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POLYNOMIALS IN MANY VARIABLES

by Hugh L. MONTGOMERY

Seminaire DELANGE-PISOT-POITOU

(Theorie des nombres)
17e année, 1975/76, nO 7, 6 p.

We concern ourselves with two completely unrelated topics, although polynomials
in several variables are involved in both parts. 

’

PART I. Zeros of Dirichlet polynomials

Let D be the class of all generalized Dirichlet polynomials

where an ~ Z , and X > 0 for all n . Such Dirichlet polynomials have been

known to arise as factors of Euler products. We ask : For how far to the

left can all the zeros of D(s) be ? Recently, it was shown that for every 

D(s) has a zero in the half-plane Re s > - e . Our object (realized in Theorem 3)
is to sharpen this statement, and to determine the extremal D(s) .

In 1857, KRONECKER proved the following theorem.

THEOREM A. - If F e Z~~~ , F is monic, and F(x) 7~ 0 for x) > 1 , x ~= C ,
then F is a product of cyclotomic polynomials ; all zeros of F are roots of uni-

ty. 
’

The above does not seem to present much prospect of being generalized to several

variables, as in several variables it would be difficult to determine what a

"monic" polynomial should be. However, we can reformulate Theorem A as the follo-

wing.

THEOREM At. - If F E jz[x~) , F~C~ - 1 , 0 for ~x~ [  ~, , x E C , then
F is a product of cyclotomic polynomials ; its zeros are roots of unity.

This generalizes immediately, as a new theorem.

THEOREM 1.

where the Pk are cyclotomic polynomials and the aik are non-negative integers.

In addition to my original proof of Theorem 1, which was very complicated, Bryan

BIRCH and Atle SELBERG have found simpler proofs. We do not give a complete proof

here, but indicate the spirit of my original proof, as modified by BIRCH.



We proceed by induction on n ; the case n = 1 is Theorem A~ , Suppose that

there is a non-constant term of F( z) which does not involve z . This is, of
- n

course, only a special case ; in general, we must make a multiplicative change of

variables to bring about this favorable situation. Then

and F,. is non trivial. If J = 0 , then we are done; if J > 0 , then we wish to

show that P.. is a factor of the other F, . By the inductive hypothesis, F.. is

a product of polynomials za22 ... zan-1n-1) , P cyclotomic. Thus each factor

of F0 vanishes on a large set in Un-1 , so to show that P..)?. it suffices to

show that P. = 0 in whenever F0 == 0 . Let = 0 , |ui| == 1 ,

1  i  n - 1 . Put

Suppose that Fj(u) ~ 0 for at least one j , 1  j  J . The coefficients of

fA are continuous functions in 03BB , so that for B near 1 there is a continuous

function such that y( l) == 0 , f ~y~~,) ) = 0 . Then, for X ~ ~ , A near

1 , we have F~z) -- 0 for z = (u, , ... ~ u , y(~) ) E contradiction.

Hence Fj(u) = 0 , and we deduce that F0|F , as desired.

In his doctoral thesis, Harald BOHR demonstrated that the set of values of a ge-

neralized Dirichlet polynomial is connected to the set of values of an associated

polynomial in several variables. Precisely, if P E C[z y ... , and

03BB1 , ... , Àn are positive linearly independent numbers, put

Then

( 1)

To this, we add a new result.

THEOREM 2. - In the above notation,

Proof. - Call the above sets X and Y, respectively. By appealing to (1~ for

each a > 0 , we see that Y = Y’ , where

That X = Y’ now follows from a standard analytic completion argument : Suppose

= a ~ z E and let be the supremum of those cr with the property

that a E E where U(a) = (j~ ; exp(- 1~1 Q~~ . For
a > let f(a) = a) . Then = 0 , and f is continuous

and increasing for For 03C30 > 03C30 , let have the property that

)P(z(j)))- ai has the minimal value f~~) . By the minimum modulus theorem,

jz. (a)) I = exp(- B. ?) . Let be a cluster point of the points z(a) as



as 7 -> cr~ ~ Then I = exp(- X. and = a , so that X = Y’ .

Our objective is now within reach.

