = D. This is equivalent to saying that D is
a multiple of d. Otherwise we say that d does not divide D, and we write d - D. The
Division Algorithm allows us to determine when one integer divides another.

Theorem II.2. Suppose that d and D are integers, with d > 0. Let q and r be defined as

in the Division Algorithm, so that D = qd + r and 0 ≤ r < d. Then d divides D if and

only if r = 0.

Proof. If r = 0 then D = qd, so d divides D. Suppose that 0 < r < d. We show that
there does not exist an integer m such that D = md. We consider two cases. If m ≤ q
then md ≤ qd < qd+ r = D, so that md < D and hence md 6= D. Secondly, if m > q then

Exploring Number Theory 7



Chapter II. The Division Algorithm

m ≥ q + 1 and hence md ≥ (q + 1)d = qd+ d > qd+ r = D. Thus md > D, which implies
that md 6= D. Hence the proof is complete.

We also use the Division Algorithm to compute the expansion of an integer in a pre-
scribed base b. We say that rkrk−1 . . . r1r0 is the base b expansion of a positive integer n
if

n = r0 + r1b+ · · ·+ rkb
k

(

i.e., n =
k

∑

i=0

rib
i

)

with 0 ≤ ri < b for all i. The digits can be computed from the top down, or the bottom
up. We begin with the latter. First divide n by b, to get a quotient n1 and a remainder
r0. Thus

n = n1b+ r0.

Next divide n1 by b to get a quotient n2 and a remainder r1. Thus n1 = n2b + r1, and
hence the right hand side displayed above is

= (n2b+ r1)b+ r0

= n2b
2 + r1b+ r0.

Continuing, we use the Division Algorithm to write n2 = n3b+ r2, so that the above is

= (n3b+ r2)b
2 + r1b+ r0

= n3b
3 + r2b

2 + r1b+ r0.

This process is repeated as long as ni is positive. Since each ni is smaller than the preceding
one, the procedure eventually terminates.

Example 1. We compute the binary (i.e., base 2) expansion of 7196, trailing digits first.

7196 = 3598 · 2 = 1799 · 22 = (899 · 2 + 1)22 = 899 · 23 + 22 = (449 · 2 + 1)23 + 22

= 449 · 24 + 23 + 22 = (224 · 2 + 1)24 + 23 + 22 = 224 · 25 + 24 + 23 + 22

= 112 · 26 + 24 + 23 + 22 = 56 · 27 + +24 + 23 + 22 = 28 · 28 + 24 + 23 + 22

= 14 · 29 + 24 + 23 + 22 = 7 · 210 + 24 + 23 + 22 = (3 · 2 + 1)210 + 24 + 23 + 22

= 3 · 211 + 210 + 24 + 23 + 22 = (1 · 2 + 1)211 + 210 + 24 + 23 + 22

= 212 + 211 + 210 + 24 + 23 + 22

= 1110000011100 (in binary).

Suppose we wish to calculate the base b expansion of a positive integer m from the top
down. We first construct a list of the powers of b, in order to find the integer k for which
bk ≤ m < bk+1. Then we divide bk into m, and get a remainder: m = qkb

k +mk−1. Here

8 Exploring Number Theory



Chapter II. The Division Algorithm

qk < b since bk+1 > m. Next we divide bk−1 into mk−1, and so on. Finally we divide m1

by b: m1 = q1b+m0. Put q0 = m0. Then the base b expansion of m is qkqk−1 . . . q1q0.

Example 2. We calculate the base 3 expansion of m = 7196, leading digits first. We
begin by making a list of powers of 3:

k 1 2 3 4 5 6 7 8 9

3k 3 9 27 81 243 729 2187 6561 19683

Thus we see that

7196 = 38 + 635 = 38 + 2 · 35 + 149 = 38 + 2 · 35 + 34 + 68

= 38 + 2 · 35 + 34 + 2 · 33 + 14 = 38 + 2 · 35 + 34 + 2 · 33 + 32 + 5

= 38 + 2 · 35 + 34 + 2 · 33 + 32 + 3 + 2

= 100212112 (in base 3).

Yet another application of the Division Algorithm arises when we attempt to distinguish
between rational and irrational numbers by means of their decimal expansions.

Theorem II.3. The decimal expansion of a real number x is eventually periodic if and

only if x is rational.

Proof. Suppose that the decimal expansion of x is eventually periodic with period k.
Then the decimal expansion of 10kx is identical with that of x from some point on. Hence
when we subtract, we find that the decimal expansion of 10kx − x terminates. That is,
there is an integer h such that (10kx− x)10h is an integer, say n. Then

x =
n

(10k − 1)10h
,

so x is a rational number.
To prove the converse, suppose that x is rational, say x = a/q. We may suppose that

both a and q are positive. If a is larger than q then we divide q into a and get a remainder:
a = nq + r. Then a/q = n+ r/q, and we see that the decimal expansion of the integer n
is the part of the decimal expansion of a/q that appears before the decimal point, while
the decimal expansion of r/q is the part that comes after. Thus we concentrate on r/q
where 0 < r < q. We recall the long division procedure: We divide q into 10r and get a
remainder: 10r = d1q + r1. Since r < q it follows that d1q ≤ d1q + r1 = 10r < 10q, and
hence that d1 < 10. Hence d1 is one of the numbers 0, 1, . . . , 9. Thus

r

q
=
d1

10
+

1

10

r1
q

with 0 ≤ r1 < q. Then we repeat this, dividing q into 10r1. After k steps we have

r

q
=
d1

10
+

d2

102
+ · · ·+ dk

10k
+

rk
10kq

,
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Chapter II. The Division Algorithm

which, in the sigma notation, is

r

q
=

k
∑

i=1

di

10i
+

rk
10kq

.

Since each ri is one of the numbers 0, 1, . . . , q − 1, eventually we will encounter two re-
mainders that have the same value: rh = rk for some h and k with 0 < h < k. But then
when we divide q into 10rh we obtain the same quotient dh and remainder rh+1 as when
we divide q into 10rk. That is, dh = dk and rh+1 = rk+1. By mathematical induction
it follows that dh+i = dk+i and that rh+i = rk+i for all nonnegative integers i. Hence
the decimal expansion of r/q is eventually periodic with a period k − h, so the proof is
complete.

The Division Algorithm may be executed by hand calculation, but the work is error-
prone and tedious. By assigning such mundane tasks to a computer, we are able to acquire
data that is both more extensive and more reliable. Among the programs provided, several
are useful in the present context. In particular, Div effects the Division Algorithm. You
may type div <Return> and then provide the arguments, or the arguments may be
entered on the command line. Try typing div 9 101 <Return>. The program BasesTab

provides a table of the expansions of numbers n to various bases b, for 2 ≤ b ≤ 16 and
1 ≤ n ≤ 1018. When the base is larger than 10 we need new characters to denote the
‘digits’ 10, 11, . . . , b− 1. For this purpose we set

A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.

This is standard in the hexadecimal system (i.e., base 16), which is used extensively in
computer science. Type basestab <Return>. The commands available appear on the
bottom line of the screen. Try typing <PgDn>. Type n, and then enter a large value.
When you have finished fooling around, type <Esc>, and the program will terminate.

Explorations

1. Using at most a pocket calculator, compute the base 3 expansion of 1996, trailing
digits first. Use BasesTab to confirm your answer.

2. Using at most a pocket calculator, compute the base 2 expansion of 1996, leading
digits first. Use BasesTab to confirm your answer.

3. What can be said about the decimal expansion of n if 2 | n? If 5 | n? If 10 | n? If
n is of the form 5k + 2?

4. What can you say about the units digit in the decimal expansion of the perfect
squares, 12, 22, 32, . . .?

5. What can you say about the units digit in the decimal expansion of the powers of
3: 1, 3, 32, 33, 34, . . .?

10 Exploring Number Theory



Chapter II. The Division Algorithm

6. Suppose that the decimal expansion of n is dkdk−1 . . . d1d0. Show that from a
knowledge of the units digit d0 alone, it is impossible to tell whether 4 | n. Can
you determine whether 4 | n if you know d0 and d1?

7. Let s(n) denote the sum of the decimal digits of n. Construct a table of the values
of s(n), say for 1 ≤ n ≤ 20, or so. Add to this table the remainder when n is
divided by 9, and also the remainder when s(n) is divided by 9. Note any pattern
that emerges.

8. Let s(n) be defined as in the preceding question. For several pairs m,n of positive
integers, compute s(m), s(n), s(m+ n), and their remainders upon division by 9.
Note any pattern that emerges.

9. Do the patterns found in the preceding two questions seem to generalize in some
way to other bases? (The program BasesTab may be useful here.)

10. Suppose that n has decimal expansion dkdk−1 . . . d1d0. Let a(n) denote the alter-
nating sum of these digits, a(n) = d0 − d1 + d2 − · · · + (−1)kdk. (In the sigma

notation, we would write a(n) =
∑k

i=0(−1)idi.) Construct a table of values of a(n),
and also the remainders when n and a(n) are divided by 11. Note any pattern.

11. Let a(n) be defined as in the preceding question. For several pairs m,n of positive
integers, compute a(m), a(n), a(m+n), and their remainders upon division by 11.
Note any pattern that emerges.

12. Do the patterns found in the preceding two questions seem to generalize in some
way to other bases? (The program BasesTab may be useful here.)

13. Careless Cary claimed that 100! is

9,332,621,543,944,152,681,699,238,856,266,700,490,715,968,264,381,
621,468,592,963,895,217,599,993,229,915,608,941,463,976,156,518,286,253,
697,920,827,223,758,251,185,210,916,864,000,000,000,000,000,000,000,000

Unfortunately, when he copied down the number, he skipped a digit. What is the
value of the missing digit?

14. The program R2D (meaning ‘rational to decimal’) uses the Division Algorithm to
compute the decimal expansion of any given rational number a/q with 0 ≤ a <
q ≤ 109. At the DOS prompt type r2d 343 787 <Return> to view a sceenful of
the decimal expansion of 343/787. Note how hard it is to spot the periodicity in
the digits. Next type r2d <Return>, then a 343 <Return>, and finally q 787

<Return>. The digits of 343/787 are now displayed in an environment that allows
you to view further digits by paging down or by jumping to a specified place. The
decimal expansion of a/q has a ‘tail’ (the aperiodic part) followed by ‘cycles’ (the
periodic part). Let t(a/q) and c(a/q) denote the lengths of the tails and cycles for

Exploring Number Theory 11
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a/q. Press c to reveal the cycles. Using a pocket calculator or R2D, construct a
table of values of t(1/q) and c(1/q), at least for 1 ≤ q ≤ 20. What is the smallest
value of t(1/q) that occurs? When is it this small? How large can c(1/q) be? Can
you show that it cannot be any larger? Is c(1/q) often large?

15. Let c(a/q) be defined as in the preceding question. Suppose that p is a prime
number for which c(1/p) is even. Divide the cycle into its first half and second
half, and add the two numbers. What do you get? Formulate a conjecture. For
example, when p = 7 we have 1/7 = 0.142857, and 142+857 = 999. (The programs
GetNextP and FacTab can be used to find primes.)

16. Note that each of the numbers

7

73

739

7393

is prime. Can this be extended? How far? Are there other such ‘towers’ of primes?
What happens in other bases? The programs GetNextP and FacTab may be useful
here.

17. Note that

52 = 25 62 = 36

252 = 625 762 = 5776

6252 = 390625 3762 = 141376

06252 = 390625 93762 = 87909376

906252 = 8212890625 093762 = 87909376

Are there other examples of k digit numbers n such that the last k digits of n2

form the number n? Do the two sequences above continue indefinitely?

18. Let n be a four-digit number. Suppose that a is the largest of the four digits, b is
the second largest, c the third largest, and d the smallest. Form two new four-digit
numbers: abcd and dcba. Let f(n) be the difference between these. Describe the
sequence n, f(n), f(f(n)), f(f(f(n))), . . . . For example, if n = 7196, we find that

7196→ 8082→ 8532→ 6174→ 6174→ 6174→ · · ·

Experiment with other values of n, and form a conjecture. What happens in other
bases, or with a different number of digits?

12 Exploring Number Theory



Chapter II. The Division Algorithm

19. Let n be a positive integer, and let n′ denote the integer obtained by reversing
the digits of n. Put f(n) = n + n′. A number n is called a palindrome if n = n′.
Does the sequence n, f(n), f(f(n)), f(f(f(n))), . . . always include a palindrome?
For example, if n = 69, we find that

69→ 165→ 726→ 1353→ 4884,

a palindrome. Experiment, and form a conjecture. Suppose that every such se-
quence contains at least one palindrome. Would it be possible for the sequence to
contain only finitely many palindromes?

In the two preceding problems, we have considered the sequence generated by re-
peatedly applying one fixed function f . In general, the function obtained by the k-
fold iteration of f is denoted fk(n). In this notation, the sequences have the form
n, f(n), f2(n), . . . , fk(n), . . . .

20. Let f(n) be the sum of the squares of the decimal digits of f . For any given integer
n, is the sequence n, f(n), f2(n), . . . eventually periodic? For example, if n = 3
then we find that

3→ 9→ 81→ 65→ 61→ 37→ 58→ 89→ 145→ 42→ 20→ 4→ 16

→ 37,

so we have a tail of length 5 and a cycle of length 8. Experiment, and form a
conjecture.

21. Let

f(n) =

{

3n+ 1 if n is odd,

n/2 if n is even.

Then f(1) = 4, f(4) = 2, and f(2) = 1, a cycle of length 3. What is the behavior
of the sequence n, f(n), f2(n), . . . , fk(n), . . . for other values of n? Experiment,
and form a conjecture.

We sometimes define a sequence u1, u2, . . . by a formula, say uk = f(k). For example,
the perfect squares are given by uk = k2. On other occasions (as above), we generate
sequences by iteration of a function, so that uk = f(uk−1). Still more generally, we might
define uk in terms of several of the preceding terms in the sequence. This is called a
recurrence. For example, the Fibonacci numbers Fk are defined by the recurrence Fk+1 =
Fk +Fk−1 together with the initial conditions F0 = 0, F1 = 1. Thus the first few Fibonacci
numbers are

k 0 1 2 3 4 5 6 7 8 9 10 11 12

3k 0 1 1 2 3 5 8 13 21 34 55 89 144

Exploring Number Theory 13
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These numbers have many fascinating properties. For example, they form a divisibility

sequence in the sense that if d | n then Fd | Fn. In general we do not have a formula
for the kth term of a sequence generated by a recursion, but in the case of the Fibonacci
numbers it can be shown that

Fk =
1√
5

(1 +
√

5

2

)k

− 1√
5

(1−
√

5

2

)k

.

From this latter equation it is not so clear that Fk is always an integer, but from the
defining recurrence we see by mathematical induction that Fk is an integer for all k.
Similarly, recurrences that involve division will generate rational values, but in general not
integers. However, it occasionally happens that such a recurrence unexpectedly seems to
generate integers. We consider two examples of this sort.

22. Let x1 = 1, and for k ≥ 1 put

xk+1 =
1 + x2

1 + x2
2 + · · ·+ x2

k

k

(

i.e., xk+1 =
1

k

(

1 +
k

∑

i=1

x2
i

)

)

.

Calculate as many terms of this sequence as you can. Do you guess that the xk are
integers for all k?

23. Let y0 = 1, y1 = 1, y2 = 1, y3 = 1, and for k ≥ 2 put

yk+2 =
y2

k + yk−1yk+1

yk−2
.

Calculate as many terms of this sequence as you can. Do you guess that the yk are
integers for all k?

24. A standardized national exam taken by high school students recently posed the
question, “Why is π irrational?” The official correct answer was “The number π
is irrational because its decimal expansion is not periodic.” Comment on this, and
propose how the question might be reformulated.

25. The Towers of Hanoi. You are given three vertical rods; on one of these are n
rings. The rings are of different sizes, and are sorted by size with the largest at
the bottom. The task is to transfer the entire stack, one ring at a time, to one of
the other rods, subject to the rule that a larger ring never sits on top of a smaller
ring. How many steps are required, and how should you proceed?

26. Suppose that you have a balance scale and a set of calibrated weights. How many
of these weights do you need, and what should their values be, if you are to verify
that an object has weight k, for any integer k from 1 to 40. Suppose (a) that the
calibrated weights all go in one pan, and the unknown weight in the other; or (b)
that the calibrated weights can be put in either or both pans.
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WILD PROBLEMS

1. Show that the sum of the base 10 digits of 1996n tends to infinity with n.

2. The lonesome 8. In dividing a certain three digit number into an eight digit number
we obtain a five digit quotient and no remainder. The calculation has the following shape,
but only one digit is known. Since there are 900 possible divisors and 90,000,000 potential
dividends, one could say that there are 81 × 109 configurations to consider. Despite the
apparent complexity of the situation, find the unique solution.

X X 8 X X
X X X X X X X X X X X

X X X
X X X X

X X X
X X X X
X X X X

Exploring Number Theory 15



Chapter II. The Division Algorithm

MANUFACTURER’S NOTICE

A defect has been found in certain

examples of the associative law

produced between 3 February, 1993

and 15 April, 1994. If you used

the law during this period, please

return the example to the manufacturer.

There is no cause for alarm.
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Chapter III

Unique Factorization

Programs Used: Factor, Div, DivTab, DivTest,ArFcnTab,
GCD, CoDivTab, CoMulTab, GCDTab

A positive integer p > 1 is called a prime number if it has no divisor lying strictly between
1 and p. That is, the only positive divisors of p are the numbers 1 and p. Note that the
integer 1 is not considered to be a prime number. The numbers 2, 3, 5, and 7 are prime
numbers, but 4, 6, 8, and 9 are not, because 2 | 4, 2 | 6, 2 | 8, and 3 | 9. An integer n > 1
is said to be composite if it is not prime. Thus every positive integer is either prime or
composite, except for the integer 1, which has a special status. We call an integer n a unit

if 1/n is also an integer. Since 1/1 = 1, an integer, we see that the number 1 is an example
of a unit. Any integer n > 1 is either a prime or a product of primes. We call such a way
writing n a factorization of n. We now show that such a factorization always exists and is
unique.

Theorem III.1. (The Fundamental Theorem of Arithmetic) If n is a positive integer

then there exist prime numbers p1, p2, . . . , pr such that

n = p1p2 · · · pr.

This representation is unique apart from the order of the factors.

Here we can allow n to be prime, since then r = 1, and we are simply asserting that
n = p1. When n = 1 the list of primes is empty (r = 0), and by convention we consider an
empty product to have the value 1. The prime numbers p1, p2, . . . , pr are not necessarily
distinct. For example, 12 = 2 · 2 · 3. When a prime factor is repeated, we can express the
factorization more compactly by using powers, as in 12 = 22 · 3. By systematically using
powers in this way, we can express an integer n as a product of primepowers, where the
primes in question are distinct:

n = pa1

1 p
a2

2 · · ·par

r

(

i.e., n =
r

∏

i=1

pai

i

)

.

These distinct primes pi, and the associated exponents ai, are uniquely determined by n,
apart from the order of the factors. The subscript i used to index the primes has very little
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mathematical significance, and is a notational nuisance. We can express the factorization
more tersely, but just as rigorously, by writing

n =
∏

p

pa(p).

Here the primes form the index set over which the product is taken, and a(p) is a function
of prime number p; its values are non-negative integers, and a(p) = 0 for all sufficiently
large primes. For example, when n = 12 we have a(2) = 2, a(3) = 1, and a(p) = 0
for all primes p > 3. Thus we may think of the Fundamental Theorem of Arithmetic
as asserting that each positive integer n corresponds to a unique sequence of exponents
a(2), a(3), a(5), . . . , a(p), . . . .

Although the existence and uniqueness of prime factorization might be accepted as a
known that that does not require proof, we pause to consider how we might derive it from
the more basic properties that we have already discussed. We consider the existence of a
factorization first. If n is prime then we are done. If n is composite then n can be written
n = ab with 1 < a < n and 1 < b < n. If a and b are prime then we are done, but if
one or both of them is composite then we write them as products of smaller numbers. We
continue in this way until all factors are prime. The process cannot continue indefinitely,
since each new factor is smaller than the number it divides.

We now turn to the uniqueness of prime factorization. The main step is to establish
the following important principle:

(1) If p is prime, and if p | ab, then p | a or p | b.

By an easy induction it follows from this that

(2) If p is prime, and if p | a1a2 · · ·ak, then p | ai for some i, 1 ≤ i ≤ k.

Now suppose that we have two factorizations of n, say

p1p2 · · · pr = q1q2 · · · qs
where the pi and the qj are primes. From this identity we see that p1 divides q1q2 · · · qs.
Hence by (2), p1 | qj for some j. But qj is prime, so it follows that p1 = qj . Cancel these
to primes from the identity. This leaves a similar identity, but with fewer factors. By
repeating this, we find that each pi is paired with exactly one qj , so that the factorizations
are the same, apart possibly from the order of the factors.

To complete the proof of the uniqueness of prime factorization, it remains to establish
(1). To this end we list all primes in increasing order, p1 = 2, p2 = 3, . . . . Consider the
proposition that

The assertion (1) holds if p is any one of the primes p1, p2, . . . , pk.

We prove this by induction on k. For the basis of the induction we consider first p = 2. If
2 - a then a is an odd number, say a = 2α+ 1. Similarly, if 2 - b then b = 2β + 1 for some
β. Then

ab = (2α+ 1)(2β + 1) = 2(2αβ + α+ β) + 1.
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That is, the product of two odd numbers is odd. Hence 2 - ab, and the basis is established.
For the inductive step we suppose that the proposition holds for k and we take p = pk+1.
Suppose that p | ab, say pm = ab. We divide p into a and into b, using the Division
Algorithm, so that a = qap+ ra and b = qbp+ rb with 0 ≤ ra < p and 0 ≤ rb < p. If ra = 0
then p | a and we are done. Similarly if rb = 0. We show that the assumption that ra > 0
and rb > 0 leads to a contradiction. We know that

pm = ab = (qap+ ra)(qbp+ rb) = p(qaqbp+ qarb + raqb) + rarb.

Thus if n = m− qaqbp− qarb − qbra then

pn = rarb.

Now decompose ra as a product of primes. Since ra < p, all the prime factors of ra are
less than p. Do the same for rb. Thus we may write the above as

pn = q1q2 · · · qt

where each qj is one of the primes p1, p2, . . . , pk. Since q1 is one of the primes for which
(1) is known to hold, and since q1 | pn, it follows that q1 | p or q1 | n. But p is prime,
so the first alternative is impossible, so q1 | n, say n = q1n1. On cancelling q1 from both
sides of the above identity, it follows that

pn1 = q2q3 · · · qt.

We repeat this, to see that pn2 = q3q4 · · · qt, and so forth, until finally pnt = 1, a contra-
diction. This completes the inductive step, and hence (1) is proved.

As a first application of the Fundamental Theorem of Arithmetic, we note

Theorem III.2. The number
√

2 is irrational.

Proof. Suppose that there is a rational number m/n such that (m/n)2 = 2. Then m2 =
2n2. Let 2µ be the power of 2 in the canonical factorization of m, and 2ν be the power of
2 in the factorization of n. Then the power of 2 in m2 is 2µ, while the power of 2 in 2n2

is 2ν + 1. By the Fundamental Theorem of Arithmetic, it follows that 2µ = 2ν + 1. But
this implies that 2 | 1. Thus we have a contradiction, and hence

√
2 is irrational.

Prime numbers have many interesting properties. One of the oldest theorems concerning
primes is the following.

Theorem III.3. (Euclid) There exist infinitely many prime numbers.

Proof. We show that for any finite set P of primes, there is at least one prime number
not in the set. Let P be a finite set of primes, and let P denote the product of all the
primes in P,

P =
∏

p∈P

p.
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(Note that the symbol ‘∈’ means ‘is a member of’. Thus the product above is extended
over all the primes in P.) Put n = P + 1. Suppose that p ∈ P, and write n = (P/p)p+ 1.
In the context of the Division Algorithm, this tells us that when we divide p into n we
obtain a quotient q = P/p and a remainder r = 1. (Note that P/p is an integer!) Since
r 6= 0, by Theorem II.2 it follows that p - n. That is, none of the primes in P divide n. But
n > 1, so by the Fundamental Theorem of Arithmetic we know that either n is prime or
is a product of two or more prime numbers. These prime factors of n divide n, and hence
they are not members of the set P. Thus there exists at least one prime number not in the
set P, and the proof is complete.

Euclid’s construction provides the desired proof, but it gives us no feeling for the size
of the nth prime number, and it is not very useful for generating primes—the numbers
become large very quickly, and it is not clear that every prime is eventually generated in
this way.

P P n

∅ 1 2
{2} 2 3
{2, 3} 6 7
{2, 3, 7} 42 43
{2, 3, 7, 43} 1806 13 · 139

{2, 3, 7, 13, 43, 139} 3263442 3263443
{2, 3, 7, 13, 139, 3263443} 10650056950806 547 · 607 · 1033 · 31051

Here the values of n are presented in factored form. For numbers up to 1018, the compu-
tational burden of finding factorizations can be handled by the program Factor. For ex-
ample, the last entry above can be found by typing factor 10650056950807 <Return>.
Try it. The time required by Factor to complete its calculation depends on the size of
the largest prime factors of n. In the example just considered, the performance is good
because the prime factors are all reasonably small. This program handles all numbers up
to 109 with ease, but for some larger numbers, particularly prime numbers, the response
is sluggish. Apply Factor to 10650056950837. (You may have to wait several minutes for
the answer, depending on the speed of your machine.) To treat a prime number of size
near the upper limit 1018, the time required will be more than 300 times greater. For more
information on Factor, see the entry in Appendix P.

Although the computation of the factorization of n is time-consuming for some n, by
Theorem II.2 it is always easy to determine whether one integer divides another: It suffices
to perform just one long division.

Explorations

1. Make a list of the first several powers of 2, namely 1, 2, 4, 8, . . . . For each number
d = 2i in the list, determine which of the other numbers in the list are divisible by
d. The program DivTest is a useful aid.
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2. Make a list of the first several powers of 3, namely 1, 3, 9, 27, . . . . For each number
d = 3i in the list, determine which of the other numbers in the list are divisible by
d. The program DivTest may be used as an aid.

3. Make a list of the first several numbers that can be written in the form 2i3j,
1, 2, 3, 6, 8, 9, 12, . . . . For each number d = 2i3j in the list, determine which other
numbers in the list are divisible by d. It may be helpful here to arrange the numbers
in a two-dimensional array:

j

0 1 2 3 · · ·
0 1 3 9 27 · · ·
1 2 6 18 54 · · ·

i 2 4 12 36 108 · · ·
3 8 24 72 216 · · ·
...

...
...

...
...

4. Let b and c be given positive integers, and suppose that any prime number that
divides b or c (or both) is in the list p1, p2, . . . , pr. Thus by the Fundamental
Theorem of Arithmetic we may write

b = pβ1

1 pβ2

2 · · · pβr

r , c = pγ1

1 p
γ2

2 · · · pγr

r .

What relationship exists between the exponents βi and the γi if b | c? Use DivTest

as an aid.

5. If b | c and c | d, does it follow that b | d?

6. Using the program DivTab, or otherwise, find the positive divisors of 2; of 4; of
8, of 2a. What are the positive divisors of 3, of 9, of 27, of 3a?

For n > 0, let d(n) be the number of positive divisors of n. This is called the divisor

function. Since 1 and n are divisors of n, we have d(1) = 1, d(p) = 2 for all prime numbers
p, and d(n) > 2 for all composite numbers. The program ArFcnTab creates a table
of values of the divisor function (and several other functions). After typing arfcntab

<Return>, on the bottom line of the screen you will find a menu of commands available
to you.

7. Suppose that n =
∏

p p
a(p). Can you find a formula for d(n) in terms of the

exponents a(p)?

Exploring Number Theory 21



Chapter III. Unique Factorization

8. If d | n then the number n/d is called the complementary divisor of n, since
d · n/d = n. Show that if d | n then 1 ≤ d ≤ √n if and only if

√
n ≤ n/d ≤ n.

What if d =
√
n?

9. For what n is d(n) odd? Data can be gathered using ArFcnTab.

10. What is the product of the smallest positive divisor of n and the largest? The
second smallest and the second largest? Numerical evidence can be assembled
using DivTab.

11. What numbers does 1 divide? What numbers does 0 divide? What numbers divide
1? What numbers divide 0?

Let b and c be integers. If d | b and d | c then d is called a common divisor of b and
c. If b = c = 0 then every integer is a common divisor, and hence there is no largest such
number. However, if at least one of b and c is non-zero, then there are only finitely many
common divisors, and we let (b, c) denote the greatest common divisor. This notation is
somewhat ambiguous, since (b, c) also denotes a point in the plane with coordinates b and
c, or it might denote an interval a < x < b of the real line. When such possibilities might
cause confusion, we write gcd (b, c). This number is calculated by the program GCD. Try
typing gcd 34 119 <Return>.

12. Suppose that b, c and their greatest common divisor (b, c) are written in the form

b =
∏

p

pβ(p), c =
∏

p

pγ(p), (b, c) =
∏

p

pδ(p).

These are meant to be the canonic factorization of these numbers into prime powers,
as provided by the Fundamental Theorem of Arithmetic. Use CoDivTab to view
these numbers in several specific cases. Can you express the exponents δ(p) in
terms of the β(p) and γ(p)?

13. Which common divisors of b and c divide (b, c)?

14. If b > 0, what is (b, 0)?

15. Is it always true that (b, c) = (c, b)?

16. What is the relation between (b, c) and (b, b+ c)?

17. How does (b, c) compare with (mb,mc)?

Let b and c be integers. If b | m and c | m then m is called a common multiple of b and
c. Common multiples always exist, because bc is a common multiple of b and c. The least
common multiple of b and c is denoted [b, c], or lcm (b, c) to be unambiguous.
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18. Use CoMulTab to examine the common multiples of given integers. If b =
∏

p p
β(p) and c =

∏

p p
γ(p), can you describe the factorization of [b, c] in terms

of the β(p) and γ(p)?

19. How is (b, c)[b, c] related to bc?

20. Does [b, c] divide all common multiples of b and c?

21. The numbers b and c are said to be relatively prime if (b, c) = 1. If b and c are
relatively prime, what can you say about the primes that divide b, and the primes
that divide c?

22. If b and c are relatively prime, what is [b, c]?

23. How is [mb,mc] related to [b, c]?

24. Suppose that (m,n) = 1. How are d(m) and d(n) related to d(mn)? Use the
program ArFcnTab to explore.

25. Suppose that (a, b) = 1 and that a | bc. Does it follow that a | c?

26. The program GCDTab creates a 2-dimensional table of greatest common divisors
(b, c). Move around in this table. When b and c are large, is (b, c) usually large?
What values occur most often? Take b = 111111111. Five of the columns contain
a variety of numbers, but two of the columns seem to contain only the number 1.
Use the ↑ key to move up in the table. Does this phenomenon seem to persist?
How long does it continue?

27. Explain why k! + i is composite for 2 ≤ i ≤ k. In this way, show that there
exist arbitrarily long gaps between consecutive prime numbers. When k! < 109,
find the gap constructed in the table generated by FacTab. How does the length
of the guaranteed gap compare with other gaps between primes in that vicinity?
In FacTab, type n 2083133 to view the prime numbers between 20831330 and
20831530. Is there a long gap here? How long? Does this seem to be longer than
the average, in this vicinity?

28. Let d be a fixed positive integer. Determine the logical relationship, if any, between
the following two assertions:

(i) a | b;
(ii) da | db

29. A number n is called a perfect square (or sometimes just square) if there is an integer
k such that k2 = n. Using Factor as necessary, make a list of the factorizations
of the first few perfect squares, 12, 22, 32, 42, . . . . Construct a criterion, in terms of
the factorization of n, to determine whether n is a perfect square or not.
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30. A number is said to be squarefree if it is not divisible by any perfect square larger
than 1. Make a list of all perfect squares not exceeding 25. For each n, 1 ≤ n ≤ 25,
use DivTab to construct a list of the divisors of n. By comparing the two lists,
determine whether n is squarefree. List the squarefree n not exceeding 25, and
their factorizations. Construct a criterion, in terms of the factorization of n, to
determine whether or not n is squarefree.

31. Let n be a positive integer. Is it always possible to write n = ab where a is a perfect
square and b is squarefree? Is there ever more than one such representation?

32. Determine the logical connection, if any, between the following two assertions:
(i) d(n) is a power of 2;
(ii) n is a perfect square.
The programs Factor and ArFcnTab may be helpful.

33. Show that
√

3 is irrational.

34. Show that if n is not a perfect square then
√
n is irrational.

35. Show that 3
√

2 is irrational.

36. Let a and b be rational. Show that a+ b
√

2 6= 0 unless a = b = 0.

37. Suppose that a1, a2, b1, b2 are rational numbers. Show that if a1+b1
√

2 = a2+b2
√

2
then a1 = a2 and b1 = b2.

38. Is
√

2 +
√

3 irrational?

39. Let θ =
√

2 +
√

3. Note that 1
2θ

2 − 5
2 =

√
6. Can you find rational numbers

a1, a1, a2, a3 so that a0 + a1θ + a2θ
2 + a3θ

3 =
√

2? What about
√

3?

WILD PROBLEM

Suppose that you have a set of n+ 1 numbers taken from the numbers 1, 2, . . . , 2n. Show
that there exist distinct numbers b and c in the set such that b | c.
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Chapter IV

Linear Combinations of Integers

Programs Used: LnComTab, EuAlgDem, SlowGCD, FastGCD, GCD

Let b and c be two integers. An integer of the form xb+yc is called a linear combination

of b and c. Here x and y are arbitrary integers. As x and y run over all integral values,
the quantity xb + yc runs over a certain range of values. Our goal is to determine what
that range of values is, and to describe how various values are taken on. For example, if
b = 12 and c = 15 then for small values of x and y we obtain the linear combinations in
the following table:

x

y

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

6 18 30 42 54 66 78 90 102 114 126 138 150 162

5 3 15 27 39 51 63 75 87 99 111 123 135 147

4 -12 0 12 24 36 48 60 72 84 96 108 120 132

3 -27 -15 -3 9 21 33 45 57 69 81 93 105 117

2 -42 -30 -18 -6 6 18 30 42 54 66 78 90 102

1 -57 -45 -33 -21 -9 3 15 27 39 51 63 75 87

0 -72 -60 -48 -36 -24 -12 0 12 24 36 48 60 72

-1 -87 -75 -63 -51 -39 -27 -15 -3 9 21 33 45 57

-2 -102 -90 -78 -66 -54 -42 -30 -18 -6 6 18 30 42

-3 -117 -105 -93 -81 -69 -57 -45 -33 -21 -9 3 15 27

-4 -132 -120 -108 -96 -84 -72 -60 -48 -36 -24 -12 0 12

-5 -147 -135 -123 -111 -99 -87 -75 -63 -51 -39 -27 -15 -3

-6 -162 -150 -138 -126 -114 -102 -90 -78 -66 -54 -42 -30 -18
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We let S(b, c) denote the set of all numbers that can be written in the form xb + yc for
some integral values of x and y. Thus S(12, 15) is the set of all numbers appearing in the
above table, if it were extended to infinity in all directions. The program LnComTab

displays such tables of numbers xb+ yc. This will serve to aid in answering the following
questions.

Explorations

1. As x and y run over all integral values (both positive and negative), the quantity
12x+ 15y takes on certain values. What values in the interval [−50, 50] occur?

2. In the table created by LnComTab, is any value repeated? Is there any pattern
to the repeated values? Are there any values that are not repeated? Can you find
a subset of the table (possibly an infinite subset) within which every value occurs
exactly once? (Every value that is found somewhere in the table, that is.)

3. Let b and c be integers, not both 0, and let S(b, c) denote the set of all integers
that can be written in the form xb + yc. If s1 ∈ S(b, c) and s2 ∈ S(b, c), does it
follow that s1 + s2 ∈ S(b, c)? If s ∈ S(b, c) and m is an integer, does it follow that
ms ∈ S(b, c)?

4. Suppose that G and s are two members of S(b, c) with G > 0. Suppose that G is
divided into s, using the Division Algorithm, to obtain a quotient q and a remainder
r, so that s = qG+ r. Does it follow that r ∈ S(b, c)?

5. Let G be the least positive member of S(b, c). Does it follow that G divides every
member of S(b, c)?

6. Let G be the least positive member of S(b, c), and let g = gcd (b, c). Explain the
relation between g and G.

7. Still using the program LnComTab, compare the tables generated when b = 12,
c = 15, with that for b′ = 27, c′ = 15. (Note that 27 = 12 + 15.) How are the
tables related? In general, how is S(b, c) related to S(b + c, c)? How is it related
to S(b + mc, c) where m is some given integer? Can you show that gcd (b, c) =
gcd (b+mc, c)?

8. What happens to the table generated by LnComTab if b = 12, c = 15 is replaced
by b = 15, c = 12?

9. Apply LnComTab with b = 4, c = 5. How does this compare with the table when
b = 12, c = 15? In general, how is S(mb,mc) related to S(b, c)?
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10. Justify the following equalities:

(57, 34) = (1 · 34 + 23, 34)

= (23, 34)

= (34, 23)

= (1 · 23 + 11, 23)

= (11, 23)

= (23, 11)

= (2 · 11 + 1, 11)

= (1, 11)

= (11, 1)

= (11 · 1 + 0, 1)

= (0, 1)

= 1

Apply a similar chain of identities to evaluate (79, 43). This method is known
as the Euclidean Algorithm. Type eualgdem 79 43 <Return> to confirm your
arithmetic.

11. The Euclidean Algorithm can be made slightly faster by introducing extra tricks.
For example, when we apply the Division Algorithm, say D = qd + r, if d − r is
smaller than r we could instead write D = (q + 1)d − (q − r). Since q + 1 is the
nearest integer to D/d, this is called ‘rounding to the nearest integer’. When we
round up, the remainder is negative, but this does not matter, since (−b, c) = (b, c).
If we apply rounding to the nearest integer in the calculation of 10., we find that

(57, 34) = (2 · 34− 11, 34)

= (−11, 34)

= (11, 34)

= (34, 11)

= (3 · 11 + 1, 11)

= (1, 11)

= (11, 1)

= (11 · 1 + 0, 1)

= (0, 1)

= 1

Here we needed only 3 long divisions, whereas in 10. we used 4 long divisions.
How many long divisions are saved when you use rounding to the nearest integer
in calculating (79, 43)? The program GCD uses this improved version of the
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Euclidean Algorithm. Try typing gcd 79 43 <Return>. If you type eualgdem

<Return> without entering the arguments on the command line, then you are
prompted for the values of b and c, and the results are displayed in a table. This
presentation also allows you to switch between rounding down and rounding to the
nearest integer.

12. Determine the value of [113355, 224466]. (Hint: First find their gcd.)

13. If we were to calculate (b, c) using only the definition of the greatest common
divisor, then we would divide d into b, and if it divides evenly then we would divide
d into c; all this for every d ≤ b. That amounts to more than b long divisions.
The program SlowGCD computes the gcd in this way. Apply SlowGCD to two
2-digit numbers, to two 3-digit numbers, etc., and note the time required in each
case. The program FastGCD computes the gcd by using the Euclidean Algorithm.
Apply FastGCD to the same pairs of numbers. How much faster is it?

14. A total of 270 contestants have registered for a bass fishing contest. As organizer,
you must provide each contestant with one of Harry’s No-Fail lures. At Al’s Hard-
ware, these lures are sold in boxes of 25 lures per box. At the Glennie Bait Shop
across the street, they are sold in boxes of 12 lures per box. How many boxes
should you buy at each place, in order to have a total of 270 lures. What if there
were only 263 contestants? Is it always possible to buy exactly n lures, if n is large
enough?

15. Suppose that b and c are positive integers, and that g = (b, c). Show that if g | n
and if n is sufficiently large, then n can be written n = bx+ cy where x and y are
non-negative integers. What is the largest n (in terms of b and c) for which this is
impossible? Experiment, using LnComTab, and formulate a conjecture.

16. Thus far we have considered linear combinations of two integers. Suppose we now
form linear combinations of three integers. Let a, b, c be given integers, and let
S(a, b, c) denote the set of all linear combinations ax + by + cz of these integers.
Describe this set in terms of the greatest common divisor of a, b, c, denoted (a, b, c).

WILD PROBLEMS

1. There are N people at a party, N ≥ 2. No one shakes hands with themselves, and no
two people shake hands more than once. Prove that there are two people who shake hands
with the same number of other people.

2. A couple invites four other couples to dinner, making ten people in all. At the end of
the evening, the host asks each of the nine others,“How many people did you meet for the
first time tonight?” The responses are nine different numbers. What did the hostess say?
Assumptions: (i) The members of each couple had met previously; (ii) When one person
meets another, the second also meets the first.
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Chapter V

Farey Fractions

Programs Used: FareyTab, FracTab, D2R

The Farey Fractions of order Q are the rational numbers between 0 and 1 with denominator
not exceeding Q, listed in increasing order, with each fraction expressed in reduced form.
Thus the Farey Fractions of order 7 are:

0
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,

1

7
,

1
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,

1
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,
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,
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,
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,
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,
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,
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4
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,

5

6
,

6

7
,

1

1

The program FareyTab constructs a table of Farey Fractions, for orders up to 109. These
fraction possess many curious properties. Before trying to prove anything, we first want to
construct a large body of conjectures. The following questions should help you to formulate
constructive guesses.

Explorations

1. For each pair of adjacent Farey Fractions in the table above, compute the difference
between the fractions. Express the answer as a rational number, not as a decimal.
Does a pattern emerge? Try other orders of fractions, until a pattern is evident.

2. Which pair of adjacent fractions above is closest together? Which pair is farthest
apart?

3. If a/q and a′/q′ are adjacent fractions, what is gcd(q, q′)?

4. If a/q and a′/q′ are adjacent fractions among the Farey fractions of order Q, how
does the size of q + q′ compare with Q?

5. Suppose that a/q and a′/q′ are two rational numbers with a/q < a′/q′ and q > 0,
q′ > 0. (These fractions are not necessarily reduced, and they are not necessarily
consecutive Farey Fractions of any order.) Where does the number

a+ a′

q + q′
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lie? Is it < a/q, between a/q and a′/q′, or > a′/q′?

6. Suppose that a/q and a′/q′ are consecutive Farey Fractions of order Q. When q is
replaced by Q+ 1, by Q+ 2, . . . , new fractions are inserted in the list. Eventually,
a/q and a′/q′ will no longer be adjacent. What is the least Q′ for which they are
not adjacent, and what is the first fraction to appear between them?

7. Let a/q and a′/q′ be fixed fractions, and suppose that a/q < a′/q′. Think of (m,n)
as representing a point in the plane given by Cartesian coordinates, and let θ denote
the angle between the positive x-axis and the ray from the origin to (m,n). Thus
tan θ = n/m. The program FracTab lists the fractions (am + a′n)/(qm + q′n),
sorted according to the size of the associated angle θ. For what pairs m,n is this
new fraction less than a/q? Between a/q and a′/q′? Larger than a′/q′? Can you
prove your conjecture?

8. Let a, q, a′, q′ be fixed, with aq′ − a′q = 1. Describe the fractions that can be
written in the form (am+ a′n)/(qm+ q′n). Use FracTab to aid in formulating a
conjecture, and then try to prove it.

9. Suppose that aq′ − a′q = 1. Among all the fractions that lie between a/q and
a′/q′, which one has the smallest denominator? Experiment with FracTab, make
a conjecture, and try to prove it.

10. Let a/q and a′/q′ be given, with a/q < a′/q′. Is there any logical connection
between the following two assertions?

(i) fracy1x1 <
y2

x2

;

(ii) (ax1 + a′y1)/(qx1 + q′y1) < (ax2 + a′y2)/(qx2 + q′y2).

11. Suppose that a, q, a′, q′ are integers such that aq′ − a′q = 1. Is there any logical
connection between the following two assertions?

(i) (xa+ ya′, xq + yq′) = 1;

(ii) (x, y) = 1.

12. Call two fractions a/q and a′/q′ ‘close’ if aq′ − a′q = ±1. (This is not a standard
term—it is meant to be used only for this question.) If a/q and a′/q′ are close,
does it follow that a/q and (a+ a′)/(q + q′) are close? That (a+ a′)/(q + q′) and
a′/q′ are close?