THEOREM 3. - Let D(s) = 1 + a exp(- B s) , where a e Z , not all a

vanish, and the B are positive real numbers. Then D(s) has zeros in the half-

plane Re s ~ 0 . If D(s)  0 for Re s > 0 , then

where the P k are cyclotomic and the ~k are positive real ; the zeros of D(s)
form a finite union of arithmetic progressions on Re s = 0 .

Proof. - After BOHR, there is a polynomial F e ... , zn~ and linearly

independent positive real numbers ~ ~ , ... , vn such that

By Theorem 2, we are concerned with zeros of P(z) for z E But P(o) == 1 ,
so the result follows from Theorem 1.

PART II. Norms of products of ol omials

If f = deg F , g = deg G , and n are all held fixed, then by compactness

there is a constant c = c(f , g ~ n) > 0 such that

Arguing more precisely, A. 0. GEL’FOND showed that one can take c(f,g;1~~ -.f -g ;
later Kurt MAHLER demonstrated this with A = 2 , which is sharp. However, for

n > 1 , their methods give bounds depending not on deg F as we have def ined it in

(2), but on

this gives some dependence on n , in addition to that on f and g . Of course,



if n is allowed to be arbitrarily large then we no longer have compactness, so

it is of interest that Per ENFLO has recently proved the following theorem.

THEOREM. - There is a positive constant g) , independent of n , such that

for all polynomials F , G in n variables, with degrees not exceeding f and.

g , respectively,

This forms one of the steps in Enflo’s recent disproof of the invariant subspace
conjecture. His proof of the above theorem is very complicated ; we give here a

proof which seems to be easier to understand, and which generalizes easily in a
number of ways.

If F~ = zf ... , then F is homogeneous of degree f,
= , and (FG)* = F G~ . Thus in proving the Theorem, we may assume without

lo ss of general ity that F and G are homogeneous. This allows us to employ the

following simple lemma.

LEMMA 1 [EULER]. - Let Fi = ~F/~zi . If F is homogeneous of degree f , then

Let be the largest real number such that

for all polynomials F, G of degrees f, g, respectively.

Our proof proceeds by a complicated induction on r, f ! and g . The two main

inductive steps are provided by the following lemmas.

LEMMA 2, -~ For r > 1 ,

Proof. - Using (7) twice, we see that

The left hand side is = ~I (F~ ~) tt , so we sum the above over i and apply lemma

1 to find that

This gives (8)

LEMMA. 3. - For r ~ 1 f g ~ 1 ,



Proof. - By ~7 ~ ,

But

so the right hand side of (1(3) is

by (4) and (5). Summing over i, we find, from Lemma 1, that

This gives ~9~,

We now prove the Theorem, using Lemmas 2 and 3. Our first inductive hypothesis is

that

We note that c (() , g) = l ~ which provides a basis for induction. We prove H(f) ~
assuming H(f - l) . Noting that 0) == 1 ; we induct on r in Lemma .2 to

find that c (f ~ 0) > (3 for all r ~ 1 . This provides the basis for an induction

on g ; by Lemma 3~ we see that c (f ~ g) > 0 for all g ~ r ~ This gives H(f) ~
which completes the induction on f .

The constants provided by our proof are very small. For example, we find that

c(3 ~ 4) > 2 x 1(3"’-""’ . It would be interesting to know whether we could take

c(f , g) = C"~ .

Our proof extends in a number of directions. If K is a field of characteristic

0 having a valuation )} then for F 2:? ~ ... ~ z ]i ~ we may put

Then we still have the Theorem, although in general the constants may depend on

v . If = m for all positive integers m, then the above proof applies ’

without change. If we put
t

then

the constant is uniform in p for 0  b  p  + ~ . Alternatively, if we put
.. f

where e(e) = exp 2rrie , we find that
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for 0  q ~ + co . In conclusion, we note an interesting difference between ( 12)
and ( 13). If (13) holds for one q then it follows for all other finite q ~

since there are constants a. such that

for 0  ~ ~ q’  co . This is not the case in ( 12) ; the inequalities are genuine-

ly distinct for distinct p .
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