13. Suppose that 1 ≤ q ≤ Q, 1 ≤ q′ ≤ Q, and that (q, q′) = 1. Among the Farey
fractions of order Q, how many times is a fraction with denominator q adjacent to
one with denominator q′? (Note: The answer is not the same for all pairs q, q′.)
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14. Let Q be a positive integer. Explain why

∑

1≤q≤Q
1≤q′≤Q
(q,q′)=1
q+q′>Q

1

qq′
= 1.

15. Prove or disprove: For every real number θ, 0 ≤ θ ≤ 1, there is a rational number
a/q such that

∣

∣

∣
θ − a

q

∣

∣

∣
<

1

q2
.

16. Prove or disprove: For every real number θ, 0 ≤ θ ≤ 1, and every positive integer
Q, there is a rational number a/q with 1 ≤ q ≤ Q such that

∣

∣

∣
θ − a

q

∣

∣

∣
<

1

qQ
.

17. Prove or disprove: For every real number θ, and every positive integer Q, there is
a rational number a/q with 1 ≤ q ≤ Q such that

∣

∣

∣
θ − a

q

∣

∣

∣
<

1

qQ
.

18. Prove or disprove: For every real number θ there exist infinitely many pairs of
integers a, q with q > 0 such that |θ−a/q| < 1/q2. (Here a and q are not necessarily
relatively prime.)

19. Suppose that a and q are integers with q 6= 0. Explain why |2q2 − a2| ≥ 1. Show
that

(√
2− a

q

)(√
2 +

a

q

)

=
2q2 − a2

q2
.

Can you show that
∣

∣

∣

√
2− a

q

∣

∣

∣
>

1

4q2

for all rational numbers a/q?

20. Suppose that a/q and a′/q′ are distinct rational numbers. Explain why

∣

∣

∣

a

q
− a′

q′

∣

∣

∣
≥ 1

qq′
.
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21. Suppose that θ is a rational number. Show that there is a positive real number c
(which may depend on θ) such that if |qθ − a| < c then a/q = θ.

22. Prove or disprove: A real number θ is rational if and only if there is a real number
c > 0 such that if a and q are integers with q > 0, and θ 6= a/q, then |θ−a/q| ≥ c/q.

23. Napier’s number , e = 2.71828182845904523536 . . . , can be defined by the infinite
series

e =
1

0!
+

1

1!
+

1

2!
+

1

3!
+ · · ·

(

i.e., e =
∞
∑

n=0

1

n!

)

.

Here 0! = 1 by convention. Since each term of this series is a rational number, any
finite section of this series provides a rational approximation to e, say

aN

qN
=

1

0!
+

1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

N !
.

Construct a table, with rows indexed by N , and columns listing the values of aN ,
qN , and qNe − aN . Does it seem that there is a positive constant c as in the
preceding question?

24. Let aN and qN be defined as above. Suppose that it has been shown that

aN

qN
< e <

aN

qN
+

2

(N + 1)!

for all integers N ≥ 1. (Given a rudimentary knowledge of infinite series, this
can easily be done by appealing to the defining series above and to Theorem I.2.)
Deduce that e is irrational.

25. The interval [a/q, a′/q′] between two consecutive Farey fractions of order Q is
called a Farey arc. For any real number θ and any Q, there is always a Farey arc
containing θ. For example, θ = (

√
5− 1)/2 = 0.6180339887498948482 . . . , which is

known as the golden ratio, lies in the following Farey arcs:

Q a/q a′/q′

1 0/1 1/1

2 1/2 1/1

3, 4 1/2 2/3

5, 6, 7 3/5 2/3

Extend this table, and note any patterns that emerge. Do you recognize the de-
nominators that arise?

26. For the number
√

2 = 1.4142135623730950488 . . . , construct a table similar to the
one above, and note any patterns that arise.
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27. For the number e = 2.71828182845904523536 . . . , construct a table similar to the
one above, and note any patterns that arise.

28. Let ‖θ‖ denote the distance from θ to the nearest integer. Given the decimal
expansion of e and a pocket calculator, we make a table of the values of ‖qe‖ for
q = 1, 2, . . . .

q ‖qe‖
1 0.2817
2 0.4366
3 0.1548
4 0.1269
5 0.4086
6 0.3097
7 0.0280
8 0.2537
9 0.4645
10 0.1828

We let q1 = 1, q2 = 3, and q3 = 7; these are the values of q for which ‖qe‖ is
smaller than any preceding value. Extend the table, say to q = 40, and note the
record-breaking values of q. Does there seem to be any relation between these qi

and the findings in the preceding question?

29. Does the connection between the findings in the two preceding questions reflect a
property that is special to the number e, or does it persist for other—or perhaps
even all—real numbers. Choose a real number, and experiment.

30. The program FareyTab constructs tables of Farey fractions of order Q for 1 ≤
Q ≤ 109. How long a bookshelf would be required to hold these tables, if they
were all printed out in their entirety? Indicate any assumptions you make in your
estimates.

31. How close can two rational numbers a/q and a′/q′ be, without being equal? Of
course two rational numbers can be quite close if their denominators are large,
so the object is to determine how close these fractions can be, in terms of their
denominators.

When we describe a real number by the first k digits of its decimal expansion, say
0.d1d2 · · ·dk, we are not specifying a unique real number, but instead are describing an in-
terval of real numbers whose decimal expansions have the same first k digits. Assuming that
we are rounding to the nearest integer, this interval is [0.d1d2 · · ·dk − 1

2·10k , 0.d1d2 · · ·dk +
1

2·10k ). The program D2R converts decimals to rationals in the sense that if some decimal
digits are given, the program returns the rational number with least denominator that lies
in the indicated interval.

Exploring Number Theory 33



Chapter V. Farey Fractions

32. Trailing 0’s affect how D2R responds. Try typing d2r .31 <Return>, and then
d2r .310 <Return>. Why is it to be expected that the response may be different?

33. Choose a rational number, and a pocket calculator (or R2D) to determine its first
few decimal digits. Give D2R the first digit, then the first two digits, then the first
three digits, until has enough digits to recover the original rational number. When
we considered the decimal expansions of rational numbers we saw that the period
of the expansion can be nearly as large as the denominator. How many decimal
digits are needed in order for D2R to identify rational numbers reliably?

34. Choose a real number x. Let c0 denote its integral part, c0 = [x], and r0 the
remainder, r0 = x − c0. Then put x1 = 1/r0, and repeat this, so that c1 = [x1],
r1 = x1 − c1, and x2 = 1/r1. Calculate several more terms of these sequences, and
note how easy the calculation is. Thus we have

x = c0 +
1

x1
= c0 +

1

c1 + 1
x2

= c0 +
1

c1 + 1
c2+

1

x3

= · · · .

These are initial segments of the continued fraction expansion of x. If the continued
fraction process is truncated one obtains rational numbers,

h0

k0
= c0 +

1

c1
,

h1

k1
= c0 +

1

c1 + 1
c2

,
h2

k2
= c0 +

1

c1 + 1
c2+

1

c3

, · · · .

Use your values of ci to calculate the approximations hi/ki. Are these numbers
larger or smaller than x? How close are these numbers to x, in the sense of best
rational approximations as considered in 26. above? If x is rational, how do the
hi/ki relate to Farey fractions? If x is a quadratic irrational, what do you note
about the ci?

WILD PROBLEM

Let c be a real number with the property that nc is a positive integer whenever n is a
positive integer. Show that c must be a non-negative integer.
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Chapter VI

Parity and Permutations

Programs Used: BasesTab, Merlin, PermCalc

We call a number even if it is divisible by 2, and odd if it is not. Thus numbers of the
form 2k are even, while numbers of the form 2k + 1 are odd. The parity of a number
refers to its oddness or evenness. It is easy to see that the sum of two even numbers is
even, since 2m+ 2n = 2(m+ n). Also, the sum of an even number and an odd number is
odd, since 2m + (2n + 1) = 2(m + n) + 1. Finally, the sum of two odd numbers is even:
(2m+ 1) + (2n+ 1) = 2(mn+ 1). As for multiplication, we note that the product of two
even numbers is even: (2m)(2n) = 2(2mn), the product of an even number and an odd
number is even: (2m)(2n + 1) = 2(2mn + m), and the product of two odd numbers is
odd: (2m+ 1)(2n+ 1) = 2(2mn+m+ n) + 1. These observations are summarized in the
following tables.

⊕ 0 1

0 0 1

1 1 0

⊗ 0 1

0 0 0

1 0 1

Here ‘0’ stands for any even number, and ‘1’ stands for any odd number. This simple
information can be put to good use.

1. Let P (x) = akx
k + · · ·+ a1x+ a0 be a polynomial with integral coefficients. Is it

true that all the numbers

. . . , P (−4), P (−2), P (0), P (2), P (4), . . .

have the same parity? Is it true that all the numbers

. . . , P (−5), P (−3), P (−1), P (1), P (3), P (5), . . .

have the same parity? Experiment with some simple polynomials.
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2. Let s(n) denote the sum of the base 3 digits of n. Using BasesTab, make a table
of s(n). Do n and s(n) always have the same parity?

3. Describe the smallest set of points in the plane that have the following properties:
The points (0, 0), (1, 0), (0, 1) are in the set; For any points P and Q in the set,
the point R obtained by reflecting P about Q is also in the set. (That is, Q is the
midpoint of the segment PR.)

4. Suppose that the two diagonally opposite corners of a checker board are removed.
Show that it is not possible to cover the remaining region with dominos. (Each
domino covers two adjacent squares.)

5. Each square of a 5× 5 chess board has a knight on it. Show that it is not possible
to move all 25 knights simultaneously so that afterwards each square again has
exactly one knight on it. (The moves must be legal knight’s moves: Two squares
in one direction, and one square perpendicularly.)

6. Show that

det











1985 8390 2382 7356 3678
5678 8765 1234 5432 5678
1092 2938 3847 4756 6574
1238 2346 3454 4561 5670
1122 3344 5566 1506 1961











6= 0.

7. Show that it is impossible to cover a 6× 6 checker board by 18 dominos in such a
way that every line running between columns or between rows crosses as least one
domino. Show that such a construction is possible on an 8× 8 checker board.

8. Suppose that a1, a2, . . . , a2n+1 are integers such that whenever one member of the
sequence is removed, the remaining members can be divided into two sets of n
terms with equal sums. Show that a1 = a2 = · · · = a2n+1.

9. Suppose that a1, a2, . . . , a2n are integers such that whenever one member of the
sequence is removed, the remaining numbers can be divided into two sets (one of
them possibly empty) with equal sums. Show that a1 = a2 = · · · = a2n = 0.

10. Suppose that x, y, z, and w are integers such that x4− 2y4 +4z4− 8w4 = 0. Show
that x = y = z = w = 0.

11. There are n people in a room, and some pairs of them shake hands. Show that the
number of people who shake hands an odd number of times is even. Does it matter
if some pairs shake hands more than once?

12. Immanuel Kant lived in Königsberg, a town whose four parts were joined by seven
bridges. Was it possible for Kant to take a walk in such a way that he crossed
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each bridged exactly once? The famous Swiss mathematician Leonard Euler (pro-
nounced ‘oiler’—he lived 1707–1783) found an elegant solution of this problem in
1736.

13. After White’s 99th move and Black’s 98th move, a chess game has reached the
following (unlikely) situation. Prove that Black has a mate in four.

BR BKn BB BK BQ BB BKn BR

WP WP WP WP WP WP WP WP

WR WKn WB WQ WK WB WKn WR
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Permutations have a parity property that is important in mathematics and in the anal-
ysis of permutation puzzles. A permutation simply reorders a collection of objects. If we
have n objects, we may call them 1, 2, . . . , n. The set of all permutations of n objects is
denoted Sn, and is called the symmetric group. To specify a permutation, it is enough to
describe where each object is to be placed. For example, suppose that

π1 =

(

1 2 3 4 5 6
3 1 6 4 2 5

)

, π2 =

(

1 2 3 4 5 6
6 2 4 5 3 1

)

.

Then the permutation π1 takes the first element and places it in the third location, the
second element in the first location, the third element in the sixth location, and so on. We
can form the composition of two permutations by first performing one, and then the other.
For example, if we perform π1 first and then π2, we obtain the permutation

π2π1 =

(

1 2 3 4 5 6
4 6 1 5 2 3

)

.

Note that in this ‘multiplication’ of permutations, the one on the right is performed first.

14. With π1 and π2 defined as above, calculate π1π2. Is this the same as π2π1?

15. How many different permutations are there on n elements? That is, how big is Sn?

16. Let π1, π2, and π3 be three permutations. Is it true in general that π3(π2π1) =
(π3π2)π1?

The permutation π1 displayed above is a particular kind of permutation called a cycle

(or, more precisely, a 5-cycle) because it takes 1 to 3, 3 to 6, 6 to 5, 5 to 2, and 2 to 1 in a
cycle, while all other numbers (in this case only one) remain fixed. For such permutations
we have a more compact notation, namely π1 = (1 3 6 5 2). Alternatively, we could write
π1 = (5 2 1 3 6), since it does not matter where in the cycle we begin. A transposition is
a permutation in which two elements are exchanged but all the others are fixed. In other
words, a transposition is the same thing as a 2-cycle.

17. Is the permutation π2 displayed above a cycle? Can you write it as a product of
disjoint cycles?

18. Suppose that π1 = (1 2 3) and that π2 = (4 5 6). Is it true that π1π2 = π2π1?
Does this generalize to the product of any two disjoint cycles?

19. Suppose that π is a k-cycle. Is π2 also a k-cycle? What about π3? π4? Is πh a
k-cycle for all h?

20. Suppose that π1 is a k1-cycle, and that π2 is a k2-cycle. Suppose that these cycles
are disjoint, and put π = π1π2. Let the identity permutation (in which all elements
are fixed) be denoted i. What is the least positive integer h such that πh = i?
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21. Given a permutation π, does there always exist an inverse permutation π−1 such
that ππ−1 = π−1π = i? Experiment, say with the permutations π1 and π2 dis-
played above? If π is a k-cycle, is π−1 a k-cycle?

22. Can a k-cycle always be written as a product of transpositions? Is such a rep-
resentation unique? What is the smallest number of transpositions that you can
achieve?

23. Suppose that π is a permutation in Sn. We want to know whether there exist
integers a1, a2, . . . , an with 1 ≤ a1 ≤ n, 2 ≤ a2 ≤ n, 3 ≤ a3 ≤ n, . . . , an = n, such
that

π = (1 a1)(2 a2) · · · (n an).

Try to find such integers for the permutations π1 and π2 displayed above. Does it
seem that such a representation always exists? Is it possible for a permutation to
have more than one such representation?

It is tempting to call a permutation even if when it is expressed as a product of trans-
positions, the number of transpositions is even. This has the advantage that it makes it
evident that the product of two even permutations is even, the product of an even per-
mutation with an odd permutation is odd, and that the product of two odd permutations
is even, but it ignores the possibility that a permutation might be both even and odd.
Alternatively, we could say that if π is a product of disjoint cycles of lengths k1, k2, . . . , kr

then we call π odd or even according as whether (k1− 1) + (k2− 1) + · · ·+ (kr − 1) is odd
or even. This assigns a specific parity to each permutation, but it is no longer so clear
that this product of two odd permutations is even, for example. The following question is
intended to suggest a possible solution to these difficulties.

24. Let π = (1 2 3 4 5 6 7)(8 9 10 11 12). What is the cycle structure of (2 5)π? Of
(9 11)π? Of (3 10)π? In general, what is the cycle structure of (i j)π for various
values of i and j?

25. Sam Loyd’s Fifteen Puzzle Suppose that you have a 4× 4 frame that contains
15 numbered squares, and one blank space. Any square adjacent to the blank
space can slide into that space, so that the positions of the square and the blank
are exchanged. Explain why it is impossible to slide squares in such a way as to
pass from the situation (a) below to (b).

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

(a) (b)
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26. By sliding squares, one can move from the position below to one of (a) or (b) above.
Which one?

3 9 15 2

13 5 11 14

12 1 8 4

6 10 7

27. The object is to put the goat in his pen—that is, by sliding blocks, pass from (a)
to (b) below. Explain why this appears at first sight to be impossible. What must
be done in order to solve the problem?

(a) (b)

28. Rubik’s Cube (Bűvös Kocka) A 3× 3× 3 cube is colored with six colors, so that
each face has a solid color. The cubes are mechanically linked so that any face of 9
cubes can be rotated by 90◦. After a few moves the colors are wildly mixed. The
object is to restore the cube to its initial condition.

The center of a face rotates, but otherwise does not move. Hence the center of
each face determines the eventual color of that face. If the corner and edge cubes
could be arbitrarily permuted among themselves, how many configurations would
there be? When a single move is made, what kind of permutation is performed on
the corner cubes? On the edge cubes? Are these odd or even permutations?

29. Conway’s Cubes Build a 3 × 3 × 3 cube from the blocks described below, left.
Similarly, build a 5× 5× 5 cube from the blocks described below, right.

Dimensions Quantity

1× 1× 1 3

1× 2× 2 6

Dimensions Quantity

1× 1× 3 3

1× 2× 2 1

2× 2× 2 1

1× 2× 4 13
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Peg Solitaire is played on a board in the shape of a Greek cross, as depicted below, on
the left. A move is made by jumping a peg over an adjacent peg, into an empty hole just
beyond. The peg that was jumped over is then removed. The most traditional problem
is start with the board filled with pegs except for the central hole; the object is then to
remove all pegs except one, which should be in the central hole. This is an example of a
reversal problem. There are other interesting reversal problems, and still further problems
that are entertaining. For future reference, we label the positions on the board as in the
chart, below right.

• • •
• • •

• • • • • • •
• • • © • • •
• • • • • • •
• • •
• • •

a b c

d e f

g h i j k l m

n o p x P O N

M L K J I H G

F E D

C B A

(a) The central one peg reversal problem (b) The labeled board

From a purely mechanical point of view, it is useful to note that sometimes a group of
pegs can be removed from the board without disturbing the rest of the board. In such
cases there is always one peg that must be present to start things going—we call it the
catalyst . In the charts below, the catalyst is in one of the positions marked ×; the other
such position must be empty. It is easy to verify that in either case the indicated pegs can
be removed without jumping outside the indicated region.

•
×

×

•

•
•

× • ×

•
× • ×

•
• • •

Catalyzed Pair Catalyzed Triple Catalyzed L

Exploring Number Theory 41



Chapter VI. Parity and Permutations

× ×

• • •
• • •

×

×

• • •
• • •

Two Catalyzed Sixes

In the catalyzed six on the left, the blank cell may be either filled or empty at the start—its
condition will be restored. In both cases, all jumps leaving the six are in the up direction
in the right hand column.

30. In the central one peg reversal problem, there are four possible first jumps, but
because of symmetry we may suppose that it is downwards into the center hole.
After this jump has been made, the remaining pegs on the board can be partitioned
into shapes that we know how to remove—provided that they are catalyzed. Show
that there is a way to order the regions below so that each one is catalyzed when
its turn comes.

• • •
• •

• • • • • •
• • • • • • •
• • • • • • •
• • •
• • •

31. Of the other six one-peg reversal problems, five can be solved as easily as the one
above, while the sixth one is harder (but still possible). Choose a one-peg reversal
problem, and solve it.

While a complete analysis of Peg Solitaire seems beyond reach, we can treat a simpler
game in which the rules are relaxed as follows: The number of pegs in a hole can be any
integer (possibly negative), and in addition to jumps we are allowed unjumps. (An unjump
has the effect of undoing a jump.) We call this the Integral Game. By making jumps (and
unjumps) from the boundary toward the center of the board, it is possible to pass from
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any configuration to one in which each hole contains 0 pegs, except possibly for the four
holes i, j, p, x on the board. Jumping back and forth across a hole reduces the number
of pegs in the hole by 2 without affecting the rest of the board. Unjumps similarly may
be used to increase the number of pegs in a hole by 2. By jumping (or unjumping) back
and forth across our four holes we may arrange that the number of pegs in each of these
holes is either 0 or 1. There are sixteen configurations of this kind, and we see that any
configuration in the Integral Game is equivalent to one of these. It remains to show that
these sixteen classes are genuinely distinct. To this end, let Si be the sum of the number of
pegs in the holes marked by 1 in the diagram (i) below. Note that when a jump is made,
this sum is either unchanged or decreases by 2. Similarly, the sum is either unchanged or
increases by 2 when an unjump is performed. Thus the parity of Si is preserved. In our
sixteen reduced configurations, this quantity is odd if and only if there is a peg in hole i.
For holes j, p, and x we may form similar invariants, using the patterns in (j), (p), and
(x) below. Thus we obtain a quadruple

0 0 0

1 0 1

0 1 1 0 1 1 0

0 0 0 0 0 0 0

0 1 1 0 1 1 0

1 0 1

0 0 0

0 0 0

0 1 1

1 1 0 1 1 0 1

0 0 0 0 0 0 0

1 1 0 1 1 0 1

0 1 1

0 0 0

(i) (j)

1 0 1

1 0 1

0 0 0 0 0 0 0

0 1 1 0 1 1 0

0 1 1 0 1 1 0

0 0 0

1 0 1

0 1 1

0 1 1

0 0 0 0 0 0 0

1 1 0 1 1 0 1

1 1 0 1 1 0 1

0 0 0

0 1 1

(p) (x)
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of invariants—called the Reiss invariants. Since each of our sixteen reduced configurations
has a different quadruple associated with it, we see that no one of them is equivalent to any
other. In conclusion, we note that in the Integral Game we may pass from one configuration
to another if and only if the two configurations have the same Reiss invariants.

31. Can the pattern in (i) be extended to arbitrarily large regions? Does it exhibit any
periodicity?

32. Of the sixteen possible Reiss invariants, which ones can be attained by a single
peg?

33. If we start with a full board except for an empty hole at the center, and end with
a single peg, where can that peg be located?

34. If we have a single peg on the board, what other single pegs would have the same
set of Reiss invariants?

35. Does the Reiss theory apply to boards whose shape is different from the one we
have adopted?

36. Suppose that we have a single peg in every hole of the board. What are the Reiss
invariants of this configuration?

37. Suppose that we play solitaire not on the standard board, but on a different board,
whose Reiss invariants are not (0, 0, 0, 0). Show that all reversal problems are
impossible.

38. To what locations can a given peg hop to, from its initial location?

39. Suppose we start with an empty hole at position i, and a square peg in the central
hole, x, as depicted below, left. Show that it is impossible to end up with only the
square peg remaining.

• • •
• • •

• • © • • • •
• • • • • •
• • • • • • •
• • •
• • •

• • •
• • •

• • © • • • •
• • • • • •
• • • • • • •
• • •
• • •
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40. Suppose we start with an empty hole at position i, and a square peg in hole p, as
depicted on the right, above. The object is to leave only this distinguished peg on
the board. Determine where the square peg must end up, and solve the problem.

41. Suppose we put checker pieces on the black squares on the outer two ranks and
files of a checker board, as below, left. We make jumps diagonally, as in checkers,
removing the piece jumped over. Is it possible to end up with a single piece on the
board?

• • • •
• • • •
• •
• •
• •
• •
• • • •
• • • •

42. Thus far we considered solitaire on the English Board . Below we have the Conti-

nental Board , which has four additional holes. Show that the situation on the left
can not be reduced to a single peg.

• • •
• • • • •
• • • • • • •
• • • © • • •
• • • • • • •
• • • • •
• • •

• • •
• • • • •
• • • • • • •
• • © • • • •
• • • • • • •
• • • • •
• • •

43. Reduce the situation on the right above to a single peg.

44. Show that all reversal problems on the Continental Board are impossible.
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45. A simple closed curve in the plane separates points in its interior from those that
are exterior. The interior is a bounded set, and has no hole in it. The exterior is
unbounded, and has one hole. Describe a simple parity principle that allows one
to determine quickly whether a given point not on a curve is in the interior or not.
In the diagram below, is the indicated point interior?

•

46. Merlin was an electronic toy marketd by Parker Brothers (now part of HasBro) in
1978. Of the various puzzles it offered, the most memorable one involves pushing
buttons on a 3× 3 array until the outer ring of buttons is lit, and the central one
is dark. When a button is pressed, the condition of certain buttons is reversed, in
a predictable way. Thus, pushing a button twice has no effect, so the problem is
one of parity. Set NUMLOCK on your computer, and use the program MERLIN

to investigate. Can you reach the desired goal from an arbitrary initial position?
Can you describe, from an initial position, which buttons must be pushed?

WILD PROBLEMS

1. Bulgarian Solitaire is played as follows: Choose a positive integer k, and put n =
k(k + 1)/2. Place n cards in several piles, not necessarily the same number of cards in
every pile. Then repeatedly make the following move: Take one card from each pile, and
put these cards together in a new pile. What eventually happens?

2. Suppose that a collection R of rational functions in two variables x, y is generated as
follows: x ∈ R; y ∈ R; if f ∈ R and c is a real constant, then cf ∈ R; if f ∈ R and g ∈ R,
then f + g ∈ R and f − g ∈ R; if f ∈ R and f is not identically 0, then 1/f ∈ R. Does it
follow that xy ∈ R ?
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Chapter VII

Congruences

Programs Used: Div, GCD, CngArTab

In the preceding chapter we achieved a great deal by noting the remainders when numbers
are divided by 2. We now extend this idea, and consider the behavior of remainders when
numbers are divided by some particular number m. Suppose that b and c are given integers,
and that we apply the division algorithm to both of them, so that

(1)
b = q1m+ r1 (0 ≤ r1 < m),

c = q2m+ r2 (0 ≤ r2 < m).

For some purposes the two numbers b and c are interchangeable if the remainders r1 and
r2 are the same.

Definition. Suppose that m > 1, and that the equations (1) hold. We say that b and c
are congruent, and write b ≡ c (mod m), if r1 = r2.

Since b− c = (q1 − q2)m+ (r1 − r2) and −m < r1 − r2 < m, we see that m | (b− c) if
and only if r1 = r2. That is, b ≡ c (mod m) if and only if c = b+ km for some integer k.
The set of integers congruent to b (mod m) are precisely the numbers of the form km+ r1.
These numbers form an arithmetic progression with common difference m. Such a set of
numbers is called a residue class (mod m).

Explorations

1. Choose a number b ≡ 1 (mod 4), and a second number c ≡ 2 (mod 4). What is
b+ c congruent to, modulo 4 ? Do this several times with different values of b and
c. Form a conjecture. Can you prove your conjecture?

2. Choose a number b ≡ 2 (mod 5), and a second number c ≡ 3 (mod 5). What is
bc congruent to, modulo 5 ? Do this several times with different values of b and c.
Form a conjecture. Can you prove your conjecture?

3. Suppose that b ≡ c (mod m). How does (b,m) compare with (c,m) ? Experiment
with several numbers, form a conjecture, and prove it.
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4. Suppose that d and m are positive integers, and that d | m. Is there any logical
relation between the two assertions (i) b ≡ c (mod d) and (ii) b ≡ c (mod m) ?
How are the residue classes (mod d) related to the residue classes (mod m) ?

5. Let P (x) be a polynomial with integral coefficients, say P (x) = 3x2 − x + 2. If
b ≡ c (mod m) does it follow that P (b) ≡ P (c) (mod m) ?

The numbers that give the remainder 0 when divided by 7 are the multiples of 7, namely
the numbers

. . . , −28, −21, −14, −7, 0, 7, 14, 21, 28, . . .

Let R0 denote the set of these numbers. Similarly, let R1, . . . ,R6 be the sets of numbers
that give remainders 1, . . . , 6, respectively. Thus the members of R1, . . . , R6, are

. . . , −27, −20, −13, −6, 1, 8, 15, 22, 29, . . .

. . . , −26, −19, −12, −5, 2, 9, 16, 23, 30, . . .

. . . , −25, −18, −11, −4, 3, 10, 17, 24, 31, . . .

. . . , −24, −17, −10, −3, 4, 11, 18, 25, 32, . . .

. . . , −23, −16, −9, −2, 5, 12, 19, 26, 33, . . .

. . . , −22, −15, −8, −1, 6, 13, 20, 27, 34, . . .

respectively. These sets are the residue classes (mod 7). Drawing on our answer to the first
question posed above, we see that if we add a number from Ri, say a ∈ Ri to a number
from Rj , say b ∈ Rj , then the sum a+ b lies in some one of these sets, say Rk, and—this is
the important part—the value of k depends only on i and j, not on the particular choices
of a and b. Indeed, k ≡ i+ j (mod 7). This allows us to define an addition on the residue
classes themselves. The resulting addition table looks like this:

⊕ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

Table 1. Addition modulo 7.
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Note that in each row of the table, each of the numbers 0, 1, 2, 3, 4, 5, 6 is an entry exactly
once. For example, suppose we look for a b in row a. We find the b, say in column x. That
is, a+ x ≡ b (mod 7).

6. Suppose that a and b are residue classes (mod m). Show that there is a unique x
such that a+ x ≡ b (mod m).

7. The identity a(b+ c) = ab+ ac holds for all integers. It also holds for all rational
numbers, for all real numbers, and even for all complex numbers. If a, b, c are
residue classes (mod m), does it follow that a(b+ c) ≡ ab+ ac (mod m) ?

8. Let a and m be fixed, with m > 1. Let f be the function that takes each residue
class x (mod m) to the residue class x+a (mod m). Is this function a permutation?
If so, what is its cycle structure?

9. Suppose we have a triangular array of dots, with n dots on a side; the case n = 9
is depicted below. Suppose you have small equilateral triangles that are just large
enough to cover three dots. For what values of n can these triangles cover all the
dots, without overlapping? (It may be too much to expect a resolution of this for
all values of n—just prove what you can.)

•
• •
• • •
• • • •
• • • • •
• • • • • •
• • • • • • •
• • • • • • • •
• • • • • • • • •

10. Suppose you have toothpicks that are just long enough to cover three consecutive
dots in the pattern above. Show, for as many values of n as you can, that it is
impossible to arrange the toothpicks so as to cover all the dots without overlapping.

11. For what values of m and n can an m× n rectangle be tiled by 1× 2 blocks?

12. For what values of m and n can an m× n rectangle be tiled by 2× 3 blocks?

13. For what values of m and n can an m× n rectangle be tiled by 2× 4 blocks?

14. Suppose we have blocks that are 2× 4, and also blocks that are 3× 5. If m and n
are sufficiently large, can we tile an m× n rectangle with these blocks?

15. A square array of numbers is called a magic square if the sum of the numbers in
any row, or any column, is the same. Suppose we have an n × n magic square in
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which each of the numbers 1, 2, . . . , n2 occurs exactly once. What is the common
value of the row and column sums?

16. Suppose you have an n× n square made of n2 unit squares. Let a and b be given,
with 0 ≤ a < n and 0 ≤ b < n. Make a mark in one of the unit squares, and then
move a places to the right and b places down. Any time you pass the right hand
edge you start again on the left; any time you pass the bottom you start again at
the top. Repeatedly make marks and move, until you land in a square that already
has a mark in it. How many marks did you make? Did you land in the first square
marked?

17. Proceed as above, but whenever you land in a marked square, make a further move
α places to the right and β places down. Describe what happens, for various values
of the parameters.

18. Proceed as above, but put a 1 in the first square, a 2 in the second square, and so
on. Does this produce a magic square? Try this with n = 3, a = b = α = 1, β = 2.

19. What is 365 (mod 7)? Given that July 4, 1998 was a Saturday, what day of the
week was July 4, 1999? Assuming that n is not divisible by 100, the year n is a
leap year if and only if 4 | n. Assuming that the years n and n+ 12 fall within the
same century, what is the relationship between the calendar in year n and in year
n+ 12?

WILD PROBLEMS

1. Magic Fifteens is a game played as follows: There are 9 cards, each bearing one of the
numbers 1, 2, . . . , 9; they are face up. The two players alternately choose a card. The first
player to possess three cards whose sum is 15 is the winner. Analyze this.

2. Alice and Bob have a pile of n sticks. They take turns removing sticks from the pile.
On each turn a player must remove at least one stick, but never more that three sticks.
The player who takes the last stick wins. Suppose that Alice moves first. Determine, for
each n, which of them can force a win, and describe the winning strategy.

3. Suppose a rectangle is tiled by finitely many sub-rectangles, and that each of the sub-
rectangles has the property that at least one of its side-lengths is an integer. Must the big
rectangle also have this property?
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Chapter VIII

Cancellation and Inverses modulo m

Programs Used: CngArTab, GCD, LinCon, LnCnDem

Just as we can add residue classes (mod m), we can multiply them. In the case of m = 7,
the multiplication table is as follows:

⊗ 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

Except in the top row, where all entries are 0, we see in each row that the values 0, 1, 2, 3, 4,
5, 6 each occur once, in some permuted order. However, the situation is not always so
simple. Consider the case of m = 6:

⊗ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1
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In rows 1 and we see each of the possible values 0, 1, 2, 3, 4, 5, each occurring once, in rows
1 and 5. However, in the other rows we see a fewer number of values, each repeated a
larger number of times.

Explorations

1. Show that if a ≡ α (mod m) and b ≡ β (mod m) then ab ≡ αβ (mod m).

2. Suppose that 5x ≡ 2 (mod 6). What possible values might x have, (mod 6)?

3. Suppose that 5x ≡ 5y (mod 6). Does it follow that x ≡ y (mod 6)?

4. Find the solutions of the congruence 4x ≡ 2 (mod 6).

5. If 4x ≡ 4y (mod 6), does it follow that x ≡ y (mod 6)?

6. Suppose that a is one of the numbers 1, 2, 3, 4, 5, 6, and that x1 is found so that
ax1 ≡ 1 (mod 7). Suppose that x2 is chosen so that ax2 ≡ 2 (mod 7). What is
the relation, if any, between x1 and x2?

7. Let m be given. Let A1 be the set of those a (mod m) such that the congruence
ax ≡ 1 (mod m) has a solution. Let A2 be the set of those a (mod m) such that
the congruence ax ≡ b (mod m) has a unique solution for every b. Let A3 be the
set of those a (mod m) such that the congruence ax ≡ 0 (mod m) has a solution
with x 6≡ 0 (mod m). Using the program CngArTab, determine these sets for
various small values of m. Formulate a conjecture concerning the relationships
between these sets.

8. Using CngArTab with m = 15, find the set A1 defined in question 7. What is
the relation between these numbers a and m? Try other m, if necessary, until a
pattern emerges. Formulate a conjecture.

9. Solutions of the linear congruence ax ≡ b (mod m) are provided by the program
LinCon. Try typing lincon 3 4 5 <Return>. For small m, the solutions of the
linear congruence may be found by inspecting row a of the multiplication table
created by CngArTab. By experimenting with these programs, try to determine
those triples a, b,m for which the congruence has a solution. When a solution
exists, how many solutions are there?

10. Suppose that ax ≡ 1 (mod m). If au ≡ av (mod m) then by multiplying both
sides by x we find that u ≡ v (mod m). That is, if a has an inverse (namely x)
(mod m), then we can cancel by a. Are there any other values of a (mod m), other
than those in A1, for which au ≡ av (mod m) implies that u ≡ v (mod m)?

11. Suppose that ax ≡ 1 (mod m), and that ay ≡ 1 (mod m). Does it follow that
x ≡ y (mod m) ?
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If ax ≡ 1 (mod m) then we call x the inverse of a modulo m. We could write a−1 for
this, to do so would cause confusion with the rational number 1/a. Instead, we often let a
denote a number such that aa ≡ 1 (mod m).

12. Solutions of linear congruences are calculated by applying the extended Euclidean
algorithm. This procedure is demonstrated by the program LnCnDem. Try
typing lncndem 21 3 34 <Return>. Try a triple a, b,m in which the congruence
has no solution. Try a triple in which there is more than one solution.

13. Let a and m be given, and let f be the function that takes the residue class
x (mod m) to the residue class ax (mod m). Under what circumstances is this
function a permutation of the residue classes?

14. When the function described above is a permutation, describe its cycle structure.

15. A two digit number has the property that the product of its digits is 1/2 the
number. What is the number?

WILD PROBLEMS

1. Each of n old ladies has a newsworthy item, and each such piece of gossip is distinct
from the others. How many letters must they send before they all know all the gossip?
The letters are sent sequentially, not simultaneously, and a lady can include in her letters
all the information she knows.

2. Each of n talkative old men has a newsworthy item, and each such piece of gossip is
distinct from the others. How many telephone calls must they make before they all know
all the gossip? The calls are placed sequentially, not simultaneously, and two men can
exchange all the information they know during a call.
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ALCOHOL AND MATHEMATICS DON’T MIX:

DON’T DRINK AND DERIVE
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Chapter IX

Factorials and Powers modulo m

Programs Used: FctrlTab, PolySolv, PowerTab, Power,
Order, OrderTab, Phi, Mult, R2D

We now consider patterns that arise when the sequence of factorials 1!, 2!, 3!, . . . is
considered modulo m. Apart from one or two known properties, very little structure has
been discovered in this sequence. Hence anything you observe might be a new discovery!
We also investigate the sequence of powers of a number, 1, a, a2, a3, . . . modulo m.
Here many properties can be discovered. Some of these we can prove now, but others may
remain as conjectures until later.

Explorations

1. Use the program FctrlTab to investigate the following question: What is (p− 1)!
(mod p), when p is prime?

2. Using FctrlTab as above, what is (p− 2)! (mod p) ? What is (p− 3)! (mod p) ?

3. The program PolySolv allows you to define a polynomial P (x), and choose a
modulus m. With this information, it will then count the number of solutions of
the congruence P (x) ≡ 0 (mod m), and it will display up to 100 solutions. Using
PolySolv, find the roots of the congruence x2 ≡ 1 (mod p) for various primes p.
(That is, take P (x) = x2 − 1.) Formulate a conjecture, and prove it.

4. As k tends to infinity with m fixed, the residue class k! (mod m) is very easy to
describe. What is this residue class, and why?

5. The program PowerTab displays the sequence 1, a, a2, a3, . . . modulo m. By ex-
perimenting with various a and m, try to guess whether this sequence is always
eventually periodic. Can you prove your conjecture?

6. Using PowerTab as above, try to describe the pairs a,m for which the sequence
1, a, a2, a3, . . . (mod m) is purely periodic. Can you prove your conjecture?

7. For which a (mod m) is it true that ak ≡ 1 (mod m) for some positive integer k ?
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Let a and m be given. If h is the least positive integer such that ah ≡ 1 (mod m), then
h is called the order of a modulo m.

8. The only residue class a of order 1 modulo m is a ≡ 1 (mod m). If p is prime, how
many residue classes a have order 2 modulo p ?

9. If a has order h modulo m, and k is a positive integer such that ak ≡ 1 (mod m),
then how is k related to h ?

10. Using PowerTab, determine the order of a modulo 7 for each a, 0 < a < 7. Repeat
this for several larger primes, noting the orders that occur. Formulate a conjecture.

The value of ak modulo m can be determined by employing the program PowerTab,
but for a single such value, the program Power is more convenient. For example, to
determine the value of 250 (mod 101), type power 2 50 101 [Enter]. Similarly, the
order of a modulo m is provided by the program Order. To determine the order of 2
modulo 101, type order 2 101 <Return>.

11. If r and s are positive integers such that r ≡ s (mod 7), does it follow that 2r ≡ 2s

(mod 7) ?

The residue classes a modulo m such that (a,m) = 1 are called the reduced residue

classes. We let φ(m) denote the number of reduced residue classes. That is, φ(m) is the
number of integers a, 1 ≤ a ≤ m such that (a,m) = 1. The function φ(m) is known as
the Euler phi function. A table of values of φ(m) is provided by the program ArFcnTab;
individual values may be obtained by typing phi m <Return>.

12. Using the programs Order and Phi, compare the order of a modulo m with φ(m)
for various a and m. Formulate a conjecture relating these quantities.

13. Explain why φ(p) = p − 1. Use Phi to evaluate φ(pk) for various primes p, with
k > 1. Can you guess a formula for this? Can you prove it?

14. The sequence 1, 2, 22, 23, . . . (mod 21) is purely periodic. With what period?
What are the members of this sequence? Consider the sequence 5, 5 · 2, 5 · 22, 5 ·
23, . . . (mod 21). Is this purely periodic? With what period? What are the mem-
bers of this sequence? Is there any overlap between these two sequences? List the
reduced residue classes modulo 21. Note: The numbers 2k (mod 21) are provided
by PowerTab, but there is no similar program that will give the numbers 5 · 2k

(mod 21). However, the program Mult makes it convenient to multiply residue
classes. To find 11 · 5 (mod 21), for example, type mult 11 5 21 <Return>.

15. What are the powers of 12 modulo 19 ? Choose b so that (b, 19) = 1, with b not a
power of 12 (mod 19). Compute the sequence b, b ·12, b ·122, b ·123, . . . (mod 19).
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Is this sequence purely periodic? With what period? Is there any overlap with the
powers of 12 ? Do these sequences, between them, exhaust the reduced residues
modulo 19 ? If not, then choose a c that has not yet appeared, and compute the
numbers c, c · 12, c · 122, c · 123, . . . (mod 19). Repeat this until the reduced
residues are exhausted. Formulate a general conjecture, and try to prove it.

16. For various values of a and m, compare the order of a modulo m to the order of
a2 modulo m. Note the value of φ(m) in each instance. Formulate a conjecture.

17. For various values of a and m, compare the order of a modulo m to the order of
a3 modulo m. Note the value of φ(m) in each instance. Formulate a conjecture.

18. Formulate a general conjecture concerning the order of ak modulo m in terms of
the order of a modulo m and φ(m). Can you prove your conjecture?

19. Using PolySolv, determine the number of a of order 3 modulo p, for various primes
p. Formulate a conjecture. Prove as much as you can.

20. Let p be an odd prime, and choose k > 1. Calculate the order of a modulo pk

for all reduced residues a (mod pk). What is the largest order that occurs? What
happens if instead of p being an odd prime, the modulus is a power of 2 ? Formulate
conjectures.

21. Using PolySolv, find all residue classes x such that x6 ≡ 1 (mod 37). For each
such x, use Order to determine the order of x modulo 37. In general, if x is a
solution of xn ≡ 1 (mod m), what can you say about the order of x modulo m ?

22. What are the roots of the congruence xp−1 ≡ 1 (mod p) ?

23. What are the roots of the congruence xp ≡ x (mod p) ?

24. What are the roots of the congruence xφ(m) ≡ 1 (mod m) ?

Suppose that p is prime and that a is an integer with p - a. The number a is called a
quadratic residue of p if the congruence x2 ≡ a (mod p) has a solution; otherwise a is a
quadratic nonresidue of p. To distinguish between the two possibilities we use the Legendre

symbol , which is defined as follows:

(a

p

)

=











1 if a is a quadratic residue of p,

−1 if a is a quadtratic nonresidue of p,

0 if p | a.

25. Choose a prime number p, p > 2, and use PowerTab to compute the numbers a2

(mod p) for 0 ≤ a < p. How many quadratic residues are there (mod p) ? If a is
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a quadratic residue, how many x are there such that x2 ≡ a (mod p) ? How are
these x related?

26. Explain why the numbers 12, 22, . . . ,
(

p−1
2

)2
are all distinct (mod p). Determine

the exact number of quadratic residues (mod p) for all primes p.

27. For all primes p, determine the value of the sum

p
∑

a=1

(a

p

)

.

28. Let p be a prime number for which data was generated in question 25 above. Let R

denote the set of quadratic residues that were found, and let N denote the quadratic
nonresidues. Take two numbers from R, and use Mult to determine their product
(mod p). In which class does the product fall? Formulate a conjecture. Can you
prove your conjecture?

29. Proceed as above, but now form the product of a member of R with a member of
N. Formulate a conjecture. Can you prove it?

30. Let p be a prime for which data was generated in question 25, and put k = (p −
1)/2. Let r1, r2, . . . , rk denote the quadratic residues that were formed. Choose
a quadratic nonresidue of p, and call it n. Use Mult to compute the numbers
nr1, nr2, . . . , nrk (mod p). What are these numbers? Can you prove that this
persists in general?

31. Proceed as in question 28 above, but now multiply two quadratic nonresidues.
Formulate a conjecture. Try using your work on the preceding problem to prove
your conjecture.

32. Let p be an odd prime. Explain why

(ab

p

)

=
(a

p

)( b

p

)

for all integers a and b.

33. For several prime numbers p, apply PolySolv to locate roots of the congruence
x2 + 1 ≡ 0 (mod p), and thus determine whether −1 is a quadratic residue or
quadratic nonresidue of p. Can you find a simple way of predicting which it will
be? There is a pattern in the data—can you spot it?

34. Let p be a prime for which you gathered data in question 25, and let k = (p−1)/2.
For 0 ≤ a < p, use the program Power to calculate ak (mod p). Formulate a
conjecture relating this value to your findings in question 25.

58 Exploring Number Theory



Chapter IX. Factorials and Powers modulo m

35. Let p be an odd prime. By applying Polysolv to the congruence x2 − 2 ≡ 0
(mod p), determine the value of

(

2
p

)

. Repeat this for many primes, until a pattern
emerges.

36. Let p and q be odd primes. By applying Polysolv to the congruence x2 − p ≡ 0
(mod q), determine the value of

(

p
q

)

. Similarly, find
(

q
p

)

. Repeat this for many

pairs of primes, until a pattern emerges.

37. Suppose that (10,m) = 1. Is there any relation between the order of 10 modulo m
and the period of the decimal expansion of 1/m ? Experiment, using Order and
R2D, and formulate a conjecture. Can you prove your conjecture?

We conclude with some observations concerning algorithms that may be used in our
calculations. The current status of factorials (modm) and powers (modm) is very different.
In certain special circumstances we know the value of k! (mod m), for example (p − 1)!
(mod p), but in general the only way we have to calculate k! (mod m) is to perform k− 1
multiplications, reducing modulo m as we go. In contrast, it is very easy to calculate ak

(mod m), even when k is large. To see why this is so, suppose that the binary expansion
of k is drdr−1 · · ·d0. That is, k =

∑r
i=0 di2

i. Hence

ak = a
P

di2
i

= ad0ad12ad22
2 · · ·adr2r

= ad0(a2)d1

(

a22)d2 · · ·
(

a2r)dr

.

It is easy to calculate the numbers a, a2, a22

, a23

, · · · , a2r

(mod m) by repeated squaring.
With these values in hand, it remains to multiply together those values corresponding
to i for which di = 1. For example, to calculate a13 (mod m), we note that the binary
expansion of 13 is 1101. Hence a13 = a1+4+8 = a a4 a8. We calculate a1 ≡ a2 (mod m),
a2 ≡ a2

1 ≡ a4 (mod m), and a3 ≡ a2
2 ≡ a8 (mod m), and then a13 ≡ aa2a3 (mod m).

In general, this requires r − 1 multiplications of residue classes (to calculate a2, a4, . . . a2r

(mod m)), plus an additional w(k)−1 multiplications of residue classes, where w(k), known
as the binary weight of k, is the number of 1’s in the binary expansion of k. The process
of calculating the binary expansion of k (trailing digits first), and the repeated squaring,

can be merged into one step, as follows: If k is even, say k = 2k′, then ak = (a2)k′

.
We calculated a2 (mod m); this leaves us with another powering problem, but with an
exponent that is half the size of the former one. If k is odd, say k = 2k′ +1, then we write
ak = a(a2)k′

. Again, we calculate a2 (mod m). In the example already considered, this
would lead us to write

a13 = a(a12) = a(a2)6 ≡ a(a1)
6 (mod m)

= a(a2
1)

3 ≡ a(a2)
3 (mod m)

= aa2(a
2
2) ≡ aa2a3 (mod m).

38. Suppose you had a quick method for calculating k! (mod m). Explain how this
could be used to create a quick method for factoring m.
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39. The program PowerDem demonstrates the powering algorithm described above.
Apply this program to various numbers, until the procedure is clear to you. How
many residue class multiplications are required to calculate 250 (mod 101) ?

40. Our efficient method for calculating powers can be used to prove compositeness of
many numbers. For example, use Power to calculate 2580 (mod 581), and explain
how you can deduce that 581 is composite. In this example, 581 is so small that
we could also prove its compositeness by calculating its prime factorization, but
our method can be applied easily to numbers that are much too large to factor.

The method of proving compositeness employed above is not always successful. For
example, 341 is composite, but 2340 ≡ 1 (mod 341). In general, if am−1 ≡ 1 (mod m) then
m is called a base a probable prime. If m is a base a probable prime but is nevertheless
composite, then m is called a base a pseudoprime. Thus 341 is a base 2 pseudoprime. In
the case of this number, its compositeness could be affirmed by changing to the base 3,
since 3340 6≡ 1 (mod 341). However, there do exist composite integers m that are base a
pseudoprimes for all a relatively prime to m, the first example being m = 561. Such m
are called absolute pseudoprimes, or Carmichael numbers. From the work of Carmichael
early this century it seemed likely that there exist infinitely many Carmichael numbers,
but the proof of this was only achieved in 1995. There is a more elaborate test, called the
strong pseudoprime test , which still depends only on powering, and which does not suffer
from the defect of the simple pseudoprime test. Thus, in practice, we are able to prove
that m is composite, even when m is extremely large, although the proof is indirect, and
generally does not reveal anything about the factors of m.

WILD PROBLEMS

1. What is the sum of the digits of the sum of the digits of the sum of the digits of
44444444 ?

2. During a lecture with an audience of 5 people, each member of the audience fell asleep
exactly twice. For each pair of members of the audience, there was a moment when they
were both asleep. Prove that there was a time when at least three members of the audience
were asleep.

3. Show that a product of four consecutive positive integers cannot be a perfect square or
a perfect cube.
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Chapter X

The Chinese Remainder Theorem

Programs Used: ResComp, IntAPTab, CRT, ArFcnTab, Phi,
DivTab, CRTDem, Mult, LinCon, LnCnDem

Let m be a fixed positive integer. For any integer a, let Aa be the set of all integers x such
that x ≡ a (mod m). Thus Aa is an arithmetic progression,

Aa = {. . . ,−3m+ a,−2m+ a,−m+ a, a,m+ a, 2m+ a, 3m+ a, . . .}.

If a and b are two integers, then Aa = Ab if a ≡ b (mod m), and Aa is disjoint from Ab if
a 6≡ b (mod m). Moreover, every integer is contained in one of the sets A0,A1, . . . ,Am−1.
That is,

(1) If 0 ≤ a < b < m then Aa ∩Ab = ∅;
(2) Z =

⋃m−1
a=0 Aa.

When a family of subsets has these two properties, we say that they partition the set.
In this case, the residue classes modulo m partition the integers.

In the above discussion we had only one modulus. Suppose now that we have two
moduli, m and n. For given integers a and b, we want to find all integers x such that

(1)
x ≡ a (mod m),

x ≡ b (mod n).

That is, we seek to determine the intersection of two arithmetic progressions.

Explorations

1. The program ResComp allows you to COMPare the RESidue class of x (mod m)
with the residue class x (mod n). Take m = 3, n = 5, and look for integers x such
that x ≡ 2 (mod 3), x ≡ 3 (mod 5). Using PgUp and PgDn, find all such x in the
range −50 ≤ x ≤ 50. Repeat this with another pair (a, b), where a is determined
(mod 3) and b is determined (mod 5). For each x the program displays a pair (a, b).
Is this sequence of pairs periodic? If so, with what period?

2. Using ResComp as above, find all x such that x ≡ 7 (mod 10) and x ≡ 2
(mod 12). More generally, which pairs (a, b) occur? Here a is determined (mod
10), and b is determined (mod 12). Of the pairs that occur, how often do they
occur?
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For each integer x, the program ResComp provides a pair (a, b). The program
IntAPTab does the opposite—it generates a TABle of the INTersections of two Arithmetic
Progressions. That is, for a given pair (a, b), this program specifies the set of solutions to
the simultaneous congruences (1). In each case, the set of solutions is either empty, or else
is an arithmetic progression. Note that the rows of the table are indexed by a (mod m),
while the columns are indexed by b (mod n).

3. In the program IntAPTab, take m = 3, n = 5, and note the table that is gen-
erated. Next take m = 10, n = 12. What happens if m = n? For what pairs
(m,n) is it true that the congruences (1) have a solution for all choices of a and b?
Formulate a conjecture. Can you prove your conjecture?

The description of the intersection of two arithmetic progressions was known to the
Chinese in the first century A.D., and the central theorem on this topic is known to-
day as the Chinese Remainder Theorem. The program CRT provides the intersection
of two arithmetic progressions, from the DOS command line. Try typing crt 2 3 3 5

<Return>.

4. When (m,n) = 1 we have a one-to-one correspondence x↔ (a, b) between residue
classes x (mod mn) and pairs (a, b) where a is a residue class (mod m) and b is
a residue class (mod n). In the table generated by IntAPTab, the value of a is
indicated at the left; it is printed in white if (a,m) = 1, otherwise it is printed in
yellow. Similarly, the column heading b is printed in white if (b, n) = 1, otherwise
in yellow. Finally, the corresponding value x (mod mn) is printed in white if
(x,mn) = 1; otherwise it is printed in yellow. By experimenting with IntAPTab,
try to formulate a guess as to which pairs (a, b) give rise to x such that (x,mn) = 1.
Can you prove your conjecture?

5. How is φ(mn) related to φ(m) and φ(n) when (m,n) = 1? Use the program
ArFcnTab and/or Phi to investigate. Can you prove your conjecture, using the
result of the preceding problem?

6. Devise a formula for φ(m) in terms of the prime factorization of m. (Recall that a
formula for φ(pk) has already been established.)

7. How is φ(mn) related to φ(m)φ(n) when (m,n) > 1? Experiment, and form a
conjecture. Can you prove it?

8. Using ArFcnTab, or otherwise, find all integers m such that φ(m) is odd. Can
you prove that there are no further such numbers?

9. For each integer k, 1 ≤ k ≤ 20, find the number of solutions x of the equation
φ(x) = k. Do you find any k for which the number of solutions is exactly 1?

62 Exploring Number Theory



Chapter X. The Chinese Remainder Theorem

10. The expression
∑

d|n φ(d) denotes the sum of φ(d) over all positive divisors d of n.

Thus

∑

d|6

φ(d) = φ(1) + φ(2) + φ(3) + φ(6) = 1 + 1 + 2 + 2 = 6.

For several values of n, use DivTab to generate a list of the positive divisors of
n. Then use Phi to evaluate the Euler phi-function of the divisors. In this way,
compute

∑

d|n φ(d). Formulate a conjecture concerning the value of this sum. Can

you prove your conjecture?

11. The program CRT determines the solution of (1) by reducing the problem to
solving a linear congruence. Try typing crtdem 2 3 3 5 <Return> for an expla-
nation of the reasoning involved. Apply CRTDem to several situations, until you
understand the approach. Without using any programs, find the solutions of the
simultaneous congruences

x ≡ 7 (mod 37),

x ≡ 11 (mod 73).

Use appropriate programs (Mult, LinCon, LnCnDem, CRT, CRTDem, etc.)
to verify your calculations.

12. What would you do if you had to find the intersection of three or more arithmetic
progressions? Using whatever programs are suitable, find those x such that

x ≡ 2 (mod 3),

x ≡ 3 (mod 5),

x ≡ 5 (mod 7),

x ≡ 7 (mod 11),

x ≡ 11 (mod 13).

13. Suppose that I choose n cards from a pack of 52. I find that I can deal my cards to
5 people, and they come out evenly. However, when I deal my cards to 11 people,
I have 2 cards left over. What is n?

14. Suppose that (m,n) = 1, and that you have an m×m magic square employing the
numbers 1, 2, . . . ,m2 and an n × n magic square using the numbers 1, 2, . . . , n2.
Can you use them to construct an mn×mn magic square containing the numbers
1, 2, . . . , (mn)2 ?
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WILD PROBLEMS

1. Suppose that you have a balance scale, and eight coins. Either they are all the same
weight, or else seven of them have the same weight and one of them is lighter. By making
at most two weighings, determine whether there is a lighter coin, and identify which one
it is, if it exists.

2. Suppose that you have a balance scale, and twelve coins. Eleven of them have the same
weight, but one of them has a different weight. In at most three weighings, find the false
coin.
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Chapter XI

Public Key Cryptography

Programs Used: Factor, Phi, LinCon, Power, RSAPars, RSA

For centuries, one of the hazards of cryptography was that a copy of your code book might
fall into enemy hands, so that all your encrypted transmissions could then be intercepted
and decoded. Worse yet, you might have no way of knowing whether one of your commu-
nications stations had been taken over by the enemy: The enemy might be masquerading
as one of your own troops. All this changed in 1976 when Whitfield Diffie and Martin
Hellman proposed a form of encryption that should be easy to perform but would be diffi-
cult to break, even if the encryption procedure were made public. The scheme works like
this: Suppose that Bob wants to receive a message from Alice without observers being able
to read the message. Bob chooses a very large integer m, say m ≈ 10200, and defines a
permutation π of the numbers 1, 2, . . . ,m. The algorithm for computing π is made public,
and in particular is given to Alice. The characters of Alice’s message can be associated
with digits in a standard way, and the digits can be broken into blocks of length not ex-
ceeding 200, so that Alice’s message is equivalent to one or more integers t, each one in
the interval [1,m]. Thus t is the plaintext . Alice computes c = π(t); this is the cryptotext ;
it is also an integer in the interval [1,m]. Alice sends c to Bob. Since an observer may also
gain access to c, for the security of the communication it is essential that there be no quick
algorithm for computing the inverse permutation π−1, since t = π−1(c). However, Bob
possesses some secret information concerning π that allows him to compute π−1 quickly,
and hence read Alice’s message. A permutation with the peculiar property that π is easy
to compute while π−1 is difficult (i.e., would take centuries on the fastest computers) is
called a trap door function.

The success of the Diffie-Hellman scheme depends on being able to find trap door
functions. This was achieved in 1977 by Ron Rivest, Adi Shamir, and Len Adleman.
Their RSA method depends on the number theory that we have been investigating: Bob
secretly chooses two 100-digit primes p1, p2, and sets m = p1p2. Bob also chooses a large
positive integer k with the property that (k, φ(m)) = 1. Among the reduced residue classes
(mod m), the map π(x) ≡ xk (mod m) is a permutation. Bob makes m and k public, and
Alice sends him c ≡ tk (mod m). (Recall that we have a powering algorithm that makes
this easy.) Since Bob knows how to factor m, Bob knows the value of φ(m). Hence Bob can
find a positive integer k′ such that kk′ ≡ 1 (mod φ(m)). (We use the extended Euclidean
algorithm to solve linear congruences, so this is also fast.) We now show that the map

x 7→ xk′

(mod m) is the inverse permutation that we need. To this end, choose q so that
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kk′ = 1 + qφ(m), and recall Euler’s congruence, which asserts that if (x,m) = 1 then
xφ(m) ≡ 1 (mod m). Hence

(xk)k′

= xkk′

= x1+qφ(m) = x(xφ(m))q ≡ x(1)q = x (mod m).

Thus the decryption process for Bob is similar to Alice’s encryption, but with the parameter
k replaced by k′. Note that only Bob can calculate k′. Even Alice can’t read her own
message, once she’s encoded it!

In the RSA method, the permutation being employed constitutes a trap door function
only to the extent that large composite integers are difficult to factor. In the present state
of knowledge one can factor a number of size 10150, but there is no guarantee that there
does not exist some factoring method yet to be discovered by which even much larger
numbers could be factored quickly. One could imagine that such a method might be taken
as a State Secret. Indeed, when Rivest, Shamir, and Adleman published their work in 1978,
the Director of the National Security Agency (General Odum) gave serious consideration
to going to Congress asking for legislation that would make all research in number theory
“born classified” as is the case with atomic research. He was dissuaded from this, but in
any case any lingering impression that number theory is the purest of the pure, totally
devoid of practical application, has been forever dispelled.

Rivest, Shamir and Adleman patented their method, and formed the company RSA
Data Systems to market RSA–based products. To emphasize the security of their system,
they offered a prize of $100 for the first decryption of the message

c = 968696137546220614771409222543558829057599911245743198746951209308162

98225145708356931476622883989628013391990551829945157815154,

which was encrypted using the 129-digit modulus

m = 1143816257578888676692357799761466120102182967212423625625618429357

06935245733897830597123563958705058989075147599290026879543541

and the public exponent
k = 9007.

The estimate at that time was that it would take 40 trillion years to factor this m. How-
ever, on 29 April, 1994, Derek Atkins, Michael Graff, Arjen Lenstra, and Paul Leyland
announced that m = p1p2 where

p1 = 3490529510847650949147849619903898133417764638493387843990820577,

p2 = 32769132993266709549961988190834461413177642967992942539798288533.

This enabled them to determine the secret exponent,

k′ = 106698614368578024442868771328920154780709906633937862801226224496631

063125911774470873340168597462306553968544513277109053606095,

and consequently the plaintext

t = 20080500130107090300231518041900011805001917210501130919080015191909

0618010705.

After conversion1 back to alphabetic characters, this reads

1Their protocol for converting is different from the one we propose in Table 1. See question 7 below.
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THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE

Lenstra (at Bellcore) and his team used the double large prime variation of the multiple
polynomial quadratic sieve factoring method. The calculation took more than 5000 mips
years, and was executed over a period of 8 months on over 600 different computers that were
made available for the purpose by volunteers in more than 20 countries, on all continents
except Antarctica. The final stage of the computation took 45 hours on a 16K MasPar
MP-1 massively parallel computer. The relatively short time that it took to factor RSA-
129 is partly due to increased speed and power of computer hardware, but it is mainly due
to progress that has been made in developing faster factoring algorithms.

The RSA-129 modulus was factored by combining the latest factoring algorithms with
enormous computing resources. With larger moduli, the RSA method is considered to
be secure, and is widely used. In the spring of 1996, Rivest (a mathematician at MIT)
sold his interest in the company to a venture capital firm for $50,000,000. So being a
mathematician is not only fun, but occasionally also profitable!

The program RSA automates the arithmetic operations that arise when executing the
RSA algorithm. To use this program you will need a public modulus, a public exponent,
and a secret exponent. Since typing such data from the keyboard is tedious and prone to
error, it is best to keep the public parameters in a computer file. The program RSAPars

will assist you in this. It is best to choose your private exponent k′ first, since then you
can take it to be something memorable, such as your parents’ home phone number. Do
not use your Social Security Number or something really sensitive, since you will be using
a modulus m < 1018, and hence any energetic person could use m and k to reconstruct k′.
Since (k′, φ(m)) = 1, and since φ(m) is even when m > 2, your private exponent k′ must
be odd. Once you have chosen k′, the program assists you in choosing a public modulus
m, by selecting the prime factors of m. There is no need to enter a prime exactly. Simply
enter an approximate size x, and the computer will find the least prime p > x such that
(p − 1, k′) = 1. The program will not allow you to use the same prime twice, since it is
advantageous for m to be squarefree (see question 4 below). Once you have entered two
or more primes, and you are satisfied with the value attained, you can indicate that you
are done, and the computer will find the complementary public exponent k. You may
now save m and k to a file, so that others can use these values to send you a message.
Choose a filename that identifies you, and add a tag number (Alice might take alice1),
so that if you ever want to establish a second set of RSA parameters you will have a
way of distinguishing them. The program takes ‘.pub’ as the default extension of the file.
After exiting, Alice can view the file that has been created by typing type alice1.pub

<Return> at the DOS prompt, or by using Notepad.
Once Bob has the file alice1.pub, he can send her an encrypted message by using

the RSA program. This program has no word-processing capabilities, so Bob must first
compose a text file. This he can do by by opening Notepad. (In the Windows menuing
system, open Start, choose Programs, then Accessories). After typing his plaintext, and
saving saving his message to a file, say bob2alic.txt, he invokes RSA, where he can Load
the Plain text file, and set the Variables by Reading them from alice1.pub. Each letter
of the text needs to be converted to a two-digit Code; the codes are then concatenated to
form a sequence of Residues. Each residue is taken to the power k modulo m to form a
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new sequence of residues. This is the Encryption. This new sequence of residues can be
Saved to a file, whose name by default is bob2alic.rsa. In turn, Alice can Load the Cipher
text and her Variables, including her secret Decrypting exponent k′. She can then Decrypt to

CODE CHAR ASCII CODE CHAR ASCII CODE CHAR ASCII CODE CHAR ASCII

00 32 25 9 57 50 R 82 75 k 107

01 ! 33 26 : 58 51 S 83 76 l 108

02 " 34 27 ; 59 52 T 84 77 m 109

03 # 35 28 < 60 53 U 85 78 n 110

04 $ 36 29 = 61 54 V 86 79 o 111

05 % 37 30 > 62 55 W 87 80 p 112

06 & 38 31 ? 63 56 X 88 81 q 113

07 ’ 39 32 @ 64 57 Y 89 82 r 114

08 ( 40 33 A 65 58 Z 90 83 s 115

09 ) 41 34 B 66 59 [ 91 84 t 116

10 * 42 35 C 67 60 \ 92 85 u 117

11 + 43 36 D 68 61 ] 93 86 v 118

12 , 44 37 E 69 62 ^ 94 87 w 119

13 - 45 38 F 70 63 95 88 x 120

14 . 46 39 G 71 64 ‘ 96 89 y 121

15 / 47 40 H 72 65 a 97 90 z 122

16 0 48 41 I 73 66 b 98 91 { 123

17 1 49 42 J 74 67 c 99 92 | 124

18 2 50 43 K 75 68 d 100 93 } 125

19 3 51 44 L 76 69 e 101 94 ~ 126

20 4 52 45 M 77 70 f 102 95 EoL 13

21 5 53 46 N 78 71 g 103 96 —

22 6 54 47 O 79 72 h 104 97 —

23 7 55 48 P 80 73 i 105 98 —

24 8 56 49 Q 81 74 j 106 99 —

Table 1. Character to Code Correspondence
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recover the original plaintext sequence of residues. These can be separated to form Codes,
and finally Text, which can be Saved. When dealing with encrypted files it is sometimes
handy to have some indication as to what is in the file. When the RSA program reads
a file, it looks for lines that begin with the symbol ‘%’. Such lines are passed to the
destination without change. Hence Bob might put at the top of his message the line

% This is a message from Bob to Alice.

The RSA program also places the encryption history in such comment lines, so that the
recipient will know what parameters have been used.

Before proceeding further we consider how to convert characters into numbers. This can
be done in many ways. For example, we could let A correspond to 1, B to 2, . . . , and Z to
26. Alternatively, computers store alphanumeric characters by their ASCII codes. (ASCII
is an abbreviation for American Standard Code for Information Interchange.) The first of
these methods makes no provision for punctuation, numerals, or lower case letters. The
second provides all printable characters, but is inefficient because each character requires
three digits (in base 10). The characters that can be typed in the standard keyboard have
ASCII codes between 32 (to denote a space ‘ ’) and 126 (for ‘~’). As a compromise between
the two systems described above, we subtract 32 from each ASCII code to obtain a 2–digit
number. These numbers run from 00 to 94. In order to preserve the line breaks in a file
we need an end-of-line marker; we assign the code 95 for this purpose. Thus we have the
codes in Table 1.

Explorations

1. Suppose that Bob took the (ridiculously small) modulus m = 91, and proposed
the public exponent k = 17. Suppose that Alice sent him the encrypted message
c = 51. Use the programs Factor, Phi, LinCon, and Power appropriately to
recover her plaintext t.

2. The proof above that xkk′ ≡ x (mod m) assumed that (x,m) = 1. If m = p1p2

where p1 and p2 are distinct primes, what is the probability that (x,m) > 1 when
x is randomly chosen?

3. Show that if m is squarefree then the restriction to (x,m) = 1 is unnecessary.

That is, if m is squarefree and kk′ ≡ 1 (mod φ(m)), then xkk′ ≡ x (mod m) for
all integers x.

4. The encrypted message

355456249 475197422 636832086 601788838

was created using the modulus m = 670726081 and the public exponent k =
663599161. The program RSA will assist in decrypting this, but first you must
determine the value of φ(m), and then solve the congruence kk′ ≡ 1 (mod φ(m)).
(Use Factor and/or Phi, and then LinCon.) Next use a text editor to create
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a file, say prob4.rsa, that consists of the line displayed above. Then type rsa

<Return>, Load the Cipher text prob4.rsa, and enter the Variables. Type Esc

to return to the main menu, and then Decrypt. The resulting residues can be
separated into 2–digit Codes, which may be read as Text. What was the message?

5. Although Bob is the only person who can decrypt a message encrypted with his
parameters, he has no way of knowing that the message actually came from Alice,
since anyone can use his parameters. To overcome this defect, suppose that Bob has
a trap door function πB and that Alice also has a trap door function πA. Suppose
that Alice sends c = π

B
(π−1

A (t)) to Bob. What should Bob do, to decrypt this?
Can anyone else decrypt it? Can Bob now be sure that the message came from
Alice?

6. In the preceding problem there was a tacit assumption that the trap door functions
πA and πB act on the same set of numbers. Suppose now that πA permutes the
residue classes modulo mA, and that πB permutes the residue classes modulo mB .
If mA ≤ mB then we may still proceed as above, since we may consider π−1

A (t) as
lying in the interval [0,mA), which defines a unique residue class mB . How would
you modify the above procedure if mA > mB?

7. In formulating their challenge, Rivest, Shamir and Adleman did not use the sys-
tem in Table 1 to convert from alphanumeric characters to a residue class t. By
comparing t with the stated text can you infer the system that they used instead?

8. Let m = 854937209155735099, and suppose that you are given the information
that m has at most two prime factors, and that φ(m) = 854937207303842520. Can
you find the primes?

9. Suppose that m = 1247 = 29 · 43, so that φ(m) = 1176. In order that xkk′ ≡ x
(mod m) for all x, it is sufficient that kk′ ≡ 1 (mod φ(m)), but is it necessary?

Suppose that k = 5. How many k′ are there, 0 ≤ k′ < φ(m), such that xkk′ ≡ x
(mod m) for all x? What if you take instead k = 11? Why is the number of
admissible k′ so large? To achieve security, the acceptable k′ should be very rare.
How should the prime factors of m be chosen, to achieve this?

WILD PROBLEMS

1. What integers can be written in the form a2 − b2 ?

2. Let P (n) denote the number of (base 10) palindromes not exceeding n. Show that there
are infinitely many n for which both n and P (n) are palindromes.

70 Exploring Number Theory



Chapter XII. Sums of Two Squares

Chapter XII

Sums of Two Squares

Programs Used: SumsPwrs, WrngTab, FctrlTab, Mult, DivTab, Power

The program SumsPwrs displays the representations of n as a sum of s k-th powers, and
counts the number of representations in various ways. For sums of two squares we take
s = k = 2. Try typing sumspwrs 65 2 2 [Enter].

Explorations

1. The program WrngTab generates a table of the number of representations of n
as a sum of s k-th powers. Type wrngtab <Return>, and then set s = 2, k = 2.
By examining the values displayed on the initial screen, determine which primes p,
2 ≤ p < 200, can be expressed as a sum of two squares. Can you find a pattern in
your data?

2. When p is a prime that is represented as a sum of two squares, how many repre-
sentations does it have? Formulate a conjecture.

3. For what n is r(n) odd? If 2 | r(n), does it follow that 4 | r(n)? Formulate
conjectures.

4. Find n such that 8 - r(n). Can you find a pattern in these n? Formulate a
conjecture.

5. Choose a point (x, y) in the plane with x ≥ 0, y > 0. Plot the points (x, y), (−y, x),
(−x,−y), (y,−x). Describe the geometric relation between these points. Explain
why they are all distinct. Prove that if n > 0 then 4 | r(n).

6. Let f(n) = r(n)/4. If (m,n) = 1, how is f(mn) related to f(m) and f(n)?
Experiment and form a conjecture.

7. Suppose that m = x2 + y2, and that n = v2 + w2. Show that mn = (xv − yw)2 +
(xw + yv)2. Let S2 denote the set of numbers that can be expressed as a sum of
two squares. Show that if m ∈ S2 and n ∈ S2 then mn ∈ S2. (Thus we say, “The
set S is closed under multiplication.”)
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8. Suppose that p = x2 + y2. Choose y so that 0 < y < p and yy ≡ 1 (mod p). Put
u = xy. Show that u2 ≡ −1 (mod p). Deduce that up−1 ≡ (−1)(p−1)/2 (mod p).
Deduce that p ≡ 1 (mod 4).

9. Using the program FctrlTab, determine the value of u = ((p − 1)/2)! (mod p)
for several primes p. Using Mult, find the value of u2 (mod p) for these same p.
Formulate a conjecture. Use Wilson’s congruence to prove it.

10. Let d1(n) denote the number of positive divisors d of n such that d ≡ 1 (mod 4),
and similarly let d3(n) denote the number of positive divisors d of n such that
d ≡ 3 (mod 4). Use DivTab to evaluate d1(n) and d3(n) for several n. How is
d1(n)− d3(n) related to r(n)? Formulate a conjecture.

11. Let

χ(n) =











1 if n ≡ 1 (mod 4),

−1 if n ≡ 3 (mod 4),

0 otherwise.

Note that d1(n)− d3(n) =
∑

d|n χ(d). Show that χ(mn) = χ(m)χ(n) for all pairs

of integers m,n.

12. Suppose that p ≡ 1 (mod 4), and that u has been found so that u2 ≡ −1 (mod p).
We wish to find x and y so that x2 + y2 = p. Explain why there exist integers a
and x with 0 < x <

√
p such that

∣

∣

∣

u

p
− a

x

∣

∣

∣
<

1

x
√
p
.

(Recall question 10 of Chapter V.) Put y = ux− ap. Explain why |y| < √p. Show

that x2 + y2 ≡ 0 (mod p) and that 0 < x2 + y2 < 2p. Deduce that x2 + y2 = p.

13. Suppose that p = x2
1 + y2

1 = x2
2 + y2

2 with all variables positive. Suppose that u has
been determined so that u2 ≡ −1 (mod p), that y1 ≡ ux1 (mod p), and y2 ≡ ux2

(mod p). Explain why x1y2 ≡ x2y1 (mod p). Explain why 0 < y2x1 < p and
0 < y1x2 < p. Deduce that y2x1 = y1x2. Explain why (x1, y1) = 1. Deduce that
x1 = x2, y1 = y2. That is, each residue class u such that u2 ≡ −1 (mod p) is
associated with at most one representation of p with positive variables. Conclude
that if p > 2 then the equation p = x2 + y2 has exactly 2 solutions in positive
variables. That is, r(p) = 8 for all odd p.

14. In order to construct representations of p as a sum of two squares, it is useful to have
a number u such that u2 ≡ −1 (mod p). We may take u = ((p − 1)/2)!, but this
is not very useful in practice, since the calculation involves ≈ p multiplications.
Choose x at random, 0 < x < p, and form the number u ≡ x(p−1)/4 (mod p),
using the program Power. Then use Mult to compute u2 (mod p). For one fixed
p ≡ 1 (mod 4), do this for several x. What values of u2 arise? With what relative
frequency? Is this a fast (probabilistic) method for finding u so that u2 ≡ −1
(mod p) ?
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Chapter XIII

Binomial Coefficients

Program Used: PascalsT

Pascal’s Triangle is the familiar pattern of binomial coefficients

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

...

Before considering what number-theoretic properties these numbers might have, we first
establish some basic formulas and notation.

Let S be a set containing exactly n elements. The binomial coefficient
(

n
k

)

is the number
of subsets of S that contain exactly k elements. In conversation, we refer to the binomial
coefficient as “n choose k”. Since the emptyset ∅ is a subset of any set, we have

(

n
0

)

= 1
for all non-negative integers n. Similarly, since there is only one subset of S containing n
elements, namely S itself, we have

(

n
n

)

= 1 for all non-negative integers n. Clearly
(

n
k

)

= 0

if k < 0 or if k > n. We now derive a formula for
(

n
k

)

when 0 < k < n. Suppose we list the
elements of S in some order, say e1, e2, . . . , en. We could take our subset to be the first k
of these, T = {e1, e2, . . . , ek}. There are n! ways of forming the initial list of n elements,
since any one of n of them can come first, any one of n− 1 of them can come second, and
so on. However, we must consider how many times a particular subset T arises in this way.
There are k! orders in which the elements of T can be listed, and there are (n− k)! orders
in which the remaining n − k elements can be listed. Thus there are k!(n − k)! ways of
listing the elements of S so that the same k elements lie in the first k positions. That is,
when we list the elements of S in the n! different ways, each subset of size k occurs in the
first k positions exactly k!(n− k)! times. Hence

(1)
(n

k

)

=
n!

k!(n− k)!
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for 0 ≤ k ≤ n.
The familiar rule for forming a row of Pascal’s Triangle from the row immediately above

it depends on the formula

(2)
(n

k

)

=
(n− 1

k − 1

)

+
(n− 1

k

)

.

This is easy to prove using the formula (1), since the right hand side above is

(n− 1)!

(k − 1)!(n− k)! +
(n− 1)!

k!(n− 1− k)! =
(n− 1)!

(k − 1)!(n− 1− k)! ·
( 1

n− k +
1

k

)

=
(n− 1)!

(k − 1)!(n− 1− k)! ·
n

(n− k)k

=
n!

k!(n− k)! .

This gives (2). It is instructive to note that we can prove (2) by combinatorial reasoning,
without using (1). To do this, note first that of subsets T of S containing exactly k
elements can be divided into two classes, according as to whether en ∈ T or not. Suppose
that en ∈ T. To determine the remaining elements of T we must choose k − 1 elements
from among {e1, e2, . . . , en−1}. There are

(

n−1
k−1

)

ways of doing this. Now consider those

subsets T for which en /∈ T. To determine the elements of T, we must choose k elements
from {e1, e2, . . . , en−1}. There are

(

n−1
k

)

ways of doing this. On combining these two
counts, we obtain (2) again.

The Binomial Theorem asserts that

(3) (x+ y)n =

n
∑

k=0

(n

k

)

xkyn−k.

To see why this should be so, think of the left hand side as a product of n factors,

(x+ y)(x+ y) · · · (x+ y).

When we expand this into monomials, we choose from each factor either an x or a y.
Since there are n factors, the monomials we obtain are all of the form xkyn−k for some
k. Suppose we fix k. Choose k locations above in which the x is to be taken. In the
remaining locations take the y. There are

(

n
k

)

ways of choosing these k locations. Hence

the monomial xkyn−k arises exactly
(

n
k

)

times. That is, we have (3).
If the above reasoning seems unconvincing, we could alternatively proceed by induction.

Certainly (3) holds when n = 1; this is the basis of the induction. Suppose that (3) holds
for n. Then

(x+ y)n+1 = (x+ y)(x+ y)n.

By the inductive hypothesis this is

= (x+ y)
n

∑

k=0

(n

k

)

xkyn−k
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= x

n
∑

k=0

(n

k

)

xkyn−k + y

n
∑

k=0

(n

k

)

xkyn−k

=

n
∑

k=0

(n

k

)

xk+1yn−k +

n
∑

k=0

(n

k

)

xkyn+1−k.

In the first sum, put j = k + 1. As k runs from 0 to n, j runs from 1 to n + 1. We now
use j as our index, and replace k at each occurence by j − 1. Thus the above is

=
n+1
∑

j=1

( n

j − 1

)

xjyn+1−j +
n

∑

k=0

(n

k

)

xkyn+1−k.

In the first sum we can allow j to take the value 0, since
(

n
−1

)

= 0. Similarly, in the second

sum we can allow k to take the value n + 1, since
(

n
n+1

)

= 0. Also, j is just a dummy
variable used to index the terms, so we can call it anything we want. Let’s call it k instead
of j. Then the above is

=

n+1
∑

k=0

( n

k − 1

)

xkyn+1−k +

n
∑

k=0

(n

k

)

xkyn+1−k

=
n+1
∑

k=0

(( n

k − 1

)

+
(n

k

))

xkyn+1−k.

By (2) we see that this is

=
n+1
∑

k=0

(n+ 1

k

)

xkyn+1−k.

This is (3) for n+ 1. This completes the inductive step, so the proof is complete.

By taking x = y = 1 in (3) we obtain the interesting identity

n
∑

k=0

(n

k

)

= 2n.

That is, the sum of the entries in the nth row of Pascal’s Triangle is 2n. This is obvious
also for combinatorial reasons: When forming a subset T of S, there are two possibilities
for e1. Either e1 ∈ T or e1 /∈ T. Similarly there are two possibilities for e2, for e3, etc. This
gives altogether 2n possibilities. That is, S has 2n subsets (including both the emptyset
and S).

With these basic formulas concerning binomial coefficients in hand, we can consider
their number-theoretic properties. In some cases you will find it easy to provide a proof
that an observed pattern continues indefinitely, but in other cases proofs may be hard to
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achieve. As an aid, you may want to use the program PascalsT. This program does not
display the binomial coefficients, but only their values modulo m. Thus by taking m = 2,
we find a 1 in the table when the binomial coefficient is odd, and a 0 when it is even.

Explorations

1. What is the highest power of 2 dividing (2n)!/n! ?

2. Let p be a prime number. What is the least positive number n such that p |
(

n
k

)

for all k in the range 0 < k < n? What is the second such n? The third? (Take
m = p in PascalsT.)

3. Take m = 2 in PascalsT. The pattern created by rows 0–3 is repeated twice in
rows 4–7, with an inverted triangle of 0’s between. Does this generalize? How
would you express this in terms of equations?

4. For 0 ≤ n ≤ 15, count the number of odd entries in the nth row of Pascal’s Triangle.
(Take m = 2 in PascalsT.)

5. For 0 ≤ n ≤ 15, write n in binary (i.e., base 2), and note the number of 1’s that
occur. This number is called w(n), the binary weight of n.

6. By comparing the binary expansion of k with the binary expansion of n, can you
guess whether

(

n
k

)

is odd or even?

7. Describe the pattern formed by Pascal’s Triangle when all entries are divided by 7.

8. Describe the pattern formed by Pascal’s Triangle when all entries are divided by 8.

9. Apply PascalsT with m = 15, and examine the row n = 15. List the elements
that are not divisible by 3. List the elements that are not divisible by 5. Does this
suggest something?

10. Choose an n, say n ≤ 15. Can you find j and k with 0 < j < n, 0 < k < n, so that
(

n
j

)

and
(

n
k

)

are relatively prime?

11. Each interior member of Pascal’s triangle is surrounded by six adjacent members.
Form two products, each one by multiplying every other one of the surrounding
numbers. How do these products compare? Formulate a conjecture, and prove it.

12. For each positive integer n form a sum
(

n
0

)

+
(

n−1
1

)

+
(

n−2
2

)

+ · · · in which the
terms continue as long as it falls in Pascal’s triangle. Do you recognize the numbers
generated? Formulate a conjecture, and prove it.
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Chapter XIV

Primitive Roots

Programs Used: Factor, Ind, IndTab, Order, OrderTab,
PolySolv, PowerTab, PrimRoot

Suppose that a is a reduced residue class modulo m. That is, (a,m) = 1. As in Chapter 9,
we let the order of a (mod m) be the least positive integer h such that ah ≡ 1 (mod m).
In that chapter we found that h | φ(m). We say that a is a primitive root of m if the order
of a modulo m is φ(m), which is the largest possible value. Not all moduli have primitive
roots, but by developing further properties of orders we are able to show that for each
prime p there is at least one primitive root. If g is a primitive root modulo p then the
numbers 1, g, g2, . . . , gp−2 form a reduced residue system modulo p. Hence if (a, p) = 1
then there is a number µ such that a ≡ gµ (mod p). This number µ is known as the index

of a, and we write µ = ind a. This is quite analogous to taking the logarithm of a positive
real number, and offers many of the same advantages.

Explorations

1. Use the program PowerTab to find integers k such that ak ≡ 1 (mod m) for
various a and m. How is the least such k related to the others? Formulate a
conjecture, and prove it.

2. Suppose that a has order h modulo m. Describe the order of ak as a function of
h and k. Formulate a conjecture, and prove it. The program OrderTab is useful
for experimentation here.

3. Suppose that a has order h modulo m and that b has order k modulo m. If
(h, k) = 1, then what is the order of ab modulo m? Use OrderTab to experiment.
Formulate a conjecture, and prove it.

4. Suppose that a has order h modulo m and order k modulo n. Assuming that
(m,n) = 1, determine the order of amodulomn, as a function of h and k. The order
of a modulo m can be found from OrderTab or by typing order a m <Return>.
Formulate a conjecture and prove it.

5. Use PolySolv with the polynomial f(x) = x3+x+1. For each prime p < 100, note
how many solutions the congruence f(x) ≡ 0 (mod p) has. What is the maximum
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number of roots encountered? Repeat this with g(x) = x4 + x3 + x2 + x+ 1. For
which primes are there roots? When there is a root, how many roots are there?
Formulate a conjecture concerning the maxiumum number of roots modulo p of a
polynomial of degree d.

6. Let f(x) be a polynomial with integral coefficients, and suppose that a is an integer.
Divide x − a into f(x) to obtain a quotient polynomial g(x) and a remainder r.
Thus f(x) = (x − a)g(x) + r. What is the connection between the following two
assertions: (i) f(a) ≡ 0 (mod p); (ii) r ≡ 0 (mod p). Show that if f(a) ≡ 0
(mod p) and if the conjecture formulated in question 5 above is true for g(x) then
it is also true for f(x). Hence prove this conjecture by induction on the degree d
of the polynomial.

7. How many roots modulo p does the polynomial xp−1 − 1 have? Use PolySolv to
experiment, formulate a conjecture, and prove it.

8. Suppose that f(x) and g(x) are polynomials such that f(x)g(x) = xp−1 − 1 then
the number of roots of f(x) modulo p is deg f .

9. Suppose that d | p− 1. Use PolySolv to determine the number of roots of xd ≡ 1
(mod p). Formulate a conjecture, and prove it. (Hint: Try dividing xd − 1 into
xp−1 − 1.)

10. Let p be a given prime number, and suppose that q is a prime with qα‖p− 1. That
is, qα | p − 1 but qα+1 - p − 1. How many residue classes modulo p have order
exactly qα? Use Factor to factor p − 1, and then use OrderTab. Formulate a
conjecture, and prove it.

11. Combine your findings related to questions 3 and 10 above to show that every
prime number has at least one primitive root g.

12. Use OrderTab, and try to guess a formula for the number of different primitive
roots modulo p. Use your findings from questions 2 and 11 above to prove your
conjecture.

13. Suppose that g is a primitive root modulo p. Under what conditions on µ and ν is
it true that gµ ≡ gν (mod p)? Use PowerTab

14. Suppose that (a, p) = 1, and that d | p − 1. How is the value of a(p−1)/d (mod p)
related to the number of roots of the congruence xd ≡ a (mod p)? Use PowerTab

and PolySolv to experiment, and formulate a conjecture. To prove the conjecture,
suppose that g is a primitive root modulo p, and write a ≡ gα (mod p), x ≡ gµ

(mod p).
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Suppose we want to find all solutions to the congruence x5 ≡ 41 (mod 101). We first
find a primitive root of the prime number 101. This can be done by typing primroot 101

<Return>. In general, by typing primroot p a <Return> one obtains the least primitive
root of p greater than a. But the use of PrimRoot can be omitted here, since the next
step is to invoke IndTab, which automatically starts with the least positive primitive
root as the base, namely 2 when p = 101. From this program we find that ind 41 = 45
when p = 101 and g = 2. If we write x ≡ 2µ (mod 101), then the congruence in question
becomes 25µ ≡ 245 (mod 101). Since 2 is a primitive root of 101, this is equivalent to the
congruence 5µ ≡ 45 (mod 100). That is, µ ≡ 9 (mod 20), which has solutions 9, 29, 49,
69, 89 modulo 100. The program IndTab starts with a table of indices, sometimes called
the discrete logarithm, but by typing E it switches to exponentials, which is to say powers
of 2 (mod 101). From this program, or from PowerTab, we find that

29 ≡ 7, 229 ≡ 59, 249 ≡ 50, 269 ≡ 3, 289 ≡ 83 (mod 101)

are the desired solutions. One can use PolySolv with f(x) = x5 − 41 to confirm this
finding.

15. Use IndTab as above to find all solutions of the following congruences:
(a) x2 ≡ 11 (mod 97);
(b) x3 ≡ 21 (mod 107).
(c) x4 ≡ 5 (mod 31);
(d) x5 ≡ 2 (mod 61);
(e) x6 ≡ 11 (mod 113);

16. Use OrderTab to find moduli that have primitive roots. Formulate a conjecture
concerning which moduli have primitive roots. Suppose that m = m1m2 with
(m1,m2) = 1. Suppose that (φ(m1), φ(m2)) > 1. Explain why m does not have a
primitive root. (Hint: Recall your findings from question 4 above.)

WILD PROBLEM

The numbers m and n are integers between 3 and 97. Pam has been told the product
of these two numbers, while Sam has been told their sum. They carry on the following
truthful conversation:

Pam: I don’t know the values of m and n.
Sam: I knew you didn’t; neither do I.
Pam: Now I know the values!
Sam: Oh, then so do I!

What are m and n?
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Number theorists are never past their prime:

2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103,

107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, . . .
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Appendix E

Equivalence Relations

and Partitionings

If S and T are two sets, then their Cartesian product , written S × T, is the set of all
ordered pairs (s, t) such that s ∈ S and t ∈ T. This concept originates in René Descartes’
description of points in the plane by means of rectangular coordinates. Thus the Euclidean
plane is presented as the Cartesian product R ×R. A relation (or binary relation) on a
set S is simply a subset of S×S. For example, if R = {(x, y) ∈ R×R : x ≤ y}, then R is a
relation, and saying that (x, y) ∈ R is the same thing as saying that x ≤ y. This is typical
of relations that we use: Instead of expressing that x is related to y by writing (x, y) ∈ R,
we write xR y.

In our study of congruences we develop properties of the relation a ≡ b (mod m). Thus
for each positive integer m we a relation

Rm = {(a, b) ∈ Z× Z : m|(a− b)}.

This relation has three important properties that are particularly worth noting:

a ≡ a (mod m) (Reflexive)
a ≡ b (mod m) =⇒ b ≡ a (mod m) (Symmetric)

a ≡ b (mod m), b ≡ c (mod m) =⇒ a ≡ c (mod m) (Transitive)

A relation with these three properties is called an equivalence relation. For 0 ≤ i < m let
Ci denote the set of all numbers that are congruent to i (mod m). Thus

C0 = {· · · ,−2m,−m, 0,m, 2m, · · · },
C1 = {· · · ,−2m+ 1,−m+ 1, 1,m+ 1, 2m+ 1, · · · },
C2 = {· · · ,−2m+ 2,−m+ 2, 2,m+ 2, 2m+ 2, · · · },

...

Cm−1 = {· · · ,−m− 1,−1,m− 1, 2m− 1, 3m− 1, · · · }.

Here we see that every number in Ci is congruent (mod m) to every other number in Ci,
but to no number outside Ci. That is, if a ∈ Ci and b ∈ Cj , then a ≡ b (mod m) if and
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only if i = j. We note that each set Ci is an arithmetic progression; we call these sets
residue classes. In general, we could let Ca denote the arithmetic progression with common
difference m that contains the number a,

Ca = {· · · ,−2m+ a,−m+ a, a,m+ a, 2m+ a, · · · }.

Thus a ≡ b (mod m) if and only if Ca = Cb.
It is particularly noteworthy that every integer a is in exactly one of the sets Ci. Such

a configuration of subsets is called a partitioning . Thus congruences modulo m define an
equivalence relation on one hand, and a partitioning of the integers on the other. It is no
accident that congruences do both of these things. Indeed, it is not hard to show that if R

is an equivalence relation on a set S then the equivalence classes Ca = {b ∈ S : aRb} define a
partitioning of S. (See Problem 4. below.) Conversely, suppose we start with a partitioning
of S into disjoint subsets C1,C2,C3, . . . . Suppose that a ∈ Ci and that b ∈ Cj . Then we
can define a relation R by saying that aR b if and only if i = j. It is not hard to show
that this relation is an equivalence relation. (See Problem 5. below.) Thus equivalence
relations and partitionings are interchangeable, and it is immaterial whether we use the
language of one or of the other.

Explorations

1. For each of the following relations, determine which of the three properties (Re-
flexive, Symmetric, Transitive) hold, and hence determine which of these relations
are equivalence relations.

(a) a ≤ b; (d) similarity of triangles;
(b) a | b; (e) congruence of triangles;
(c) `1‖`2 (parallel lines); (f) a > b.

2. For r = 0, 1, 2, . . . , let Pr denote the set of positive integers that have exactly r
prime factors (counting multiplicity). Thus for example, 12 ∈ P3 since 12 = 2 · 2 · 3
has 3 prime factors.
(a) Explain why the sets Pr partition the positive integers.
(b) Describe the members of P0.
(c) Describe the members of P1.
(d) Describe the associated equivalence relation.
(e) If a ∈ Pi and b ∈ Pj , can you predict which class Pk that a+ b falls in?
(f) If a ∈ Pi and b ∈ Pj , can you predict which class Pk that ab falls in?

3. We have shown that any positive integer n can be written uniquely in the form
n = ab2 where a is squarefree. Call the number a the “squarefree part” of n.
Suppose we define a relation by saying that m ≈ n if they have the same squarefree
part.
(a) Show that ≈ is an equivalence relation.
(b) Describe the numbers n such that n ≈ 1.
(c) Describe the associated partitioning of the positive integers.
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4. Suppose that R is an equivalence relation defined on a set S. For s ∈ S, let

Cs = {t ∈ S : sR t}.

(a) Show that for s ∈ Cs for every s ∈ S.
(b) Show that if Cs and Ct have an element in common, then Cs = Ct.
(c) Show that the sets Cs form a partitioning of S.

5. Suppose that a family of sets Ci form a partitioning of a given set S. Define the
relation R by saying that aR b if there is an i such that a ∈ Ci and b ∈ Ci.
(a) Show that the relation R is reflexive.
(b) Show that the relation R is symmetric.
(c) Show that the relation R is transitive.
(d) Deduce that R is an equivalence relation.
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I KNOW YOU BELIEVE YOU

UNDERSTAND WHAT YOU THINK

I SAID, BUT I AM NOT SURE YOU

REALIZE THAT WHAT YOU HEARD

IS NOT WHAT I MEANT.
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The Greek Alphabet

Name Upper Lower Sound

alpha A α a

beta B β b

gamma Γ γ g

delta ∆ δ d

epsilon E ε, ε e

zeta Z ζ z

eta H η e

theta Θ θ, ϑ th

iota I ι i

kappa K κ, κ k

lambda Λ λ l

mu M µ m

nu N ν n

xi Ξ ξ x

omicron O o o

pi Π π, $ p

rho P ρ, % r

sigma Σ σ, ς s

tau T τ t

upsilon Υ υ y, u

phi Φ φ, ϕ f

chi X χ ch

psi Ψ ψ ps

omega Ω ω o

NOTES

Greek letters that are indistinguishable
from their Roman counterparts are not
used in mathematics.

The variant lower case sigma, ς, is not
used in mathematics—it occurs in Greek
words ending in s.

The variant $ of pi and % of rho were
common in mathematics as recently as the
nineteenth century, but are rare today.

Both forms of epsilon, theta, kappa,
and phi are in common use in mathematics,
but one should not use both forms of the
same letter in the same paper.

One should be careful not to confuse
the lower case epsilon (in either form) with
the mathematical symbol ∈, which means
‘is an element of’.
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THERE ARE THREE KINDS

OF MATHEMATICIANS:

THOSE WHO CAN COUNT,

AND THOSE WHO CAN’T.
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Logic

Statements have truth values, which may be True (abbreviated T) or False (abbreviated
F). If A is a statement, then “not A” is a statement whose truth value is the opposite of
A. We can diagram this in a truth table:

A not A

T F

F T

We also have various ways of combining statements. For example, we may take two
statements A and B, and combine them to form a single statement “A and B”. The truth
value of “A and B” is determined by the truth values of A and of B. In the truth table
below we give the rule that defines the values of “A and B”, “A or B”, “A xor B”, “A
=⇒ B”, and “A ⇐⇒ B”. Here “xor” is the exclusive or; it may be spoken as “A x-or B”,
or “either A or B.” Similarly, the symbol “=⇒” stands for an implication; it may be read
“A implies B,” or “if A then B”. Finally, “⇐⇒” denotes an implication in both directions,
which can be expressed in words in various ways, such as “A implies and is implied by B,”
or “A if and only if B,” or “A is equivalent to B.”

A B A and B A or B A xor B A =⇒ B A ⇐⇒ B

T T T T F T T

T F F T T F F

F T F T T T F

F F F F F T T

By using these basic rules, we can determine the truth values of various combinations
of statements. For example, in the table below we compute the values of “not A”, and
hence the values of “B or (not A).” We also reproduce, in the last column, the values of
“A =⇒ B.”
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A B not A B or not A A =⇒ B

T T F T T

T F F F F

F T T T T

F F T T T

Since the entries in the last two columns are the same, we are able to deduce from the
above that

B or not A ⇐⇒ A =⇒ B

That is, “B or not A” and “A =⇒ B” are logically equivalent. By computing truth tables,
we are able to establish further useful identities among combinations of statements.

When combining statements in a complicated way, it is important to introduce paren-
theses so that the order that operations are to be performed is made clear. For example,
the relation displayed above is ambiguous; it was intended to mean

(B or not A) ⇐⇒ (A =⇒ B),

although it could equally well be interpreted as

((B or not A) ⇐⇒ A) =⇒ B,

which is a quite different statement.

Explorations

1. Supply the missing entries in the following truth table:

A not A not (not A)

T F

F T

In this way, establish that “not (not A)” and “A” are logically equivalent. That is,

not (not A) ⇐⇒ A.
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2. Supply the values in the following table:

A B C B or C A and B A and C A and (B or C) (A and B) or (A and C)

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

On comparing the last two columns, we conclude that

A and (B or C) ⇐⇒ (A and B) or (A and C)

That is, “and” is distributive over “or” in the same way that multiplication is
distributive over addition: a(b+ c) = ab+ ac.

3. Supply the values in the following table:

A B C B and C A or B A or C A or (B and C) (A or B) and (A or C)

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

On comparing the last two columns, we conclude that

A or (B and C) ⇐⇒ (A or B) and (A or C)

That is, “or” is distributive over “and”. On combining this with the preceding
result, we find that each of “and” and “or” is distributive over the other. This
is different from ordinary arithmetic, where multiplication is distributive over ad-
dition, but addition is not distributive over multiplication. That is, the equation
a+ bc = (a+ b)(a+ c) does not hold identically.
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4. Complete the entries in the following truth table:

A B A =⇒ B B =⇒ A (not A) =⇒ (not B) (not B) =⇒ (not A)

T T

T F

F T

F F

The implication “B =⇒ A” is called the converse of the implication “A =⇒ B.” On
comparing the third and fourth columns above, we see that an implication is not
equivalent to its converse: One may be true while the other is false. For example,
suppose that a and b are positive integers. Then

If a|b then a ≤ b
is a true implication, but its converse

If a ≤ b then a|b
is false. On the other hand, on comparing the third and sixth columns above, we
discover that

A =⇒ B ⇐⇒ (not B) =⇒ (not A).

That is, the implication “A =⇒ B” is logically equivalent to its contrapositive,
“(not B) =⇒ (not A).” When proving a theorem, we often find it more convenient
to prove the contrapositive. This is permissible, since there is no logical distinction
between the two. For example, suppose that p > 2. Rather than prove that if p is
prime then p is odd, it might seem more natural to prove that if p is even (i.e., not
odd) then p is composite (i.e., not prime).

5. Complete the entries in the following truth table:

A B A =⇒ B A and (A =⇒ B) (A and (A =⇒ B)) =⇒ B

T T

T F

F T

F F

We see that the statement “(A and (A =⇒ B)) =⇒ B” is always true. Such a
statement is called a tautology. This particular tautology is the principle that we
use to make deductions. For example, we know that 37 is a prime number > 2,
and we know that if p is a prime number > 2 then p is odd. Hence we can deduce
that 37 is odd.
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6. Another important principle that we use in reasoning can be certified by completing
the entries in the following table:

A B C A⇒B B⇒C (A⇒B) and (B⇒C) A⇒C ((A⇒B) and (B⇒C)) =⇒ (A⇒C)

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

That is,

If A implies B and B implies C then A implies C.

This is known as the law of the syllogism.

7. Complete the entries in the following truth table:

A B A xor B (A xor B) xor B

T T

T F

F T

F F

By comparing the first and last columns, deduce that

(A xor B) xor B ⇐⇒ A.

If we let the number 1 correspond to True, and 0 correspond to False, then “A xor
B” corresponds to adding A and B (mod 2). Thus the identity above corresponds
to the congruence (x+ y) + y ≡ x (mod 2). More generally, x1 + x2 + · · ·+ xn ≡ 1
(mod 2) if and only if an odd number of the numbers xi is odd. Similarly, A1 xor
A2 xor . . . xor An is true if and only if an odd number of the statements Ai is true.
This statement can be rendered using only “and” and “or”, but the expressions
are rather bulky. For n = 2 we write “(A1 and (not A2)) or ((not A1) and A2).”
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For n = 3 we write

(A1 and A2 and A3)

or (A1 and (not A2) and (not A3))

or ((not A1) and A2 and (not A3))

or ((not A1) and (not A2) and A3).

Here we have 4 blocks with elements linked by “and” in each block. How many
such blocks are needed when n = 4? For general n?

In our initial discussion, we saw that “A =⇒ B” can be expressed equivalently as “B or
not A”. In the problem above we saw that “A xor B” can also be expressed using “and”,
“or” and “not.” Indeed, any desired function of basic statements A1, A2, . . . , An can
be expressed using only conjunction (i.e., “and”), disjunction (i.e., “or”), and negation
(i.e., “not”). If two such expressions are logically equivalent then the equivalence can be
established by manipulating the expressions according to the following fundamental rules.

The laws of logic

1. Law of double negation not (not A) ⇐⇒ A

2. DeMorgan’s laws not (A and B) ⇐⇒ (not A) or (not B)
not (A or B) ⇐⇒ (not A) and (not B)

3. Commutative laws A and B ⇐⇒ B and A
A or B ⇐⇒ B or A

4. Associative laws A and (B and C) ⇐⇒ (A and B) and C
A or (B or C) ⇐⇒ (A or B) or C

5. Distributive laws A and (B or C) ⇐⇒ (A and B) or (A and C)
A or (B and C) ⇐⇒ (A or B) and (A or C)

6. Idempotent laws A and A ⇐⇒ A
A or A ⇐⇒ A

7. Identity laws A or F ⇐⇒ A
A and T ⇐⇒ A

8. Inverse laws A and (not A) ⇐⇒ F
A or (not A) ⇐⇒ T

9, Domination laws A and T ⇐⇒ T
A or F ⇐⇒ F

10. Absorption laws A and (A or B) ⇐⇒ A
A or (A and B) ⇐⇒ A

In Problems 1–3 above some of these laws were verified; the rest may be verified similarly.
Note that, apart from the first law, the laws are in dual pairs; the dual is obtained by
interchanging “and” with “or” and “T” with “F.” Since the laws have this duality, and
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since any logical equivalence can be derived from these laws, it follows that each logical
equivalence has a dual equivalence.

As we saw in Problem 7 above, simple statements may lead to cumbersome expressions.
In some cases a statement can be expressed more compactly by means of a decision diagram

in which the truth values of the variables determine a path through the diagram. All paths
terminate at T or F. For example, the statement “A and (B or C)” is expressed by the
diagram

A

B

C

F T

Note that from each circled node, the left branch is taken if the variable is false, while the
right branch is taken if it is true. In each level of the diagram only one variable appears,
although it may appear several times. For example, the statement “A xor B xor C xor D”
is depicted as follows:

A

B B

C C

D D

F T

8. Use the laws of logic to simplify the expression “not (A =⇒ B).”

9. Use the laws of logic to verify that

(A =⇒ B) and not B) =⇒ not A
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is a tautology. (That this is a tautology could also be established by means of a
truth table, or by using the results of Problems 4 and 5: First, by Problem 4, we
know that the implication “A =⇒ B” is equivalent to its contrapositive, “(not B)
=⇒ (not A).” Then apply the principle of Problem 5 to the contrapositive.)

10. The first step in the preceding problem is to replace implications “P =⇒ Q” by
the more basic “Q or not P.” Form the dual of the expression that was obtained.
What is this dual equivalent to?

11. Suppose that three statements A, B, and C are combined by majority vote, so that
the result is T if two or more of A, B, C are true, and otherwise the result is F.
Construct a decision design to describe this combination.

12. Suppose that five statements A, B, C, D, and E are combined by majority vote, so
that the result is T if three or more of A, B, C, D, E are true, and otherwise the
result is F. Construct a decision design to describe this combination.

The statement below is true.

The statement above is false.
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Appendix P

Reference Guide to the Programs

ArFcnTab

Function Constructs a TABle of values of the six ARithmetic FunCtioNs ω(n) =
∑

p|n 1, Ω(n) =
∑

pa‖n a, µ(n), d(n) =
∑

d|n 1, φ(n), and σ(n) =
∑

d|n d.

Syntax arfcntab

Commands PgUp Display the next 20 values
PgDn Display the preceding 20 values
J Jump to a new point in the table
P Print 500 values, starting at the

top of the displayed screen
Esc Escape from the environment

Restrictions 1 ≤ n < 109

Algorithm When the program begins execution, it first constructs a list of the primes
not exceeding 109/2, by sieving. These primes are used for trial division.
The factorizations are determined simultaneously for all 20 numbers (or
all 500 numbers, in the case of printing).

See also Pi

BasesTab

Function Constructs a TABle of the expansions of integers n in various BASES b.

Syntax basestab

Commands PgUp Display the preceding 20 values
PgDn Display the next 20 values
← Shift to smaller bases
→ Shift to larger bases
J Jump to a new point in the table
Esc Escape from the environment

Restrictions 2 ≤ b ≤ 16, 1 ≤ n ≤ 1018

Algorithm The division algorithm is used to calculate base b digits, trailing digits
first.
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CngArTab

Function Displays the addition and multiplication TABles for CoNGruence ARith-
metic (mod m).

Syntax cngartab

Commands ↑ Move up
↓ Move down
← Move left
→ Move right
a Start at column a
b Start at row b
m Set modulus m
s Switch between addition and multiplication
r Display only reduced residues (in multiplication table)
p Print the table (if m ≤ 24)
Esc Escape from the environment

Restrictions 1 ≤ m < 109

See also PowerTab

CoDivTab

Function Constructs a TABle of the COmmon DIVisors of two given numbers b
and c.

Syntax codivtab

Restrictions 1 ≤ b < 109, 1 ≤ c < 109

Algorithm Tests every d in the range 1 ≤ d ≤ min(b, c).

See also CoMulTab, DivTab

CoMulTab

Function Constructs a TABle of the COmmon MULtiples of two given numbers b
and c.

Syntax comultab

Restrictions |b| < 109, |c| < 109

Algorithm The Euclidean Algorithm is used the calculate (b, c), and hence [b, c].
Then multiples of this latter number are listed.

See also CoDivTab

96 Exploring Number Theory



Appendix P. Programs

CRT

Function Determines the intersection of two arithmetic progressions. Let g =
(m1,m2). The set of x such that x ≡ a1 (mod m1), x ≡ a2 (mod m2)
is empty if a1 6≡ a2 (mod g). Otherwise the intersection is an arith-
metic progression a (mod m). In the Chinese Remainder Theorem it is
required that g = 1, and then m = m1m2. In general, m = m1m2/g.

Syntax crt [a1 m1 a2 m2]

Restrictions |ai| < 1018, 1 ≤ mi < 1018

Algorithm First the linear congruence m1y ≡ a2−a1 (mod m2) is solved. If a1 6≡ a2

(mod g), then this congruence has no solution, and the intersection of
the two given arithmetic progressions is empty. Otherwise, let y denote
the unique solution of this congruence in the interval 0 ≤ y < m2/g.
Then the intersection of the two given arithmetic progressions is the set
of integers x ≡ a (mod m) where a = ym1 + a1 and m = m1m2/g.

See also CRTDem, IntAPTab, LinCon, LnCnDem, ResComp

CRTDem

Function Demonstrates the method employed to determine the intersection of two
given arithmetic progressions.

Syntax crtdem [a1 m1 a2 m2]

Restrictions |ai| < 1018, 1 ≤ mi < 1018

Algorithm See the description given for the program CRT.

See also CRT, LnCnDem, ResComp

D2R

Function Converts a Decimal TO Rational. That is, the program returns the
rational number a/q with least q such that the initial decimal digits of
a/q coincide with the decimal digits given.

Syntax d2r [x]

Restrictions |a| < 1018, 1 ≤ q < 1018

Algorithm Suppose that k decimal digits of x are given after the decimal point.
Put δ = 0.5 · 10−k. We want to find a/q with q minimal such that
|x − a/q| ≤ δ. By the continued fraction algorithm the least i is found
such that |x− hi/ki| ≤ δ. Then the desired rational number is given by
a = chi−1 + hi−2, q = cki−1 + ki−2 where c is the least positive integer

Exploring Number Theory 97



Appendix P. Programs

such that a/q lies in the specified interval. Since this inequality holds
when c = ai, it suffices to search the interval [1, ai].

See also R2D

Div

Function Applies the division algorithm. Given a divisor d 6= 0 and a dividend
D, a quotient q and remainder r are found so that D = dq + r with
0 ≤ r < |d|.

Syntax div [d D]

Restrictions 0 < |d| < 1018, |D| < 1018

Algorithm Long division, to find the integer part of the quotient.

See also CoDivTab, CoMulTab, DivTab, DivTest

DivTab

Function Constructs a TABle of the DIVisors of a given number n.

Syntax divtab

Restrictions 1 ≤ n < 109

Algorithm The number n is factored, and a list of divisors is created with the
exponents of primes in lexicographic order. This is sorted to numerical
order by the heapsort algorithm.

See also CoDivTab, CoMulTab, Div, DivTest

DivTest

Function Tests whether b divides c, and presents the canonical factorization of
both numbers.

Syntax divtest [b c]

Restrictions |b| < 1018, |c| < 1018

Algorithm By the Division Algorithm, c = qb + r. Then b | c if and only if r = 0.
The canonical factorizations are determined by trial division.

See also CoDivTab, CoMulTab, Div, DivTab

EuAlgDem

Function DEMonstrates the EUclidean ALGorithm. If the parameters b and c
are specified on the command line, then (b, c) is calculated by using the
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identities (b, c) = (c, b), (b, c) = (b + mc, c), (b, 0) = |b|, and then the
program terminates. Otherwise an environment is provided in which
each remainder is expressed as a linear combination of b and c. In this
case one can also toggle between rounding down and rounding to the
nearest integer quotient.

Syntax eualgdem [b c]

Commands PgUp Display the top portion of the table
PgDn Display the bottom portion of the table
b Enter a new value of b
c Enter a new value of c
d Round down
n Round to the nearest quotient
P Print the table
Esc Escape from the environment

Restrictions |b| < 1018, |c| < 1018

Algorithm The Euclidean Algorithm or Extended Euclidean Algorithm.

See also FastGCD, GCD, SlowGCD

FacTab

Function Constructs a TABle of the least prime FACtor of odd integers from
10N + 1 to 10N + 199.

Syntax factab

Commands

PgUp Display the next 100 values
PgDn Display the preceding 100 values
N New N ; view table starting at 10N + 1
Esc Escape from the environment

Restrictions Integers not exceeding 109 + 189 (i.e. 0 ≤ N ≤ 99999999).

Algorithm When the program begins execution, it first constructs a list of the odd
primes not exceeding

√
109 + 200, by sieving. We call these the “small

primes.” There are 15803 such primes, the last one being 31607. The
next prime after this is 31621. When N is specified, the odd integers
in the interval [10N, 10N + 200] are sieved by those small primes not
exceeding

√
10N + 200; least prime factors are noted as they are found.

See also Factor, GetNextP

Factor

Function FACTORs a given integer n.
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Syntax factor [n]

Restrictions |n| < 1018

Algorithm Trial division. After powers of 2, 3, and 5 are removed, the trial divisors
are reduced residues modulo 30.

Comments Factors are reported as they are found. The program can be interrupted
by touching a key. This program provides a user interface for the pro-
cedure Canonic found in the NoThy unit. To view the source code,
examine the file nothy.pas.

FareyTab

Function Constructs a TABle of FAREY fractions of order Q. Fractions are dis-
played in both rational and decimal form, up to 20 of them at a time.

Syntax fareytab

Commands PgUp View the next 19 smaller entries
PgDn View the next 19 larger entries
D Center the display at a decimal x
R Center the display at a rational number a/q
P Print the table (allowed for Q ≤ 46)
Esc Escape from the environment

Restrictions 1 ≤ Q < 109

Algorithm If a/q and a′/q′ are neighboring Farey fractions of some order Q, say
a/q < a′/q′, then a′q − q′a = 1. By the extended Euclidean algorithm,
for given relatively prime a and q we find x and y such that xq−ya = 1.
Then q′ = y + kq, a′ = x + ka where k is the largest integer such that
y + kq ≤ Q. With a/q given, the next smaller Farey fraction a′′/q′′ is
found similarly. The Farey fractions surrounding a given decimal number
x are found by the continued fraction algorithm. Fractions are computed
only as needed by the screen or the printer.

See also FracTab

FastGCD

Function Times the execution of the Euclidean algorithm in calculating the Great-
est Common Divisor of two given integers.

Syntax fastgcd

Restrictions |b| < 1018, |c| < 1018

Algorithm Euclidean algorithm, rounding down.

See also GCD, SlowGCD
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FctrlTab

Function Provides a table of n! (mod m). Each screen displays 100 values.

Syntax fctrltab

Commands PgUp View the preceding 100 entries
PgDn View the next 100 entries
J Jump to a new position in the table
M Enter a new modulus
P Print the first 60 lines of the table
Esc Escape from the environment

Restrictions 0 ≤ n ≤ 10089, 0 < m < 106

Algorithm All 10089 values are calculated as soon as m is specified, unless m <
10089, in which case only m values are calculated.

FracTab

Function Lists FRACtions (xa + ya′)/(xq + yq′) in a TABle with entries sorted
according to the value of arctan y/x, for |x| ≤ Q, |y| ≤ Q.

Syntax fractab

Remarks The data generated reflects some of the properties of Farey fractions.

Restrictions 1 ≤ a ≤ q < 103, 1 ≤ a′ ≤ q′ < 103, Q < 103/q, Q < 103/q′

See also FareyTab

GCD

Function Calculates the Greatest Common Divisors of two given integers.

Syntax gcd [b c]

Restrictions |b| < 1018, |c| < 1018

Algorithm Euclidean algorithm with rounding to the nearest integer.

See also EuAlgDem, FastGCD, SlowGCD

GCDTab

Function Constructs a TABle of the Greatest Common Divisors of pairs of num-
bers b, c.

Syntax gcdtab
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Restrictions |b| < 1018, |c| < 1018

Algorithm Entries in the table are calculated by the Euclidean Algorithm.

See also GCD, EuAlgDem

GetNextP

Function Finds the least Prime larger than a given integer x, if x ≤ 109. If
109 < x ≤ 1018, it finds an integer n, n > x, such that the interval (x, n)
contains no prime but n is a strong probable prime to bases 2, 3, 5, 7,
and 11. A rigorous proof of the primality of n can be obtained by using
the program PrimRoot.

Syntax getnextp [x]

Restrictions 0 ≤ x < 1018

Algorithm If 0 ≤ x ≤ 109 then the least prime larger than x is found by sieving. If
109 < x ≤ 1018 then strong probable primality tests are performed.

See also FacTab, PrimRoot

IndTab

Function Generates a TABle of INDices of reduced residue classes modulo a prime
number p, with respect to a specified primitive root. Also generates a
table of powers of the primitive root, modulo p. Up to 200 values are
displayed a one time.

Syntax indtab

Commands PgUp View the preceding 200 entries
PgDn View the next 200 entries
J Jump to a new position in the table
E Switch from indices to exponentials
I Switch from exponentials to indices
M Enter a new prime modulus
B Choose a new primitive root as the base
P Print table(s)
Esc Escape from the environment

Restrictions p < 104

Algorithm The least positive primitive root g of p is found using the program Prim-
Root. The powers of g modulo p and the indices with respect to g are
generated in two arrays.

See also PowerTab, PrimRoot
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IntAPTab

Function Creates a TABle with rows indexed by a (mod m) and columns indexed
by b (mod n). The INTersection of these two Arithmetic Progressions is
displayed (if it is nonempty) as a residue class (mod [m,n]).

Syntax intaptab

Commands ↑ Move up
↓ Move down
← Move left
→ Move right
a Start at row a
b Start at column b
m Set modulus m
n Set modulus n
P Print (when table is small enough)
Esc Escape from the environment

Restrictions m < 104, n < 104

Algorithm Chinese Remainder Theorem

See also CRT, CRTDem, ResComp

Comments Reduced residues are written in white, the others in yellow.

LinCon

Function Finds all solutions of the LINear CONgruence ax ≡ b (mod m).

Syntax lincon [a b m]

Restrictions |a| < 1018, |b| < 1018, 0 < m < 1018

Algorithm The extended Euclidean algorithm is used to find both the number g =
(a,m) and a number u such that au ≡ g (mod m). If g - b then there
is no solution. Otherwise, the solutions are precisely those x such that
x ≡ c (mod m/g) where c = ub/g.

See also LnCnDem

LnCnDem

Function DEMonstrates the method used to find all solutions to the LiNear CoN-
gruence ax ≡ b (mod m).

Syntax lncndem [a b m]

Restrictions |a| < 1018, |b| < 1018, 0 < m < 1018
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See also LinCon

LnComTab

Function Constructs a TABle of the LiNear COMbinations of two given integers
b and c.

Syntax lncomtab

Restrictions |b| < 109, |c| < 109

Merlin

Function Provides emulation of an electronic toy marketed in 1978 by Parker
Brothers, now part of Hasbro; see www.hasbro.com.

Syntax merlin

Commands 1 reverse squares 1, 2, 4, 5
2 reverse squares 1, 2, 3
3 reverse squares 2, 3, 5, 6
4 reverse squares 1, 4, 7
5 reverse squares 2, 4, 5, 6, 8
6 reverse squares 3, 6, 9
7 reverse squares 4, 5, 7, 8
8 reverse squares 7, 8, 9
9 reverse squares 5, 6, 8, 9
R Restart at a new random position
Esc Escape from the environment

Comments The elapsed time, number of moves, and least possible number of moves
is reported when the goal is attained.

Mult

Function MULTiplies residue classes. If a, b, and m are given with m > 0, then c
is found so that c ≡ ab (mod m) and 0 ≤ c < m.

Syntax mult [a b m]

Restrictions |a| < 1018, |b| < 1018, 0 < m < 1018

Algorithm If m ≤ 109 then ab is reduced modulo m. If 109 < m ≤ 1012 then
we write a = a1106 + a0, and compute a1b106 + a0b modulo m, with
reductions modulo m after each multiplication. Thus all numbers en-
countered have absolute value at most 1018. If 1012 < m ≤ 1018 then we
write a = a1109 + a0, b = b1109 + b0; we compute ab/m in floating-point

104 Exploring Number Theory



Appendix P. Programs

real arithmetic and let q be the integer nearest this quantity; we write
q = q1109 + q0; m = m1109 +m0. Then

ab− qm = ((a1b1 − q1m1)109 + a1b0 + a0b1 − q1m0 − q0m1)109

+ a0b0 − q0m0.

The right hand side can be reliably evaluated, and this quantity has
absolute value less than m. If it is negative we add m to it to obtain the
final result. The assumption is that the machine will perform integer
arithmetic accurately for integers up to 4 · 1018 in size. The object is
to perform congruence arithmetic with a modulus up to 1018 without
introducing a full multiprecision package.

Nim

Function

Syntax nim

Remarks

Restrictions

Algorithm

See also

Order

Function Calculates the ORDER of a reduced residue class a (mod m). That is,
it finds the least positive integer h such that ah ≡ 1 (mod m).

Syntax order [a m [c]]

Restrictions |a| < 1018, 0 < m < 1018, 0 < c < 1018

Algorithm The parameter c should be any known positive number such that ac ≡ 1
(mod m). For example, if m is prime then one may take c = m − 1.
If a value of c is not provided by the user, or if the value provided is
incorrect, then the program assigns c = Carmichael (m). (This involves
factoring m by trial division.) Once c is determined, then c is factored by
trial division. Prime divisors of c are removed, one at a time, to locate
the smallest divisor d of c for which ad ≡ 1 (mod m). This number is
the order of a modulo m.

See also OrderDem, OrderTab
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OrderDem

Function DEMonstrates the method used to calculate the ORDER of a reduced
residue class a (mod m).

Syntax order [a m [c]]

Restrictions |a| < 1018, 0 < m < 1018, 0 < c < 1018

Algorithm See the description given for the program Order.

See also Order, OrderTab

OrderTab

Function Constructs a TABle of the ORDER of a modulo m.

Syntax ordertab

Commands → Display the next columns
↓ Display the next 20 rows
← Display the preceding columns
↑ Display the preceding 20 rows
a Display column a
m Display row m
P Print a portion of the table
Esc Escape from the environment

Restrictions −9999 ≤ a ≤ 9985, 1 ≤ m ≤ 9999

See also Order, OrderDem

PascalsT

Function Constructs a table of PASCAL’S Triangle
(

n
k

)

(mod m). Rows are in-
dexed by n, columns by k. Up to 20 rows and 18 columns are displayed
at one time.

Syntax pascalst

Commands ↑ Display the preceding 20 rows
↓ Display the next 20 rows
← Display the preceding 20 columns
→ Display the next 20 columns
T Move to the top of the triangle
M Choose a new modulus
Esc Escape from the environment

Restrictions 0 ≤ k ≤ n < 104, 0 < m < 103
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Algorithm The rows are calculated inductively by the recurrence
(

n
k−1

)

+
(

n
k

)

=
(

n+1
k

)

. The entire nth row is calculated, where n is the top row on the
current screen. Other entries in the screen are calculated from the top
row.

PermCalc

Function Acts as a pocket calculator, for permutations.

Syntax permcalc

Commands ↑ Display the preceding 20 rows
↓ Display the next 20 rows
← Display the preceding 20 columns
→ Display the next 20 columns
T Move to the top of the triangle
M Choose a new modulus
Esc Escape from the environment

Remarks

Restrictions

Algorithm

See also

Phi

Function Calculates the Euler PHI function of n.

Syntax phi [n]

Restrictions 1 ≤ n < 1018

Algorithm The canonical factorization of n is found by trial division, and then φ(n)
is found by means of the formula φ(n) =

∏

pα‖n p
α−1(p− 1).

Pi

Function Determines the number π(x) of primes not exceeding an integer x.

Syntax pi [x]

Restrictions 2 ≤ x < 109

Algorithm Primes up to 31607 are constructed, by sieving. These primes are used
as trial divisors, to sieve intervals of length 104 until x is reached.

Comments The running time is roughly linear in x. For faster methods of computing
π(x), see the following papers.
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J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, “Computing π(x): The
Meissel-Lehmer method,” Math. Comp. 44 (1985), 537–560.
J. C. Lagarias and A. M. Odlyzko, “New algorithms for computing π(x),”
Number Theory: New York 1982 (D. V. Chudnovsky, G. V. Chudnovsky,
H. Cohn and M. B. Nathanson, eds.), pp. 176–193; Lecture Notes in
Mathematics 1052, Springer-Verlag (Berlin), 1984.
J. C. Lagarias and A. M. Odlyzko, “Computing π(x): an analytic meth-
od,” J. Algorithms 8 (1987), 173–191.

PolySolv

Function Finds all solutions of a given polynomial congruence P (x) ≡ 0 (mod m).

Syntax polysolv

Commands C Count the zeros
D Define the polynomial
M Choose the modulus
Esc Escape from the environment

Restrictions 1 ≤ m < 104, P (x) must be the sum of at most 20 monomials, only the
first 100 zeros found are displayed on the screen

Algorithm The polynomial is evaluated at every residue class modulo m.

Comments The running time here is roughly linear in m. When m is large there is
a much faster method available, using more sophisticated techniques.

Power

Function Computes ak (mod m) in the sense that it returns a number c such that
0 ≤ c < m and c ≡ ak (mod m).

Syntax power [a k m]

Restrictions |a| < 1018, 0 ≤ k < 1018, 0 < m < 1018

Algorithm If k is even, say k = 2k′, then ak ≡ (a2)k′

(mod m). If k is odd, say

k = 2k′ + 1, then ak ≡ a(a2)k′

(mod m). These identities are used
repeatedly, until the exponent is reduced to 0.

See also PowerDem, PowerTab

PowerDem

Function DEMonstrates the POWERing algorithm used to compute ak (mod m).

Syntax powerdem [a k m]
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Restrictions |a| ≤ 1018, 0 ≤ k ≤ 1018, 0 < m ≤ 1018

See also Power, PowerTab

PowerTab

Function Constructs a TABle of POWERs ak (mod m).

Syntax powertab

Commands ↑ Display the preceding 20 rows
↓ Display the next 20 rows
← Display the preceding rows
→ Display the next rows
B Change the base
E Move to a new exponent
M Change the modulus
P Print the first 54 lines of the table
Esc Escape from the environment

Restrictions |a| < 109, 1 ≤ k < 109, 1 ≤ m < 109

Algorithm The first entry in each row is computed by the powering algorithm. Then
the remaining entries on the screen are determined inductively.

See also Power, PowerDem

PrimRoot

Function Finds the least primitive root g of a prime number p, such that g > a.

Syntax primroot [p [a]] If p is specified on the command line but not a, then by
default a = 0.

Restrictions 2 ≤ p < 1018, |a| < 1018

Algorithm The prime factors q1, q2, . . . , qr of p−1 are found by trial division. Then
g is a primitive root of p if and only if both gp−1 ≡ 1 (mod p) and
g(p−1)/qi 6≡ 1 (mod p) for all i, 1 ≤ i ≤ r. When a g is found that
satisfies these conditions, not only is g a primitive root of p, but also the
primality of p is rigorously established.

See also Order, OrderDem, OrderTab

ResComp

Function Compares residues x (mod m) with x (mod n).

Syntax rescomp
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Restrictions |x| < 109, 1 ≤ m < 109, 1 ≤ n < 109

Algorithm Division algorithm to find remainders.

See also CRT, CRTDem, IntAPTab

RSA

Function Demonstrates RSA encryption. Plaintext is taken from an ASCII file
with the default extension .txt. The ASCII code of a printable key-
board character lies between 32 and 126. By subtracting 32 we obtain
a number between 0 and 94. In this way each character is associated
with a 2-digit code. The code 95 is used as an end-of-line marker. The
codes are concatenated k at a time to represent residues modulo m where
102k ≤ m < 102k+2. Ciphertext can be saved as a sequence of residues
to a file with the default extension .rsa. Public RSA parameters can be
entered from the keyboard or read from a file with the default extension
.pub. A line in the source file that begins with the symbol ‘%’ is treated
as a comment, and is passed to the destination file without alteration.
When saving, the encryption history is included as a comment. This im-
plementation is not secure because numbers m < 1018 are easily factored.
The RSA method is the patented property of RSA Data Systems. For
information concerning licensing send email to patents@rsa.com. For in-
formation concerning RSA-based products, connect on the World Wide
Web to http://www.rsa.com/.

Syntax rsa

Commands ↑ Move the window up one screenful
↓ Move the window down one screenful
V set the Variables
L Load plain or cipher text
E Encipher
D Decipher
C convert from text or residues to Codes
T convert from codes to Text
R convert from codes to Residues
S Save
P Print
Esc Escape from the environment

Restrictions 100 ≤ m < 1018, 0 < k < 1018, 0 < k′ < 1018

Algorithm Each residue class a (mod m) is replaced by b ≡ ak (mod m). To deci-

pher, replace b by bk
′

(mod m) where kk′ ≡ 1 (mod φ(m)).

See also RSAPars
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RSAPars

Function Aids in forming RSA PARameterS. The private exponent k′ is chosen
first, and then m is constructed by choosing primes p such that (p −
1, k′) = 1. When m has been determined, the public exponent is derived.
The public parameters m and k can be saved to a file, with the default
extension .pub.

Syntax rsapars

Restrictions 1 < k′ < 1018, k′ odd, 100 ≤ m < 1018, m squarefree.

Algorithm Primes p < 109 are found (rigorously) by sieving. Primes 109 < p < 1018

are found (unrigorously) by applying strong pseudoprime tests to bases
2, 3, 5, 7, and 11. Once k′ and the prime factors of m have been chosen,
the public exponent k is determined by solving the linear congruence
kk′ ≡ 1 (mod φ(m)).

See also RSA, LinCon

R2D

Function Converts a Rational number a/q TO Decimal form, or in base b. If a and
q (and optionally b) are entered on the command line then a screenful of
digits is given and the program terminates. Otherwise the first 109 digits
may be viewed, 1000 at a time. The base b can be changed; the default
is b = 10. When b > 10 the ‘digit’ 10 is represented by A, . . . , 15 by F.
(When b = 16 this is the standard hexadecimal convention.) The digits
are initially displayed in yellow, but the periodicity of the expansion can
be highlighted, in which case alternate cycles are displayed in green and
red. In this latter mode the length T (a/q) of the aperiodic ‘tail’ and
the length C(a/q) of the ‘cycle’ are also displayed. (These values also
depend on b.)

Commands PgUp Move the window up one screenful
PgDn Move the window down one screenful
J Jump to a new position in the table of digits
a enter a numerator a
q enter a denominator q
B enter a base b
C highlight or Conceal the Cycles
P Print the first 2997 digits (1 page)
Esc Escape from the environment

Syntax r2d [a q [b]]

Restrictions 1 ≤ a < q ≤ 109, 2 ≤ b ≤ 16
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Algorithm Remainders ri are uniquely determined by the relations 0 ≤ ri < q,
ri ≡ abi (mod q). Digits di are found from the identity bri = diq+ ri+1.
Assume that (a, q) = 1. If there is an integer k such that q | bk then
let k be the least such integer; the expansion terminates after exactly
k digits. Otherwise, the length T (a/q) of the aperiodic tail is the least
non-negative integer t such that the denominator q′ of abt/q is relatively
prime to b. The length C(a/q) of the cycle is the order of b modulo q′.

See also D2R, Order

SlowGCD

Function Times the calculation of the greatest common divisor of two numbers b
and c, when only the definition is used. The only purpose in this is to
provide a comparison with FastGCD.

Syntax slowgcd

Restrictions |b| < 109, |c| < 109

Algorithm For each d, 1 ≤ d ≤ min(|b|, |c|), trial divisions are made to determine
whether d | b and d | c. A record is kept of the largest such d found.
Since the running time is essentially linear in min(|b|, |c|), only small
arguments should be used.

See also FastGCD, GCD

SumsPwrs

Function Finds all representations of n as a sum of s k-th powers, and counts them
in various ways.

Syntax sumspwrs [n s k]

Restrictions 1 ≤ n < 1011, 2 ≤ s ≤ 75, 2 ≤ k ≤ 10

Algorithm After s − 1 summands have been chosen, a test is made as to whether
the remainder is a k-th power. Summands are kept in monotonic order;
the multiplicity is recovered by computing the appropriate multinomial
coefficient. In some cases, such as sums of two squares, much faster
methods exist for finding all representations.

See also Wrg1Tab, Wrg2Tab, WrgCnTab

WrngTab

Function Creates a TABle of the number r(n) of representations of n =
∑s

i=1 x
s
i

as a sum of s k-th powers, as in WaRiNG’s problem. If k > 2 then the
xi are non-negative, but for k = 2 the xi are arbitrary integers.
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Syntax wrngtab

Commands PgUp Move up
PgDn Move down
s Set s, the number of summands
k Set k, the exponent
N Start the table at 10n
P Print the table
Esc Escape from the environment

Restrictions 1 ≤ s ≤ 75, 2 ≤ k ≤ 10, 1 ≤ n ≤ 1011

Algorithm Search for representations, with summands in monotonic order. The
multiplicity of a representation is recovered by multiplying by the ap-
propriate multinomial coefficient.

See also SumsPwrs
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